xref: /linux/rust/pin-init/src/lib.rs (revision 84837cf6fa541150a3012ea233225a7ecfa8771a)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
4 //!
5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
6 //! overflow.
7 //!
8 //! # Overview
9 //!
10 //! To initialize a `struct` with an in-place constructor you will need two things:
11 //! - an in-place constructor,
12 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
13 //!   [`UniqueArc<T>`], [`KBox<T>`] or any other smart pointer that implements [`InPlaceInit`]).
14 //!
15 //! To get an in-place constructor there are generally three options:
16 //! - directly creating an in-place constructor using the [`pin_init!`] macro,
17 //! - a custom function/macro returning an in-place constructor provided by someone else,
18 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
19 //!
20 //! Aside from pinned initialization, this API also supports in-place construction without pinning,
21 //! the macros/types/functions are generally named like the pinned variants without the `pin`
22 //! prefix.
23 //!
24 //! # Examples
25 //!
26 //! ## Using the [`pin_init!`] macro
27 //!
28 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with
29 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
30 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
31 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
32 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
33 //!
34 //! ```rust,ignore
35 //! # #![expect(clippy::disallowed_names)]
36 //! # #![feature(allocator_api)]
37 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
38 //! # use core::pin::Pin;
39 //! use pin_init::*;
40 //!
41 //! #[pin_data]
42 //! struct Foo {
43 //!     #[pin]
44 //!     a: CMutex<usize>,
45 //!     b: u32,
46 //! }
47 //!
48 //! let foo = pin_init!(Foo {
49 //!     a <- CMutex::new(42),
50 //!     b: 24,
51 //! });
52 //! # let _ = Box::pin_init(foo);
53 //! ```
54 //!
55 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
56 //! (or just the stack) to actually initialize a `Foo`:
57 //!
58 //! ```rust,ignore
59 //! # #![expect(clippy::disallowed_names)]
60 //! # #![feature(allocator_api)]
61 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
62 //! # use core::{alloc::AllocError, pin::Pin};
63 //! # use pin_init::*;
64 //! #
65 //! # #[pin_data]
66 //! # struct Foo {
67 //! #     #[pin]
68 //! #     a: CMutex<usize>,
69 //! #     b: u32,
70 //! # }
71 //! #
72 //! # let foo = pin_init!(Foo {
73 //! #     a <- CMutex::new(42),
74 //! #     b: 24,
75 //! # });
76 //! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo);
77 //! ```
78 //!
79 //! For more information see the [`pin_init!`] macro.
80 //!
81 //! ## Using a custom function/macro that returns an initializer
82 //!
83 //! Many types from the kernel supply a function/macro that returns an initializer, because the
84 //! above method only works for types where you can access the fields.
85 //!
86 //! ```rust,ignore
87 //! # #![feature(allocator_api)]
88 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
89 //! # use pin_init::*;
90 //! # use std::sync::Arc;
91 //! # use core::pin::Pin;
92 //! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42));
93 //! ```
94 //!
95 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
96 //!
97 //! ```rust,ignore
98 //! # #![feature(allocator_api)]
99 //! # use pin_init::*;
100 //! # #[path = "../examples/error.rs"] mod error; use error::Error;
101 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
102 //! #[pin_data]
103 //! struct DriverData {
104 //!     #[pin]
105 //!     status: CMutex<i32>,
106 //!     buffer: Box<[u8; 1_000_000]>,
107 //! }
108 //!
109 //! impl DriverData {
110 //!     fn new() -> impl PinInit<Self, Error> {
111 //!         try_pin_init!(Self {
112 //!             status <- CMutex::new(0),
113 //!             buffer: Box::init(pin_init::zeroed())?,
114 //!         }? Error)
115 //!     }
116 //! }
117 //! ```
118 //!
119 //! ## Manual creation of an initializer
120 //!
121 //! Often when working with primitives the previous approaches are not sufficient. That is where
122 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
123 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
124 //! actually does the initialization in the correct way. Here are the things to look out for
125 //! (we are calling the parameter to the closure `slot`):
126 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
127 //!   `slot` now contains a valid bit pattern for the type `T`,
128 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
129 //!   you need to take care to clean up anything if your initialization fails mid-way,
130 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
131 //!   `slot` gets called.
132 //!
