1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! Library to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! [Pinning][pinning] is Rust's way of ensuring data does not move. 6 //! 7 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 8 //! overflow. 9 //! 10 //! This library's main use-case is in [Rust-for-Linux]. Although this version can be used 11 //! standalone. 12 //! 13 //! There are cases when you want to in-place initialize a struct. For example when it is very big 14 //! and moving it from the stack is not an option, because it is bigger than the stack itself. 15 //! Another reason would be that you need the address of the object to initialize it. This stands 16 //! in direct conflict with Rust's normal process of first initializing an object and then moving 17 //! it into it's final memory location. For more information, see 18 //! <https://rust-for-linux.com/the-safe-pinned-initialization-problem>. 19 //! 20 //! This library allows you to do in-place initialization safely. 21 //! 22 //! ## Nightly Needed for `alloc` feature 23 //! 24 //! This library requires the [`allocator_api` unstable feature] when the `alloc` feature is 25 //! enabled and thus this feature can only be used with a nightly compiler. When enabling the 26 //! `alloc` feature, the user will be required to activate `allocator_api` as well. 27 //! 28 //! [`allocator_api` unstable feature]: https://doc.rust-lang.org/nightly/unstable-book/library-features/allocator-api.html 29 //! 30 //! The feature is enabled by default, thus by default `pin-init` will require a nightly compiler. 31 //! However, using the crate on stable compilers is possible by disabling `alloc`. In practice this 32 //! will require the `std` feature, because stable compilers have neither `Box` nor `Arc` in no-std 33 //! mode. 34 //! 35 //! ## Nightly needed for `unsafe-pinned` feature 36 //! 37 //! This feature enables the `Wrapper` implementation on the unstable `core::pin::UnsafePinned` type. 38 //! This requires the [`unsafe_pinned` unstable feature](https://github.com/rust-lang/rust/issues/125735) 39 //! and therefore a nightly compiler. Note that this feature is not enabled by default. 40 //! 41 //! # Overview 42 //! 43 //! To initialize a `struct` with an in-place constructor you will need two things: 44 //! - an in-place constructor, 45 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 46 //! [`Box<T>`] or any other smart pointer that supports this library). 47 //! 48 //! To get an in-place constructor there are generally three options: 49 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 50 //! - a custom function/macro returning an in-place constructor provided by someone else, 51 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 52 //! 53 //! Aside from pinned initialization, this library also supports in-place construction without 54 //! pinning, the macros/types/functions are generally named like the pinned variants without the 55 //! `pin_` prefix. 56 //! 57 //! # Examples 58 //! 59 //! Throughout the examples we will often make use of the `CMutex` type which can be found in 60 //! `../examples/mutex.rs`. It is essentially a userland rebuild of the `struct mutex` type from 61 //! the Linux kernel. It also uses a wait list and a basic spinlock. Importantly the wait list 62 //! requires it to be pinned to be locked and thus is a prime candidate for using this library. 63 //! 64 //! ## Using the [`pin_init!`] macro 65 //! 66 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 67 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 68 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 69 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 70 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 71 //! 72 //! ```rust 73 //! # #![expect(clippy::disallowed_names)] 74 //! # #![feature(allocator_api)] 75 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 76 //! # use core::pin::Pin; 77 //! use pin_init::{pin_data, pin_init, InPlaceInit}; 78 //! 79 //! #[pin_data] 80 //! struct Foo { 81 //! #[pin] 82 //! a: CMutex<usize>, 83 //! b: u32, 84 //! } 85 //! 86 //! let foo = pin_init!(Foo { 87 //! a <- CMutex::new(42), 88 //! b: 24, 89 //! }); 90 //! # let _ = Box::pin_init(foo); 91 //! ``` 92 //! 93 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 94 //! (or just the stack) to actually initialize a `Foo`: 95 //! 96 //! ```rust 97 //! # #![expect(clippy::disallowed_names)] 98 //! # #![feature(allocator_api)] 99 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 100 //! # use core::{alloc::AllocError, pin::Pin}; 101 //! # use pin_init::*; 102 //! # 103 //! # #[pin_data] 104 //! # struct Foo { 105 //! # #[pin] 106 //! # a: CMutex<usize>, 107 //! # b: u32, 108 //! # } 109 //! # 110 //! # let foo = pin_init!(Foo { 111 //! # a <- CMutex::new(42), 112 //! # b: 24, 113 //! # }); 114 //! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo); 115 //! ``` 116 //! 117 //! For more information see the [`pin_init!`] macro. 118 //! 119 //! ## Using a custom function/macro that returns an initializer 120 //! 121 //! Many types that use this library supply a function/macro that returns an initializer, because 122 //! the above method only works for types where you can access the fields. 123 //! 124 //! ```rust 125 //! # #![feature(allocator_api)] 126 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 127 //! # use pin_init::*; 128 //! # use std::sync::Arc; 129 //! # use core::pin::Pin; 130 //! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42)); 131 //! ``` 132 //! 133 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 134 //! 135 //! ```rust 136 //! # #![feature(allocator_api)] 137 //! # use pin_init::*; 138 //! # #[path = "../examples/error.rs"] mod error; use error::Error; 139 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 140 //! #[pin_data] 141 //! struct DriverData { 142 //! #[pin] 143 //! status: CMutex<i32>, 144 //! buffer: Box<[u8; 1_000_000]>, 145 //! } 146 //! 147 //! impl DriverData { 148 //! fn new() -> impl PinInit<Self, Error> { 149 //! pin_init!(Self { 150 //! status <- CMutex::new(0), 151 //! buffer: Box::init(pin_init::init_zeroed())?, 152 //! }? Error) 153 //! } 154 //! } 155 //! ``` 156 //! 157 //! ## Manual creation of an initializer 158 //! 159 //! Often when working with primitives the previous approaches are not sufficient. That is where 160 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 161 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 162 //! actually does the initialization in the correct way. Here are the things to look out for 163 //! (we are calling the parameter to the closure `slot`): 164 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 165 //! `slot` now contains a valid bit pattern for the type `T`, 166 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 167 //! you need to take care to clean up anything if your initialization fails mid-way, 168 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 169 //! `slot` gets called. 170 //! 