133 //! ```rust,ignore
134 //! # #![feature(extern_types)]
135 //! use pin_init::*;
136 //! use core::{
137 //!     ptr::addr_of_mut,
138 //!     marker::PhantomPinned,
139 //!     cell::UnsafeCell,
140 //!     pin::Pin,
141 //!     mem::MaybeUninit,
142 //! };
143 //! mod bindings {
144 //!     extern "C" {
145 //!         pub type foo;
146 //!         pub fn init_foo(ptr: *mut foo);
147 //!         pub fn destroy_foo(ptr: *mut foo);
148 //!         #[must_use = "you must check the error return code"]
149 //!         pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32;
150 //!     }
151 //! }
152 //!
153 //! /// # Invariants
154 //! ///
155 //! /// `foo` is always initialized
156 //! #[pin_data(PinnedDrop)]
157 //! pub struct RawFoo {
158 //!     #[pin]
159 //!     _p: PhantomPinned,
160 //!     #[pin]
161 //!     foo: UnsafeCell<MaybeUninit<bindings::foo>>,
162 //! }
163 //!
164 //! impl RawFoo {
165 //!     pub fn new(flags: u32) -> impl PinInit<Self, i32> {
166 //!         // SAFETY:
167 //!         // - when the closure returns `Ok(())`, then it has successfully initialized and
168 //!         //   enabled `foo`,
169 //!         // - when it returns `Err(e)`, then it has cleaned up before
170 //!         unsafe {
171 //!             pin_init_from_closure(move |slot: *mut Self| {
172 //!                 // `slot` contains uninit memory, avoid creating a reference.
173 //!                 let foo = addr_of_mut!((*slot).foo);
174 //!                 let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>();
175 //!
176 //!                 // Initialize the `foo`
177 //!                 bindings::init_foo(foo);
178 //!
179 //!                 // Try to enable it.
180 //!                 let err = bindings::enable_foo(foo, flags);
181 //!                 if err != 0 {
182 //!                     // Enabling has failed, first clean up the foo and then return the error.
183 //!                     bindings::destroy_foo(foo);
184 //!                     Err(err)
185 //!                 } else {
186 //!                     // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
187 //!                     Ok(())
188 //!                 }
189 //!             })
190 //!         }
191 //!     }
192 //! }
193 //!
194 //! #[pinned_drop]
195 //! impl PinnedDrop for RawFoo {
196 //!     fn drop(self: Pin<&mut Self>) {
197 //!         // SAFETY: Since `foo` is initialized, destroying is safe.
198 //!         unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) };
199 //!     }
200 //! }
201 //! ```
202 //!
203 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html
204 //! [structurally pinned fields]:
205 //!     https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
206 //! [stack]: crate::stack_pin_init
207 //! [`Arc<T>`]: crate::sync::Arc
208 //! [`impl PinInit<Foo>`]: PinInit
209 //! [`impl PinInit<T, E>`]: PinInit
210 //! [`impl Init<T, E>`]: Init
211 //! [`pin_data`]: ::macros::pin_data
212 //! [`pin_init!`]: crate::pin_init!
213 
214 use crate::{
215     alloc::{AllocError, Flags, KBox},
216     error::{self, Error},
217     sync::Arc,
218     sync::UniqueArc,
219     types::{Opaque, ScopeGuard},
220 };
221 use core::{
222     cell::UnsafeCell,
223     convert::Infallible,
224     marker::PhantomData,
225     mem::MaybeUninit,
226     num::*,
227     pin::Pin,
228     ptr::{self, NonNull},
229 };
230 
231 #[doc(hidden)]
232 pub mod __internal;
233 #[doc(hidden)]
234 pub mod macros;
235 
236 /// Used to specify the pinning information of the fields of a struct.
237 ///
238 /// This is somewhat similar in purpose as
239 /// [pin-project-lite](https://crates.io/crates/pin-project-lite).
240 /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
241 /// field you want to structurally pin.
242 ///
243 /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
244 /// then `#[pin]` directs the type of initializer that is required.
245 ///
246 /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
247 /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
248 /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
249 ///
250 /// # Examples
251 ///
252 /// ```ignore
253 /// # #![feature(allocator_api)]
254 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
255 /// use pin_init::pin_data;
256 ///
257 /// enum Command {
258 ///     /* ... */
259 /// }
260 ///
261 /// #[pin_data]
262 /// struct DriverData {
263 ///     #[pin]
264 ///     queue: CMutex<Vec<Command>>,
265 ///     buf: Box<[u8; 1024 * 1024]>,
266 /// }
267 /// ```
268 ///
269 /// ```ignore
270 /// # #![feature(allocator_api)]
271 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
272 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
273 /// use core::pin::Pin;
274 /// use pin_init::{pin_data, pinned_drop, PinnedDrop};
275 ///
276 /// enum Command {
277 ///     /* ... */
278 /// }
279 ///
280 /// #[pin_data(PinnedDrop)]
281 /// struct DriverData {
282 ///     #[pin]
283 ///     queue: CMutex<Vec<Command>>,
284 ///     buf: Box<[u8; 1024 * 1024]>,
285 ///     raw_info: *mut bindings::info,
286 /// }
287 ///
288 /// #[pinned_drop]
289 /// impl PinnedDrop for DriverData {
290 ///     fn drop(self: Pin<&mut Self>) {
291 ///         unsafe { bindings::destroy_info(self.raw_info) };
292 ///     }
293 /// }
294 /// ```
295 ///
296 /// [`pin_init!`]: crate::pin_init
297 pub use ::macros::pin_data;
298 
299 /// Used to implement `PinnedDrop` safely.
300 ///
301 /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
302 ///
303 /// # Examples
304 ///
305 /// ```ignore
306 /// # #![feature(allocator_api)]
307 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
308 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
309 /// use core::pin::Pin;
310 /// use pin_init::{pin_data, pinned_drop, PinnedDrop};
311 ///
312 /// enum Command {
313 ///     /* ... */
314 /// }
315 ///
316 /// #[pin_data(PinnedDrop)]
317 /// struct DriverData {
318 ///     #[pin]
319 ///     queue: CMutex<Vec<Command>>,
320 ///     buf: Box<[u8; 1024 * 1024]>,
321 ///     raw_info: *mut bindings::info,
322 /// }
323 ///
324 /// #[pinned_drop]
325 /// impl PinnedDrop for DriverData {
326 ///     fn drop(self: Pin<&mut Self>) {
327 ///         unsafe { bindings::destroy_info(self.raw_info) };
328 ///     }
329 /// }
330 /// ```
331 pub use ::macros::pinned_drop;
332 
333 /// Derives the [`Zeroable`] trait for the given struct.
334 ///
335 /// This can only be used for structs where every field implements the [`Zeroable`] trait.
336 ///
337 /// # Examples
338 ///
339 /// ```ignore
340 /// use pin_init::Zeroable;
341 ///
342 /// #[derive(Zeroable)]
343 /// pub struct DriverData {
344 ///     id: i64,
345 ///     buf_ptr: *mut u8,
346 ///     len: usize,
347 /// }
348 /// ```
349 pub use ::macros::Zeroable;
350 
351 /// Initialize and pin a type directly on the stack.
352 ///
353 /// # Examples
354 ///
355 /// ```rust,ignore
356 /// # #![expect(clippy::disallowed_names)]
357 /// # #![feature(allocator_api)]
358 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
359 /// # use pin_init::*;
360 /// # use core::pin::Pin;
361 /// #[pin_data]
362 /// struct Foo {
363 ///     #[pin]
364 ///     a: CMutex<usize>,
365 ///     b: Bar,
366 /// }
367 ///
368 /// #[pin_data]
369 /// struct Bar {
370 ///     x: u32,
371 /// }
372 ///
373 /// stack_pin_init!(let foo = pin_init!(Foo {
374 ///     a <- CMutex::new(42),
375 ///     b: Bar {
376 ///         x: 64,
377 ///     },
378 /// }));
379 /// let foo: Pin<&mut Foo> = foo;
380 /// println!("a: {}", &*foo.a.lock());
381 /// ```
382 ///
383 /// # Syntax
384 ///
385 /// A normal `let` binding with optional type annotation. The expression is expected to implement
386 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
387 /// type, then use [`stack_try_pin_init!`].
388 ///
389 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
390 #[macro_export]
391 macro_rules! stack_pin_init {
392     (let $var:ident $(: $t:ty)? = $val:expr) => {
393         let val = $val;
394         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
395         let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
396             Ok(res) => res,
397             Err(x) => {
398                 let x: ::core::convert::Infallible = x;
399                 match x {}
400             }
401         };
402     };
403 }
404 
405 /// Initialize and pin a type directly on the stack.