171 //! ```rust 172 //! # #![feature(extern_types)] 173 //! use pin_init::{pin_data, pinned_drop, PinInit, PinnedDrop, pin_init_from_closure}; 174 //! use core::{ 175 //! ptr::addr_of_mut, 176 //! marker::PhantomPinned, 177 //! cell::UnsafeCell, 178 //! pin::Pin, 179 //! mem::MaybeUninit, 180 //! }; 181 //! mod bindings { 182 //! #[repr(C)] 183 //! pub struct foo { 184 //! /* fields from C ... */ 185 //! } 186 //! extern "C" { 187 //! pub fn init_foo(ptr: *mut foo); 188 //! pub fn destroy_foo(ptr: *mut foo); 189 //! #[must_use = "you must check the error return code"] 190 //! pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32; 191 //! } 192 //! } 193 //! 194 //! /// # Invariants 195 //! /// 196 //! /// `foo` is always initialized 197 //! #[pin_data(PinnedDrop)] 198 //! pub struct RawFoo { 199 //! #[pin] 200 //! _p: PhantomPinned, 201 //! #[pin] 202 //! foo: UnsafeCell<MaybeUninit<bindings::foo>>, 203 //! } 204 //! 205 //! impl RawFoo { 206 //! pub fn new(flags: u32) -> impl PinInit<Self, i32> { 207 //! // SAFETY: 208 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 209 //! // enabled `foo`, 210 //! // - when it returns `Err(e)`, then it has cleaned up before 211 //! unsafe { 212 //! pin_init_from_closure(move |slot: *mut Self| { 213 //! // `slot` contains uninit memory, avoid creating a reference. 214 //! let foo = addr_of_mut!((*slot).foo); 215 //! let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>(); 216 //! 217 //! // Initialize the `foo` 218 //! bindings::init_foo(foo); 219 //! 220 //! // Try to enable it. 221 //! let err = bindings::enable_foo(foo, flags); 222 //! if err != 0 { 223 //! // Enabling has failed, first clean up the foo and then return the error. 224 //! bindings::destroy_foo(foo); 225 //! Err(err) 226 //! } else { 227 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 228 //! Ok(()) 229 //! } 230 //! }) 231 //! } 232 //! } 233 //! } 234 //! 235 //! #[pinned_drop] 236 //! impl PinnedDrop for RawFoo { 237 //! fn drop(self: Pin<&mut Self>) { 238 //! // SAFETY: Since `foo` is initialized, destroying is safe. 239 //! unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) }; 240 //! } 241 //! } 242 //! ``` 243 //! 244 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 245 //! the `kernel` crate. The [`sync`] module is a good starting point. 246 //! 247 //! [`sync`]: https://rust.docs.kernel.org/kernel/sync/index.html 248 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 249 //! [structurally pinned fields]: 250 //! https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning 251 //! [stack]: crate::stack_pin_init 252 #![cfg_attr( 253 kernel, 254 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 255 )] 256 #![cfg_attr( 257 kernel, 258 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 259 )] 260 #![cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 261 #![cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 262 //! [`impl PinInit<Foo>`]: crate::PinInit 263 //! [`impl PinInit<T, E>`]: crate::PinInit 264 //! [`impl Init<T, E>`]: crate::Init 265 //! [Rust-for-Linux]: https://rust-for-linux.com/ 266 267 #![cfg_attr(not(RUSTC_LINT_REASONS_IS_STABLE), feature(lint_reasons))] 268 #![cfg_attr( 269 all( 270 any(feature = "alloc", feature = "std"), 271 not(RUSTC_NEW_UNINIT_IS_STABLE) 272 ), 273 feature(new_uninit) 274 )] 275 #![forbid(missing_docs, unsafe_op_in_unsafe_fn)] 276 #![cfg_attr(not(feature = "std"), no_std)] 277 #![cfg_attr(feature = "alloc", feature(allocator_api))] 278 #![cfg_attr( 279 all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED), 280 feature(unsafe_pinned) 281 )] 282 283 use core::{ 284 cell::UnsafeCell, 285 convert::Infallible, 286 marker::PhantomData, 287 mem::MaybeUninit, 288 num::*, 289 pin::Pin, 290 ptr::{self, NonNull}, 291 }; 292 293 // This is used by doc-tests -- the proc-macros expand to `::pin_init::...` and without this the 294 // doc-tests wouldn't have an extern crate named `pin_init`. 295 #[allow(unused_extern_crates)] 296 extern crate self as pin_init; 297 298 #[doc(hidden)] 299 pub mod __internal; 300 #[doc(hidden)] 301 pub mod macros; 302 303 #[cfg(any(feature = "std", feature = "alloc"))] 304 mod alloc; 305 #[cfg(any(feature = "std", feature = "alloc"))] 306 pub use alloc::InPlaceInit; 307 308 /// Used to specify the pinning information of the fields of a struct. 309 /// 310 /// This is somewhat similar in purpose as 311 /// [pin-project-lite](https://crates.io/crates/pin-project-lite). 312 /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each 313 /// field you want to structurally pin. 314 /// 315 /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`, 316 /// then `#[pin]` directs the type of initializer that is required. 317 /// 318 /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this 319 /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with 320 /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care. 321 /// 322 /// # Examples 323 /// 324 /// ``` 325 /// # #![feature(allocator_api)] 326 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 327 /// use pin_init::pin_data; 328 /// 329 /// enum Command { 330 /// /* ... */ 331 /// } 332 /// 333 /// #[pin_data] 334 /// struct DriverData { 335 /// #[pin] 336 /// queue: CMutex<Vec<Command>>, 337 /// buf: Box<[u8; 1024 * 1024]>, 338 /// } 339 /// ``` 340 /// 341 /// ``` 342 /// # #![feature(allocator_api)] 343 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 344 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} } 345 /// use core::pin::Pin; 346 /// use pin_init::{pin_data, pinned_drop, PinnedDrop}; 347 /// 348 /// enum Command { 349 /// /* ... */ 350 /// } 351 /// 352 /// #[pin_data(PinnedDrop)] 353 /// struct DriverData { 354 /// #[pin] 355 /// queue: CMutex<Vec<Command>>, 356 /// buf: Box<[u8; 1024 * 1024]>, 357 /// raw_info: *mut bindings::info, 358 /// } 359 /// 360 /// #[pinned_drop] 361 /// impl PinnedDrop for DriverData { 362 /// fn drop(self: Pin<&mut Self>) { 363 /// unsafe { bindings::destroy_info(self.raw_info) }; 364 /// } 365 /// } 366 /// ``` 367 pub use ::pin_init_internal::pin_data; 368 369 /// Used to implement `PinnedDrop` safely. 370 /// 371 /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`. 372 /// 373 /// # Examples 374 /// 375 /// ``` 376 /// # #![feature(allocator_api)] 377 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 378 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} } 379 /// use core::pin::Pin; 380 /// use pin_init::{pin_data, pinned_drop, PinnedDrop}; 381 /// 382 /// enum Command { 383 /// /* ... */ 384 /// } 385 /// 386 /// #[pin_data(PinnedDrop)] 387 /// struct DriverData { 388 /// #[pin] 389 /// queue: CMutex<Vec<Command>>, 390 /// buf: Box<[u8; 1024 * 1024]>, 391 /// raw_info: *mut bindings::info, 392 /// } 393 /// 394 /// #[pinned_drop] 395 /// impl PinnedDrop for DriverData { 396 /// fn drop(self: Pin<&mut Self>) { 397 /// unsafe { bindings::destroy_info(self.raw_info) }; 398 /// } 399 /// } 400 /// ``` 401 pub use ::pin_init_internal::pinned_drop; 402 403 /// Derives the [`Zeroable`] trait for the given `struct` or `union`. 404 /// 405 /// This can only be used for `struct`s/`union`s where every field implements the [`Zeroable`] 406 /// trait. 407 /// 408 /// # Examples 409 /// 410 /// ``` 411 /// use pin_init::Zeroable; 412 /// 413 /// #[derive(Zeroable)] 414 /// pub struct DriverData { 415 /// pub(crate) id: i64, 416 /// buf_ptr: *mut u8, 417 /// len: usize, 418 /// } 419 /// ``` 420 /// 421 /// ``` 422 /// use pin_init::Zeroable; 423 /// 424 /// #[derive(Zeroable)] 425 /// pub union SignCast { 426 /// signed: i64, 427 /// unsigned: u64, 428 /// } 429 /// ``` 430 pub use ::pin_init_internal::Zeroable; 431 432 /// Derives the [`Zeroable`] trait for the given `struct` or `union` if all fields implement 433 /// [`Zeroable`]. 434 /// 435 /// Contrary to the derive macro named [`macro@Zeroable`], this one silently fails when a field 436 /// doesn't implement [`Zeroable`]. 437 /// 438 /// # Examples 439 /// 440 /// ``` 441 /// use pin_init::MaybeZeroable; 442 /// 443 /// // implmements `Zeroable` 444 /// #[derive(MaybeZeroable)] 445 /// pub struct DriverData { 446 /// pub(crate) id: i64, 447 /// buf_ptr: *mut u8, 448 /// len: usize, 449 /// } 450 /// 451 /// // does not implmement `Zeroable` 452 /// #[derive(MaybeZeroable)] 453 /// pub struct DriverData2 { 454 /// pub(crate) id: i64, 455 /// buf_ptr: *mut u8, 456 /// len: usize, 457 /// // this field doesn't implement `Zeroable` 458 /// other_data: &'static i32, 459 /// } 460 /// ``` 461 pub use ::pin_init_internal::MaybeZeroable; 462 463 /// Initialize and pin a type directly on the stack. 464 /// 465 /// # Examples 466 /// 467 /// ```rust 468 /// # #![expect(clippy::disallowed_names)] 469 /// # #![feature(allocator_api)] 470 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 471 /// # use pin_init::*; 472 /// # use core::pin::Pin; 473 /// #[pin_data] 474 /// struct Foo { 475 /// #[pin] 476 /// a: CMutex<usize>, 477 /// b: Bar, 478 /// } 479 /// 480 /// #[pin_data] 481 /// struct Bar { 482 /// x: u32, 483 /// } 484 /// 485 /// stack_pin_init!(let foo = pin_init!(Foo { 486 /// a <- CMutex::new(42), 487 /// b: Bar { 488 /// x: 64, 489 /// }, 490 /// })); 491 /// let foo: Pin<&mut Foo> = foo; 492 /// println!("a: {}", &*foo.a.lock()); 493 /// ``` 494 /// 495 /// # Syntax 496 /// 497 /// A normal `let` binding with optional type annotation. The expression is expected to implement 498 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 499 /// type, then use [`stack_try_pin_init!`]. 500 #[macro_export] 501 macro_rules! stack_pin_init { 502 (let $var:ident $(: $t:ty)? = $val:expr) => { 503 let val = $val; 504 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 505 let mut $var = match $crate::__internal::StackInit::init($var, val) { 506 Ok(res) => res, 507 Err(x) => { 508 let x: ::core::convert::Infallible = x; 509 match x {} 510 } 511 }; 512 }; 513 } 514 515 /// Initialize and pin a type directly on the stack. 516 /// 517 /// # Examples 518 /// 519 /// ```rust 520 /// # #![expect(clippy::disallowed_names)] 521 /// # #![feature(allocator_api)] 522 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 523 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 524 /// # use pin_init::*; 525 /// #[pin_data] 526 /// struct Foo { 527 /// #[pin] 528 /// a: CMutex<usize>, 529 /// b: Box<Bar>, 530 /// } 531 /// 532 /// struct Bar { 533 /// x: u32, 534 /// } 535 /// 536 /// stack_try_pin_init!(let foo: Foo = pin_init!(Foo { 537 /// a <- CMutex::new(42), 538 /// b: Box::try_new(Bar { 539 /// x: 64, 540 /// })?, 541 /// }? Error)); 542 /// let foo = foo.unwrap(); 543 /// println!("a: {}", &*foo.a.lock()); 544 /// ``` 545 /// 546 /// ```rust 547 /// # #![expect(clippy::disallowed_names)] 548 /// # #![feature(allocator_api)] 549 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 550 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 551 /// # use pin_init::*; 552 /// #[pin_data] 553 /// struct Foo { 554 /// #[pin] 555 /// a: CMutex<usize>, 556 /// b: Box<Bar>, 557 /// } 558 /// 559 /// struct Bar { 560 /// x: u32, 561 /// } 562 /// 563 /// stack_try_pin_init!(let foo: Foo =? pin_init!(Foo { 564 /// a <- CMutex::new(42), 565 /// b: Box::try_new(Bar { 566 /// x: 64, 567 /// })?, 568 /// }? Error)); 569 /// println!("a: {}", &*foo.a.lock()); 570 /// # Ok::<_, Error>(()) 571 /// ``` 572 /// 573 /// # Syntax 574 /// 575 /// A normal `let` binding with optional type annotation. The expression is expected to implement 576 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 577 /// `=` will propagate this error. 578 #[macro_export] 579 macro_rules! stack_try_pin_init { 580 (let $var:ident $(: $t:ty)? = $val:expr) => { 581 let val = $val; 582 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 583 let mut $var = $crate::__internal::StackInit::init($var, val); 584 }; 585 (let $var:ident $(: $t:ty)? =? $val:expr) => { 586 let val = $val; 587 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 588 let mut $var = $crate::__internal::StackInit::init($var, val)?; 589 }; 590 } 591 592 /// Construct an in-place, fallible pinned initializer for `struct`s. 593 /// 594 /// The error type defaults to [`Infallible`]; if you need a different one, write `? Error` at the 595 /// end, after the struct initializer. 596 /// 597 /// The syntax is almost identical to that of a normal `struct` initializer: 598 /// 599 /// ```rust 600 /// # use pin_init::*; 601 /// # use core::pin::Pin; 602 /// #[pin_data] 603 /// struct Foo { 604 /// a: usize, 605 /// b: Bar, 606 /// } 607 /// 608 /// #[pin_data] 609 /// struct Bar { 610 /// x: u32, 611 /// } 612 /// 613 /// # fn demo() -> impl PinInit<Foo> { 614 /// let a = 42; 615 /// 616 /// let initializer = pin_init!(Foo { 617 /// a, 618 /// b: Bar { 619 /// x: 64, 620 /// }, 621 /// }); 622 /// # initializer } 623 /// # Box::pin_init(demo()).unwrap(); 624 /// ``` 625 /// 626 /// Arbitrary Rust expressions can be used to set the value of a variable. 627 /// 628 /// The fields are initialized in the order that they appear in the initializer. So it is possible 629 /// to read already initialized fields using raw pointers. 630 /// 631 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 632 /// initializer. 633 /// 634 /// # Init-functions 635 /// 636 /// When working with this library it is often desired to let others construct your types without 637 /// giving access to all fields. This is where you would normally write a plain function `new` that 638 /// would return a new instance of your type. With this library that is also possible. However, 639 /// there are a few extra things to keep in mind. 640 /// 641 /// To create an initializer function, simply declare it like this: 642 /// 643 /// ```rust 644 /// # use pin_init::*; 645 /// # use core::pin::Pin; 646 /// # #[pin_data] 647 /// # struct Foo { 648 /// # a: usize, 649 /// # b: Bar, 650 /// # } 651 /// # #[pin_data] 652 /// # struct Bar { 653 /// # x: u32, 654 /// # } 655 /// impl Foo { 656 /// fn new() -> impl PinInit<Self> { 657 /// pin_init!(Self { 658 /// a: 42, 659 /// b: Bar { 660 /// x: 64, 661 /// }, 662 /// }) 663 /// } 664 /// } 665 /// ``` 666 /// 667 /// Users of `Foo` can now create it like this: 668 /// 669 /// ```rust 670 /// # #![expect(clippy::disallowed_names)] 671 /// # use pin_init::*; 672 /// # use core::pin::Pin; 673 /// # #[pin_data] 674 /// # struct Foo { 675 /// # a: usize, 676 /// # b: Bar, 677 /// # } 678 /// # #[pin_data] 679 /// # struct Bar { 680 /// # x: u32, 681 /// # } 682 /// # impl Foo { 683 /// # fn new() -> impl PinInit<Self> { 684 /// # pin_init!