406 ///
407 /// # Examples
408 ///
409 /// ```rust,ignore
410 /// # #![expect(clippy::disallowed_names)]
411 /// # #![feature(allocator_api)]
412 /// # #[path = "../examples/error.rs"] mod error; use error::Error;
413 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
414 /// # use pin_init::*;
415 /// #[pin_data]
416 /// struct Foo {
417 ///     #[pin]
418 ///     a: CMutex<usize>,
419 ///     b: Box<Bar>,
420 /// }
421 ///
422 /// struct Bar {
423 ///     x: u32,
424 /// }
425 ///
426 /// stack_try_pin_init!(let foo: Foo = try_pin_init!(Foo {
427 ///     a <- CMutex::new(42),
428 ///     b: Box::try_new(Bar {
429 ///         x: 64,
430 ///     })?,
431 /// }? Error));
432 /// let foo = foo.unwrap();
433 /// println!("a: {}", &*foo.a.lock());
434 /// ```
435 ///
436 /// ```rust,ignore
437 /// # #![expect(clippy::disallowed_names)]
438 /// # #![feature(allocator_api)]
439 /// # #[path = "../examples/error.rs"] mod error; use error::Error;
440 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
441 /// # use pin_init::*;
442 /// #[pin_data]
443 /// struct Foo {
444 ///     #[pin]
445 ///     a: CMutex<usize>,
446 ///     b: Box<Bar>,
447 /// }
448 ///
449 /// struct Bar {
450 ///     x: u32,
451 /// }
452 ///
453 /// stack_try_pin_init!(let foo: Foo =? try_pin_init!(Foo {
454 ///     a <- CMutex::new(42),
455 ///     b: Box::try_new(Bar {
456 ///         x: 64,
457 ///     })?,
458 /// }? Error));
459 /// println!("a: {}", &*foo.a.lock());
460 /// # Ok::<_, Error>(())
461 /// ```
462 ///
463 /// # Syntax
464 ///
465 /// A normal `let` binding with optional type annotation. The expression is expected to implement
466 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
467 /// `=` will propagate this error.
468 #[macro_export]
469 macro_rules! stack_try_pin_init {
470     (let $var:ident $(: $t:ty)? = $val:expr) => {
471         let val = $val;
472         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
473         let mut $var = $crate::init::__internal::StackInit::init($var, val);
474     };
475     (let $var:ident $(: $t:ty)? =? $val:expr) => {
476         let val = $val;
477         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
478         let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
479     };
480 }
481 
482 /// Construct an in-place, pinned initializer for `struct`s.
483 ///
484 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
485 /// [`try_pin_init!`].
486 ///
487 /// The syntax is almost identical to that of a normal `struct` initializer:
488 ///
489 /// ```rust,ignore
490 /// # use pin_init::*;
491 /// # use core::pin::Pin;
492 /// #[pin_data]
493 /// struct Foo {
494 ///     a: usize,
495 ///     b: Bar,
496 /// }
497 ///
498 /// #[pin_data]
499 /// struct Bar {
500 ///     x: u32,
501 /// }
502 ///
503 /// # fn demo() -> impl PinInit<Foo> {
504 /// let a = 42;
505 ///
506 /// let initializer = pin_init!(Foo {
507 ///     a,
508 ///     b: Bar {
509 ///         x: 64,
510 ///     },
511 /// });
512 /// # initializer }
513 /// # Box::pin_init(demo()).unwrap();
514 /// ```
515 ///
516 /// Arbitrary Rust expressions can be used to set the value of a variable.
517 ///
518 /// The fields are initialized in the order that they appear in the initializer. So it is possible
519 /// to read already initialized fields using raw pointers.
520 ///
521 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
522 /// initializer.
523 ///
524 /// # Init-functions
525 ///
526 /// When working with this API it is often desired to let others construct your types without
527 /// giving access to all fields. This is where you would normally write a plain function `new`
528 /// that would return a new instance of your type. With this API that is also possible.
529 /// However, there are a few extra things to keep in mind.