(Self { 685 /// # a: 42, 686 /// # b: Bar { 687 /// # x: 64, 688 /// # }, 689 /// # }) 690 /// # } 691 /// # } 692 /// let foo = Box::pin_init(Foo::new()); 693 /// ``` 694 /// 695 /// They can also easily embed it into their own `struct`s: 696 /// 697 /// ```rust 698 /// # use pin_init::*; 699 /// # use core::pin::Pin; 700 /// # #[pin_data] 701 /// # struct Foo { 702 /// # a: usize, 703 /// # b: Bar, 704 /// # } 705 /// # #[pin_data] 706 /// # struct Bar { 707 /// # x: u32, 708 /// # } 709 /// # impl Foo { 710 /// # fn new() -> impl PinInit<Self> { 711 /// # pin_init!(Self { 712 /// # a: 42, 713 /// # b: Bar { 714 /// # x: 64, 715 /// # }, 716 /// # }) 717 /// # } 718 /// # } 719 /// #[pin_data] 720 /// struct FooContainer { 721 /// #[pin] 722 /// foo1: Foo, 723 /// #[pin] 724 /// foo2: Foo, 725 /// other: u32, 726 /// } 727 /// 728 /// impl FooContainer { 729 /// fn new(other: u32) -> impl PinInit<Self> { 730 /// pin_init!(Self { 731 /// foo1 <- Foo::new(), 732 /// foo2 <- Foo::new(), 733 /// other, 734 /// }) 735 /// } 736 /// } 737 /// ``` 738 /// 739 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 740 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 741 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 742 /// 743 /// # Syntax 744 /// 745 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 746 /// the following modifications is expected: 747 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 748 /// - You can use `_: { /* run any user-code here */ },` anywhere where you can place fields in 749 /// order to run arbitrary code. 750 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 751 /// pointer named `this` inside of the initializer. 752 /// - Using struct update syntax one can place `..Zeroable::init_zeroed()` at the very end of the 753 /// struct, this initializes every field with 0 and then runs all initializers specified in the 754 /// body. This can only be done if [`Zeroable`] is implemented for the struct. 755 /// 756 /// For instance: 757 /// 758 /// ```rust 759 /// # use pin_init::*; 760 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 761 /// #[pin_data] 762 /// #[derive(Zeroable)] 763 /// struct Buf { 764 /// // `ptr` points into `buf`. 765 /// ptr: *mut u8, 766 /// buf: [u8; 64], 767 /// #[pin] 768 /// pin: PhantomPinned, 769 /// } 770 /// 771 /// let init = pin_init!(&this in Buf { 772 /// buf: [0; 64], 773 /// // SAFETY: TODO. 774 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 775 /// pin: PhantomPinned, 776 /// }); 777 /// let init = pin_init!(Buf { 778 /// buf: [1; 64], 779 /// ..Zeroable::init_zeroed() 780 /// }); 781 /// ``` 782 /// 783 /// [`NonNull<Self>`]: core::ptr::NonNull 784 // For a detailed example of how this macro works, see the module documentation of the hidden 785 // module `macros` inside of `macros.rs`. 786 #[macro_export] 787 macro_rules! pin_init { 788 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 789 $($fields:tt)* 790 }) => { 791 $crate::pin_init!($(&$this in)? $t $(::<$($generics),*>)? { 792 $($fields)* 793 }? ::core::convert::Infallible) 794 }; 795 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 796 $($fields:tt)* 797 }? $err:ty) => { 798 $crate::__init_internal!( 799 @this($($this)?), 800 @typ($t $(::<$($generics),*>)? ), 801 @fields($($fields)*), 802 @error($err), 803 @data(PinData, use_data), 804 @has_data(HasPinData, __pin_data), 805 @construct_closure(pin_init_from_closure), 806 @munch_fields($($fields)*), 807 ) 808 } 809 } 810 811 /// Construct an in-place, fallible initializer for `struct`s. 812 /// 813 /// This macro defaults the error to [`Infallible`]; if you need a different one, write `? Error` 814 /// at the end, after the struct initializer. 815 /// 816 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 817 /// - `unsafe` code must guarantee either full initialization or return an error and allow 818 /// deallocation of the memory. 819 /// - the fields are initialized in the order given in the initializer. 820 /// - no references to fields are allowed to be created inside of the initializer. 821 /// 822 /// This initializer is for initializing data in-place that might later be moved. If you want to 823 /// pin-initialize, use [`pin_init!`]. 824 /// 825 /// # Examples 826 /// 827 /// ```rust 828 /// # #![feature(allocator_api)] 829 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 830 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 831 /// # use pin_init::InPlaceInit; 832 /// use pin_init::{init, Init, init_zeroed}; 833 /// 834 /// struct BigBuf { 835 /// small: [u8; 1024 * 1024], 836 /// } 837 /// 838 /// impl BigBuf { 839 /// fn new() -> impl Init<Self> { 840 /// init!(Self { 841 /// small <- init_zeroed(), 842 /// }) 843 /// } 844 /// } 845 /// # let _ = Box::init(BigBuf::new()); 846 /// ``` 847 // For a detailed example of how this macro works, see the module documentation of the hidden 848 // module `macros` inside of `macros.rs`. 849 #[macro_export] 850 macro_rules! init { 851 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 852 $($fields:tt)* 853 }) => { 854 $crate::init!($(&$this in)? $t $(::<$($generics),*>)? { 855 $($fields)* 856 }? ::core::convert::Infallible) 857 }; 858 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 859 $($fields:tt)* 860 }? $err:ty) => { 861 $crate::__init_internal!( 862 @this($($this)?), 863 @typ($t $(::<$($generics),*>)?), 864 @fields($($fields)*), 865 @error($err), 866 @data(InitData, /*no use_data*/), 867 @has_data(HasInitData, __init_data), 868 @construct_closure(init_from_closure), 869 @munch_fields($($fields)*), 870 ) 871 } 872 } 873 874 /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is 875 /// structurally pinned. 876 /// 877 /// # Examples 878 /// 879 /// This will succeed: 880 /// ``` 881 /// use pin_init::{pin_data, assert_pinned}; 882 /// 883 /// #[pin_data] 884 /// struct MyStruct { 885 /// #[pin] 886 /// some_field: u64, 887 /// } 888 /// 889 /// assert_pinned!(MyStruct, some_field, u64); 890 /// ``` 891 /// 892 /// This will fail: 893 /// ```compile_fail 894 /// use pin_init::{pin_data, assert_pinned}; 895 /// 896 /// #[pin_data] 897 /// struct MyStruct { 898 /// some_field: u64, 899 /// } 900 /// 901 /// assert_pinned!(MyStruct, some_field, u64); 902 /// ``` 903 /// 904 /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To 905 /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can 906 /// only be used when the macro is invoked from a function body. 907 /// ``` 908 /// # use core::pin::Pin; 909 /// use pin_init::{pin_data, assert_pinned}; 910 /// 911 /// #[pin_data] 912 /// struct Foo<T> { 913 /// #[pin] 914 /// elem: T, 915 /// } 916 /// 917 /// impl<T> Foo<T> { 918 /// fn project_this(self: Pin<&mut Self>) -> Pin<&mut T> { 919 /// assert_pinned!(Foo<T>, elem, T, inline); 920 /// 921 /// // SAFETY: The field is structurally pinned. 922 /// unsafe { self.map_unchecked_mut(|me| &mut me.elem) } 923 /// } 924 /// } 925 /// ``` 926 #[macro_export] 927 macro_rules! assert_pinned { 928 ($ty:ty, $field:ident, $field_ty:ty, inline) => { 929 let _ = move |ptr: *mut $field_ty| { 930 // SAFETY: This code is unreachable. 931 let data = unsafe { <$ty as $crate::__internal::HasPinData>::__pin_data() }; 932 let init = $crate::__internal::AlwaysFail::<$field_ty>::new(); 933 // SAFETY: This code is unreachable. 934 unsafe { data.$field(ptr, init) }.ok(); 935 }; 936 }; 937 938 ($ty:ty, $field:ident, $field_ty:ty) => { 939 const _: () = { 940 $crate::assert_pinned!($ty, $field, $field_ty, inline); 941 }; 942 }; 943 } 944 945 /// A pin-initializer for the type `T`. 946 /// 947 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 948 /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). 949 /// 950 /// Also see the [module description](self). 951 /// 952 /// # Safety 953 /// 954 /// When implementing this trait you will need to take great care. Also there are probably very few 955 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 956 /// 957 /// The [`PinInit::__pinned_init`] function: 958 /// - returns `Ok(())` if it initialized every field of `slot`, 959 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 960 /// - `slot` can be deallocated without UB occurring, 961 /// - `slot` does not need to be dropped, 962 /// - `slot` is not partially initialized. 963 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 964 /// 965 #[cfg_attr( 966 kernel, 967 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 968 )] 969 #[cfg_attr( 970 kernel, 971 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 972 )] 973 #[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 974 #[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 975 #[must_use = "An initializer must be used in order to create its value."] 976 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 977 /// Initializes `slot`. 978 /// 979 /// # Safety 980 /// 981 /// - `slot` is a valid pointer to uninitialized memory. 982 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 983 /// deallocate. 984 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 985 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 986 987 /// First initializes the value using `self` then calls the function `f` with the initialized 988 /// value. 989 /// 990 /// If `f` returns an error the value is dropped and the initializer will forward the error. 991 /// 992 /// # Examples 993 /// 994 /// ```rust 995 /// # #![feature(allocator_api)] 996 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 997 /// # use pin_init::*; 998 /// let mtx_init = CMutex::new(42); 999 /// // Make the initializer print the value. 1000 /// let mtx_init = mtx_init.pin_chain(|mtx| { 1001 /// println!("{:?}", mtx.get_data_mut()); 1002 /// Ok(()) 1003 /// }); 1004 /// ``` 1005 fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E> 1006 where 1007 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 1008 { 1009 ChainPinInit(self, f, PhantomData) 1010 } 1011 } 1012 1013 /// An initializer returned by [`PinInit::pin_chain`]. 1014 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>); 1015 1016 // SAFETY: The `__pinned_init` function is implemented such that it 1017 // - returns `Ok(())` on successful initialization, 1018 // - returns `Err(err)` on error and in this case `slot` will be dropped. 1019 // - considers `slot` pinned. 1020 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E> 1021 where 1022 I: PinInit<T, E>, 1023 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 1024 { 1025 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1026 // SAFETY: All requirements fulfilled since this function is `__pinned_init`. 1027 unsafe { self.0.__pinned_init(slot)? }; 1028 // SAFETY: The above call initialized `slot` and we still have unique access. 1029 let val = unsafe { &mut *slot }; 1030 // SAFETY: `slot` is considered pinned. 1031 let val = unsafe { Pin::new_unchecked(val) }; 1032 // SAFETY: `slot` was initialized above. 1033 (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) }) 1034 } 1035 } 1036 1037 /// An initializer for `T`. 1038 /// 1039 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 1040 /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). Because 1041 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 1042 /// 1043 /// Also see the [module description](self). 1044 /// 1045 /// # Safety 1046 /// 1047 /// When implementing this trait you will need to take great care. Also there are probably very few 1048 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 1049 /// 1050 /// The [`Init::__init`] function: 1051 /// - returns `Ok(())` if it initialized every field of `slot`, 1052 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1053 /// - `slot` can be deallocated without UB occurring, 1054 /// - `slot` does not need to be dropped, 1055 /// - `slot` is not partially initialized. 1056 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1057 /// 1058 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 1059 /// code as `__init`. 1060 /// 1061 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 1062 /// move the pointee after initialization. 1063 /// 1064 #[cfg_attr( 1065 kernel, 1066 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 1067 )] 1068 #[cfg_attr( 1069 kernel, 1070 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 1071 )] 1072 #[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 1073 #[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 1074 #[must_use = "An initializer must be used in order to create its value."] 1075 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> { 1076 /// Initializes `slot`. 1077 /// 1078 /// # Safety 1079 /// 1080 /// - `slot` is a valid pointer to uninitialized memory. 1081 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 1082 /// deallocate. 1083 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 1084 1085 /// First initializes the value using `self` then calls the function `f` with the initialized 1086 /// value. 1087 /// 1088 /// If `f` returns an error the value is dropped and the initializer will forward the error. 1089 /// 1090 /// # Examples 1091 /// 1092 /// ```rust 1093 /// # #![expect(clippy::disallowed_names)] 1094 /// use pin_init::{init, init_zeroed, Init}; 1095 /// 1096 /// struct Foo { 1097 /// buf: [u8; 1_000_000], 1098 /// } 1099 /// 1100 /// impl Foo { 1101 /// fn setup(&mut self) { 1102 /// println!("Setting up foo"); 1103 /// } 1104 /// } 1105 /// 1106 /// let foo = init!(Foo { 1107 /// buf <- init_zeroed() 1108 /// }).chain(|foo| { 1109 /// foo.setup(); 1110 /// Ok(()) 1111 /// }); 1112 /// ``` 1113 fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E> 1114 where 1115 F: FnOnce(&mut T) -> Result<(), E>, 1116 { 1117 ChainInit(self, f, PhantomData) 1118 } 1119 } 1120 1121 /// An initializer returned by [`Init::chain`]. 1122 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>); 1123 1124 // SAFETY: The `__init` function is implemented such that it 1125 // - returns `Ok(())` on successful initialization, 1126 // - returns `Err(err)` on error and in this case `slot` will be dropped. 1127 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E> 1128 where 1129 I: Init<T, E>, 1130 F: FnOnce(&mut T) -> Result<(), E>, 1131 { 1132 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1133 // SAFETY: All requirements fulfilled since this function is `__init`. 