530 ///
531 /// To create an initializer function, simply declare it like this:
532 ///
533 /// ```rust,ignore
534 /// # use pin_init::*;
535 /// # use core::pin::Pin;
536 /// # #[pin_data]
537 /// # struct Foo {
538 /// #     a: usize,
539 /// #     b: Bar,
540 /// # }
541 /// # #[pin_data]
542 /// # struct Bar {
543 /// #     x: u32,
544 /// # }
545 /// impl Foo {
546 ///     fn new() -> impl PinInit<Self> {
547 ///         pin_init!(Self {
548 ///             a: 42,
549 ///             b: Bar {
550 ///                 x: 64,
551 ///             },
552 ///         })
553 ///     }
554 /// }
555 /// ```
556 ///
557 /// Users of `Foo` can now create it like this:
558 ///
559 /// ```rust,ignore
560 /// # #![expect(clippy::disallowed_names)]
561 /// # use pin_init::*;
562 /// # use core::pin::Pin;
563 /// # #[pin_data]
564 /// # struct Foo {
565 /// #     a: usize,
566 /// #     b: Bar,
567 /// # }
568 /// # #[pin_data]
569 /// # struct Bar {
570 /// #     x: u32,
571 /// # }
572 /// # impl Foo {
573 /// #     fn new() -> impl PinInit<Self> {
574 /// #         pin_init!(Self {
575 /// #             a: 42,
576 /// #             b: Bar {
577 /// #                 x: 64,
578 /// #             },
579 /// #         })
580 /// #     }
581 /// # }
582 /// let foo = Box::pin_init(Foo::new());
583 /// ```
584 ///
585 /// They can also easily embed it into their own `struct`s:
586 ///
587 /// ```rust,ignore
588 /// # use pin_init::*;
589 /// # use core::pin::Pin;
590 /// # #[pin_data]
591 /// # struct Foo {
592 /// #     a: usize,
593 /// #     b: Bar,
594 /// # }
595 /// # #[pin_data]
596 /// # struct Bar {
597 /// #     x: u32,
598 /// # }
599 /// # impl Foo {
600 /// #     fn new() -> impl PinInit<Self> {
601 /// #         pin_init!(Self {
602 /// #             a: 42,
603 /// #             b: Bar {
604 /// #                 x: 64,
605 /// #             },
606 /// #         })
607 /// #     }
608 /// # }
609 /// #[pin_data]
610 /// struct FooContainer {
611 ///     #[pin]
612 ///     foo1: Foo,
613 ///     #[pin]
614 ///     foo2: Foo,
615 ///     other: u32,
616 /// }
617 ///
618 /// impl FooContainer {
619 ///     fn new(other: u32) -> impl PinInit<Self> {
620 ///         pin_init!(Self {
621 ///             foo1 <- Foo::new(),
622 ///             foo2 <- Foo::new(),
623 ///             other,
624 ///         })
625 ///     }
626 /// }
627 /// ```
628 ///
629 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
630 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just
631 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
632 ///
633 /// # Syntax
634 ///
635 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
636 /// the following modifications is expected:
637 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
638 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
639 ///   pointer named `this` inside of the initializer.
640 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
641 ///   struct, this initializes every field with 0 and then runs all initializers specified in the
642 ///   body. This can only be done if [`Zeroable`] is implemented for the struct.
643 ///
644 /// For instance:
645 ///
646 /// ```rust,ignore
647 /// # use pin_init::*;
648 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
649 /// #[pin_data]
650 /// #[derive(Zeroable)]
651 /// struct Buf {
652 ///     // `ptr` points into `buf`.
653 ///     ptr: *mut u8,
654 ///     buf: [u8; 64],
655 ///     #[pin]
656 ///     pin: PhantomPinned,
657 /// }
658 /// pin_init!(&this in Buf {
659 ///     buf: [0; 64],
660 ///     // SAFETY: TODO.
661 ///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
662 ///     pin: PhantomPinned,
663 /// });
664 /// pin_init!(Buf {
665 ///     buf: [1; 64],
666 ///     ..Zeroable::zeroed()
667 /// });
668 /// ```
669 ///
670 /// [`try_pin_init!`]: kernel::try_pin_init
671 /// [`NonNull<Self>`]: core::ptr::NonNull
672 // For a detailed example of how this macro works, see the module documentation of the hidden
673 // module `__internal` inside of `init/__internal.rs`.
674 #[macro_export]
675 macro_rules! pin_init {
676     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
677         $($fields:tt)*
678     }) => {
679         $crate::__init_internal!(
680             @this($($this)?),
681             @typ($t $(::<$($generics),*>)?),
682             @fields($($fields)*),
683             @error(::core::convert::Infallible),
684             @data(PinData, use_data),
685             @has_data(HasPinData, __pin_data),
686             @construct_closure(pin_init_from_closure),
687             @munch_fields($($fields)*),
688         )
689     };
690 }
691 
692 /// Construct an in-place, fallible pinned initializer for `struct`s.
693 ///
694 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
695 ///
696 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
697 /// initialization and return the error.
698 ///
699 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
700 /// initialization fails, the memory can be safely deallocated without any further modifications.