1134 unsafe { self.0.__pinned_init(slot)? }; 1135 // SAFETY: The above call initialized `slot` and we still have unique access. 1136 (self.1)(unsafe { &mut *slot }).inspect_err(|_| 1137 // SAFETY: `slot` was initialized above. 1138 unsafe { core::ptr::drop_in_place(slot) }) 1139 } 1140 } 1141 1142 // SAFETY: `__pinned_init` behaves exactly the same as `__init`. 1143 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E> 1144 where 1145 I: Init<T, E>, 1146 F: FnOnce(&mut T) -> Result<(), E>, 1147 { 1148 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1149 // SAFETY: `__init` has less strict requirements compared to `__pinned_init`. 1150 unsafe { self.__init(slot) } 1151 } 1152 } 1153 1154 /// Creates a new [`PinInit<T, E>`] from the given closure. 1155 /// 1156 /// # Safety 1157 /// 1158 /// The closure: 1159 /// - returns `Ok(())` if it initialized every field of `slot`, 1160 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1161 /// - `slot` can be deallocated without UB occurring, 1162 /// - `slot` does not need to be dropped, 1163 /// - `slot` is not partially initialized. 1164 /// - may assume that the `slot` does not move if `T: !Unpin`, 1165 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1166 #[inline] 1167 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 1168 f: impl FnOnce(*mut T) -> Result<(), E>, 1169 ) -> impl PinInit<T, E> { 1170 __internal::InitClosure(f, PhantomData) 1171 } 1172 1173 /// Creates a new [`Init<T, E>`] from the given closure. 1174 /// 1175 /// # Safety 1176 /// 1177 /// The closure: 1178 /// - returns `Ok(())` if it initialized every field of `slot`, 1179 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1180 /// - `slot` can be deallocated without UB occurring, 1181 /// - `slot` does not need to be dropped, 1182 /// - `slot` is not partially initialized. 1183 /// - the `slot` may move after initialization. 1184 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1185 #[inline] 1186 pub const unsafe fn init_from_closure<T: ?Sized, E>( 1187 f: impl FnOnce(*mut T) -> Result<(), E>, 1188 ) -> impl Init<T, E> { 1189 __internal::InitClosure(f, PhantomData) 1190 } 1191 1192 /// Changes the to be initialized type. 1193 /// 1194 /// # Safety 1195 /// 1196 /// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a 1197 /// pointer must result in a valid `U`. 1198 #[expect(clippy::let_and_return)] 1199 pub const unsafe fn cast_pin_init<T, U, E>(init: impl PinInit<T, E>) -> impl PinInit<U, E> { 1200 // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety 1201 // requirements. 1202 let res = unsafe { pin_init_from_closure(|ptr: *mut U| init.__pinned_init(ptr.cast::<T>())) }; 1203 // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a 1204 // cycle when computing the type returned by this function) 1205 res 1206 } 1207 1208 /// Changes the to be initialized type. 1209 /// 1210 /// # Safety 1211 /// 1212 /// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a 1213 /// pointer must result in a valid `U`. 1214 #[expect(clippy::let_and_return)] 1215 pub const unsafe fn cast_init<T, U, E>(init: impl Init<T, E>) -> impl Init<U, E> { 1216 // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety 1217 // requirements. 1218 let res = unsafe { init_from_closure(|ptr: *mut U| init.__init(ptr.cast::<T>())) }; 1219 // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a 1220 // cycle when computing the type returned by this function) 1221 res 1222 } 1223 1224 /// An initializer that leaves the memory uninitialized. 1225 /// 1226 /// The initializer is a no-op. The `slot` memory is not changed. 1227 #[inline] 1228 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 1229 // SAFETY: The memory is allowed to be uninitialized. 1230 unsafe { init_from_closure(|_| Ok(())) } 1231 } 1232 1233 /// Initializes an array by initializing each element via the provided initializer. 1234 /// 1235 /// # Examples 1236 /// 1237 /// ```rust 1238 /// # use pin_init::*; 1239 /// use pin_init::init_array_from_fn; 1240 /// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap(); 1241 /// assert_eq!(array.len(), 1_000); 1242 /// ``` 1243 pub fn init_array_from_fn<I, const N: usize, T, E>( 1244 mut make_init: impl FnMut(usize) -> I, 1245 ) -> impl Init<[T; N], E> 1246 where 1247 I: Init<T, E>, 1248 { 1249 let init = move |slot: *mut [T; N]| { 1250 let slot = slot.cast::<T>(); 1251 for i in 0..N { 1252 let init = make_init(i); 1253 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1254 let ptr = unsafe { slot.add(i) }; 1255 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1256 // requirements. 1257 if let Err(e) = unsafe { init.__init(ptr) } { 1258 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return 1259 // `Err` below, `slot` will be considered uninitialized memory. 1260 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1261 return Err(e); 1262 } 1263 } 1264 Ok(()) 1265 }; 1266 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1267 // any initialized elements and returns `Err`. 1268 unsafe { init_from_closure(init) } 1269 } 1270 1271 /// Initializes an array by initializing each element via the provided initializer. 1272 /// 1273 /// # Examples 1274 /// 1275 /// ```rust 1276 /// # #![feature(allocator_api)] 1277 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 1278 /// # use pin_init::*; 1279 /// # use core::pin::Pin; 1280 /// use pin_init::pin_init_array_from_fn; 1281 /// use std::sync::Arc; 1282 /// let array: Pin<Arc<[CMutex<usize>; 1_000]>> = 1283 /// Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap(); 1284 /// assert_eq!(array.len(), 1_000); 1285 /// ``` 1286 pub fn pin_init_array_from_fn<I, const N: usize, T, E>( 1287 mut make_init: impl FnMut(usize) -> I, 1288 ) -> impl PinInit<[T; N], E> 1289 where 1290 I: PinInit<T, E>, 1291 { 1292 let init = move |slot: *mut [T; N]| { 1293 let slot = slot.cast::<T>(); 1294 for i in 0..N { 1295 let init = make_init(i); 1296 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1297 let ptr = unsafe { slot.add(i) }; 1298 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1299 // requirements. 1300 if let Err(e) = unsafe { init.__pinned_init(ptr) } { 1301 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return 1302 // `Err` below, `slot` will be considered uninitialized memory. 1303 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1304 return Err(e); 1305 } 1306 } 1307 Ok(()) 1308 }; 1309 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1310 // any initialized elements and returns `Err`. 1311 unsafe { pin_init_from_closure(init) } 1312 } 1313 1314 /// Construct an initializer in a closure and run it. 1315 /// 1316 /// Returns an initializer that first runs the closure and then the initializer returned by it. 1317 /// 1318 /// See also [`init_scope`]. 1319 /// 1320 /// # Examples 1321 /// 1322 /// ``` 1323 /// # use pin_init::*; 1324 /// # #[pin_data] 1325 /// # struct Foo { a: u64, b: isize } 1326 /// # struct Bar { a: u32, b: isize } 1327 /// # fn lookup_bar() -> Result<Bar, Error> { todo!() } 1328 /// # struct Error; 1329 /// fn init_foo() -> impl PinInit<Foo, Error> { 1330 /// pin_init_scope(|| { 1331 /// let bar = lookup_bar()?; 1332 /// Ok(pin_init!(Foo { a: bar.a.into(), b: bar.b }? Error)) 1333 /// }) 1334 /// } 1335 /// ``` 1336 /// 1337 /// This initializer will first execute `lookup_bar()`, match on it, if it returned an error, the 1338 /// initializer itself will fail with that error. If it returned `Ok`, then it will run the 1339 /// initializer returned by the [`pin_init!`] invocation. 1340 pub fn pin_init_scope<T, E, F, I>(make_init: F) -> impl PinInit<T, E> 1341 where 1342 F: FnOnce() -> Result<I, E>, 1343 I: PinInit<T, E>, 1344 { 1345 // SAFETY: 1346 // - If `make_init` returns `Err`, `Err` is returned and `slot` is completely uninitialized, 1347 // - If `make_init` returns `Ok`, safety requirement are fulfilled by `init.__pinned_init`. 1348 // - The safety requirements of `init.__pinned_init` are fulfilled, since it's being called 1349 // from an initializer. 1350 unsafe { 1351 pin_init_from_closure(move |slot: *mut T| -> Result<(), E> { 1352 let init = make_init()?; 1353 init.__pinned_init(slot) 1354 }) 1355 } 1356 } 1357 1358 /// Construct an initializer in a closure and run it. 1359 /// 1360 /// Returns an initializer that first runs the closure and then the initializer returned by it. 1361 /// 1362 /// See also [`pin_init_scope`]. 1363 /// 1364 /// # Examples 1365 /// 1366 /// ``` 1367 /// # use pin_init::*; 1368 /// # struct Foo { a: u64, b: isize } 1369 /// # struct Bar { a: u32, b: isize } 1370 /// # fn lookup_bar() -> Result<Bar, Error> { todo!() } 1371 /// # struct Error; 1372 /// fn init_foo() -> impl Init<Foo, Error> { 1373 /// init_scope(|| { 1374 /// let bar = lookup_bar()?; 1375 /// Ok(init!(Foo { a: bar.a.into(), b: bar.b }? Error)) 1376 /// }) 1377 /// } 1378 /// ``` 1379 /// 1380 /// This initializer will first execute `lookup_bar()`, match on it, if it returned an error, the 1381 /// initializer itself will fail with that error. If it returned `Ok`, then it will run the 1382 /// initializer returned by the [`init!`] invocation. 1383 pub fn init_scope<T, E, F, I>(make_init: F) -> impl Init<T, E> 1384 where 1385 F: FnOnce() -> Result<I, E>, 1386 I: Init<T, E>, 1387 { 1388 // SAFETY: 1389 // - If `make_init` returns `Err`, `Err` is returned and `slot` is completely uninitialized, 1390 // - If `make_init` returns `Ok`, safety requirement are fulfilled by `init.__init`. 1391 // - The safety requirements of `init.__init` are fulfilled, since it's being called from an 1392 // initializer. 1393 unsafe { 1394 init_from_closure(move |slot: *mut T| -> Result<(), E> { 1395 let init = make_init()?; 1396 init.__init(slot) 1397 }) 1398 } 1399 } 1400 1401 // SAFETY: the `__init` function always returns `Ok(())` and initializes every field of `slot`. 1402 unsafe impl<T> Init<T> for T { 1403 unsafe fn __init(self, slot: *mut T) -> Result<(), Infallible> { 1404 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1405 unsafe { slot.write(self) }; 1406 Ok(()) 1407 } 1408 } 1409 1410 // SAFETY: the `__pinned_init` function always returns `Ok(())` and initializes every field of 1411 // `slot`. Additionally, all pinning invariants of `T` are upheld. 1412 unsafe impl<T> PinInit<T> for T { 1413 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), Infallible> { 1414 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1415 unsafe { slot.write(self) }; 1416 Ok(()) 1417 } 1418 } 1419 1420 // SAFETY: when the `__init` function returns with 1421 // - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld. 1422 // - `Err(err)`, slot was not written to. 1423 unsafe impl<T, E> Init<T, E> for Result<T, E> { 1424 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1425 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1426 unsafe { slot.write(self?) }; 1427 Ok(()) 1428 } 1429 } 1430 1431 // SAFETY: when the `__pinned_init` function returns with 1432 // - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld. 1433 // - `Err(err)`, slot was not written to. 1434 unsafe impl<T, E> PinInit<T, E> for Result<T, E> { 1435 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1436 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1437 unsafe { slot.write(self?) }; 1438 Ok(()) 1439 } 1440 } 1441 1442 /// Smart pointer containing uninitialized memory and that can write a value. 1443 pub trait InPlaceWrite<T> { 1444 /// The type `Self` turns into when the contents are initialized. 1445 type Initialized; 1446 1447 /// Use the given initializer to write a value into `self`. 1448 /// 1449 /// Does not drop the current value and considers it as uninitialized memory. 1450 fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>; 1451 1452 /// Use the given pin-initializer to write a value into `self`. 1453 /// 1454 /// Does not drop the current value and considers it as uninitialized memory. 1455 fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>; 1456 } 1457 1458 /// Trait facilitating pinned destruction. 1459 /// 1460 /// Use [`pinned_drop`] to implement this trait safely: 1461 /// 1462 /// ```rust 1463 /// # #![feature(allocator_api)] 1464 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 1465 /// # use pin_init::*; 1466 /// use core::pin::Pin; 1467 /// #[pin_data(PinnedDrop)] 1468 /// struct Foo { 1469 /// #[pin] 1470 /// mtx: CMutex<usize>, 1471 /// } 1472 /// 1473 /// #[pinned_drop] 1474 /// impl PinnedDrop for Foo { 1475 /// fn drop(self: Pin<&mut Self>) { 1476 /// println!("Foo is being dropped!"); 1477 /// } 1478 /// } 1479 /// ``` 1480 /// 1481 /// # Safety 1482 /// 1483 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 1484 pub unsafe trait PinnedDrop: __internal::HasPinData { 1485 /// Executes the pinned destructor of this type. 1486 /// 1487 /// While this function is marked safe, it is actually unsafe to call it manually. For this 1488 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 1489 /// and thus prevents this function from being called where it should not. 1490 /// 1491 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1492 /// automatically. 1493 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1494 } 1495 1496 /// Marker trait for types that can be initialized by writing just zeroes. 1497 /// 1498 /// # Safety 1499 /// 1500 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1501 /// this is not UB: 1502 /// 1503 /// ```rust,ignore 1504 /// let val: Self = unsafe { core::mem::zeroed() }; 1505 /// ``` 1506 pub unsafe trait Zeroable { 1507 /// Create a new zeroed `Self`. 1508 /// 1509 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1510 #[inline] 1511 fn init_zeroed() -> impl Init<Self> 1512 where 1513 Self: Sized, 1514 { 1515 init_zeroed() 1516 } 1517 1518 /// Create a `Self` consisting of all zeroes. 1519 /// 1520 /// Whenever a type implements [`Zeroable`], this function should be preferred over 1521 /// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`. 1522 /// 1523 /// # Examples 1524 /// 1525 /// ``` 1526 /// use pin_init::{Zeroable, zeroed}; 1527 /// 1528 /// #[derive(Zeroable)] 1529 /// struct Point { 1530 /// x: u32, 1531 /// y: u32, 1532 /// } 1533 /// 1534 /// let point: Point = zeroed(); 1535 /// assert_eq!(point.x, 0); 1536 /// assert_eq!(point.y, 0); 1537 /// ``` 1538 fn zeroed() -> Self 1539 where 1540 Self: Sized, 1541 { 1542 zeroed() 1543 } 1544 } 1545 1546 /// Marker trait for types that allow `Option<Self>` to be set to all zeroes in order to write 1547 /// `None` to that location. 1548 /// 1549 /// # Safety 1550 /// 1551 /// The implementer needs to ensure that `unsafe impl Zeroable for Option<Self> {}` is sound. 1552 pub unsafe trait ZeroableOption {} 1553 1554 // SAFETY: by the safety requirement of `ZeroableOption`, this is valid. 1555 unsafe impl<T: ZeroableOption> Zeroable for Option<T> {} 1556 1557 // SAFETY: `Option<&T>` is part of the option layout optimization guarantee: 1558 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1559 unsafe impl<T> ZeroableOption for &T {} 1560 // SAFETY: `Option<&mut T>` is part of the option layout optimization guarantee: 1561 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1562 unsafe impl<T> ZeroableOption for &mut T {} 1563 // SAFETY: `Option<NonNull<T>>` is part of the option layout optimization guarantee: 1564 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1565 unsafe impl<T> ZeroableOption for NonNull<T> {} 1566 1567 /// Create an initializer for a zeroed `T`. 1568 /// 1569 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1570 #[inline] 1571 pub fn init_zeroed<T: Zeroable>() -> impl Init<T> { 1572 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1573 // and because we write all zeroes, the memory is initialized. 1574 unsafe { 1575 init_from_closure(|slot: *mut T| { 1576 slot.write_bytes(0, 1); 1577 Ok(()) 1578 }) 1579 } 1580 } 1581 1582 /// Create a `T` consisting of all zeroes. 1583 /// 1584 /// Whenever a type implements [`Zeroable`], this function should be preferred over 1585 /// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`. 1586 /// 1587 /// # Examples 1588 /// 1589 /// ``` 1590 /// use pin_init::{Zeroable, zeroed}; 1591 /// 1592 /// #[derive(Zeroable)] 1593 /// struct Point { 1594 /// x: u32, 1595 /// y: u32, 1596 /// } 1597 /// 1598 /// let point: Point = zeroed(); 1599 /// assert_eq!(point.x, 0); 1600 /// assert_eq!(point.y, 0); 1601 /// ``` 1602 pub const fn zeroed<T: Zeroable>() -> T { 1603 // SAFETY:By the type invariants of `Zeroable`, all zeroes is a valid bit pattern for `T`. 1604 unsafe { core::mem::zeroed() } 1605 } 1606 1607 macro_rules! impl_zeroable { 1608 ($($({$($generics:tt)*})? $t:ty, )*) => { 1609 // SAFETY: Safety comments written in the macro invocation. 1610 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1611 }; 1612 } 1613 1614 impl_zeroable! { 1615 // SAFETY: All primitives that are allowed to be zero. 1616 bool, 1617 char, 1618 u8, u16, u32, u64, u128, usize, 1619 i8, i16, i32, i64, i128, isize, 1620 f32, f64, 1621 1622 // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list; 1623 // creating an instance of an uninhabited type is immediate undefined behavior. For more on 1624 // uninhabited/empty types, consult The Rustonomicon: 1625 // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference 1626 // also has information on undefined behavior: 1627 // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>. 1628 // 1629 // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists. 1630 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (), 1631 1632 // SAFETY: Type is allowed to take any value, including all zeros. 1633 {<T>} MaybeUninit<T>, 1634 1635 // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`. 1636 {<T: ?Sized + Zeroable>} UnsafeCell<T>, 1637 1638 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee: 1639 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>). 1640 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1641 Option<NonZeroU128>, Option<NonZeroUsize>, 1642 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1643 Option<NonZeroI128>, Option<NonZeroIsize>, 1644 1645 // SAFETY: `null` pointer is valid. 1646 // 1647 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1648 // null. 1649 // 1650 // When `Pointee` gets stabilized, we could use 1651 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1652 {<T>} *mut T, {<T>} *const T, 1653 1654 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1655 // zero. 1656 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1657 1658 // SAFETY: `T` is `Zeroable`. 1659 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1660 } 1661 1662 macro_rules! impl_tuple_zeroable { 1663 ($(,)?) => {}; 1664 ($first:ident, $($t:ident),* $(,)?) => { 1665 // SAFETY: All elements are zeroable and padding can be zero. 1666 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1667 impl_tuple_zeroable!($($t),* ,); 1668 } 1669 } 1670 1671 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1672 1673 macro_rules! impl_fn_zeroable_option { 1674 ([$($abi:literal),* $(,)?] $args:tt) => { 1675 $(impl_fn_zeroable_option!({extern $abi} $args);)* 1676 $(impl_fn_zeroable_option!({unsafe extern $abi} $args);)* 1677 }; 1678 ({$($prefix:tt)*} {$(,)?}) => {}; 1679 ({$($prefix:tt)*} {$ret:ident, $($rest:ident),* $(,)?}) => { 1680 // SAFETY: function pointers are part of the option layout optimization: 1681 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1682 unsafe impl<$ret, $($rest),*> ZeroableOption for $($prefix)* fn($($rest),*) -> $ret {} 1683 impl_fn_zeroable_option!({$($prefix)*} {$($rest),*,}); 1684 }; 1685 } 1686 1687 impl_fn_zeroable_option!(["Rust", "C"] { A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U }); 1688 1689 /// This trait allows creating an instance of `Self` which contains exactly one 1690 /// [structurally pinned value](https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning). 1691 /// 1692 /// This is useful when using wrapper `struct`s like [`UnsafeCell`] or with new-type `struct`s. 1693 /// 1694 /// # Examples 1695 /// 1696 /// ``` 1697 /// # use core::cell::UnsafeCell; 1698 /// # use pin_init::{pin_data, pin_init, Wrapper}; 1699 /// 1700 /// #[pin_data] 1701 /// struct Foo {} 1702 /// 1703 /// #[pin_data] 1704 /// struct Bar { 1705 /// #[pin] 1706 /// content: UnsafeCell<Foo> 1707 /// }; 1708 /// 1709 /// let foo_initializer = pin_init!(Foo{}); 1710 /// let initializer = pin_init!(Bar { 1711 /// content <- UnsafeCell::pin_init(foo_initializer) 1712 /// }); 1713 /// ``` 1714 pub trait Wrapper<T> { 1715 /// Creates an pin-initializer for a [`Self`] containing `T` from the `value_init` initializer. 1716 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E>; 1717 } 1718 1719 impl<T> Wrapper<T> for UnsafeCell<T> { 1720 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> { 1721 // SAFETY: `UnsafeCell<T>` has a compatible layout to `T`. 1722 unsafe { cast_pin_init(value_init) } 1723 } 1724 } 1725 1726 impl<T> Wrapper<T> for MaybeUninit<T> { 1727 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> { 1728 // SAFETY: `MaybeUninit<T>` has a compatible layout to `T`. 1729 unsafe { cast_pin_init(value_init) } 1730 } 1731 } 1732 1733 #[cfg(all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED))] 1734 impl<T> Wrapper<T> for core::pin::UnsafePinned<T> { 1735 fn pin_init<E>(init: impl PinInit<T, E>) -> impl PinInit<Self, E> { 1736 // SAFETY: `UnsafePinned<T>` has a compatible layout to `T`. 1737 unsafe { cast_pin_init(init) } 1738 } 1739 } 1740