701 ///
702 /// This macro defaults the error to [`Error`].
703 ///
704 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
705 /// after the `struct` initializer to specify the error type you want to use.
706 ///
707 /// # Examples
708 ///
709 /// ```rust,ignore
710 /// # #![feature(allocator_api)]
711 /// # #[path = "../examples/error.rs"] mod error; use error::Error;
712 /// use pin_init::*;
713 /// #[pin_data]
714 /// struct BigBuf {
715 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
716 ///     small: [u8; 1024 * 1024],
717 ///     ptr: *mut u8,
718 /// }
719 ///
720 /// impl BigBuf {
721 ///     fn new() -> impl PinInit<Self, Error> {
722 ///         try_pin_init!(Self {
723 ///             big: Box::init(init::zeroed())?,
724 ///             small: [0; 1024 * 1024],
725 ///             ptr: core::ptr::null_mut(),
726 ///         }? Error)
727 ///     }
728 /// }
729 /// # let _ = Box::pin_init(BigBuf::new());
730 /// ```
731 // For a detailed example of how this macro works, see the module documentation of the hidden
732 // module `__internal` inside of `init/__internal.rs`.
733 #[macro_export]
734 macro_rules! try_pin_init {
735     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
736         $($fields:tt)*
737     }) => {
738         $crate::__init_internal!(
739             @this($($this)?),
740             @typ($t $(::<$($generics),*>)? ),
741             @fields($($fields)*),
742             @error($crate::error::Error),
743             @data(PinData, use_data),
744             @has_data(HasPinData, __pin_data),
745             @construct_closure(pin_init_from_closure),
746             @munch_fields($($fields)*),
747         )
748     };
749     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
750         $($fields:tt)*
751     }? $err:ty) => {
752         $crate::__init_internal!(
753             @this($($this)?),
754             @typ($t $(::<$($generics),*>)? ),
755             @fields($($fields)*),
756             @error($err),
757             @data(PinData, use_data),
758             @has_data(HasPinData, __pin_data),
759             @construct_closure(pin_init_from_closure),
760             @munch_fields($($fields)*),
761         )
762     };
763 }
764 
765 /// Construct an in-place initializer for `struct`s.
766 ///
767 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
768 /// [`try_init!`].
769 ///
770 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
771 /// - `unsafe` code must guarantee either full initialization or return an error and allow
772 ///   deallocation of the memory.
773 /// - the fields are initialized in the order given in the initializer.
774 /// - no references to fields are allowed to be created inside of the initializer.
775 ///
776 /// This initializer is for initializing data in-place that might later be moved. If you want to
777 /// pin-initialize, use [`pin_init!`].
778 ///
779 /// [`try_init!`]: crate::try_init!
780 // For a detailed example of how this macro works, see the module documentation of the hidden
781 // module `__internal` inside of `init/__internal.rs`.
782 #[macro_export]
783 macro_rules! init {
784     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
785         $($fields:tt)*
786     }) => {
787         $crate::__init_internal!(
788             @this($($this)?),
789             @typ($t $(::<$($generics),*>)?),
790             @fields($($fields)*),
791             @error(::core::convert::Infallible),
792             @data(InitData, /*no use_data*/),
793             @has_data(HasInitData, __init_data),
794             @construct_closure(init_from_closure),
795             @munch_fields($($fields)*),
796         )
797     }
798 }
799 
800 /// Construct an in-place fallible initializer for `struct`s.
801 ///
802 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
803 /// [`init!`].
804 ///
805 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
806 /// append `? $type` after the `struct` initializer.
807 /// The safety caveats from [`try_pin_init!`] also apply:
808 /// - `unsafe` code must guarantee either full initialization or return an error and allow
809 ///   deallocation of the memory.
810 /// - the fields are initialized in the order given in the initializer.
811 /// - no references to fields are allowed to be created inside of the initializer.
812 ///
813 /// # Examples
814 ///
815 /// ```rust,ignore
816 /// # #![feature(allocator_api)]
817 /// # use core::alloc::AllocError;
818 /// use pin_init::*;
819 /// struct BigBuf {
820 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
821 ///     small: [u8; 1024 * 1024],
822 /// }
823 ///
824 /// impl BigBuf {
825 ///     fn new() -> impl Init<Self, AllocError> {
826 ///         try_init!(Self {
827 ///             big: Box::init(zeroed())?,
828 ///             small: [0; 1024 * 1024],
829 ///         }? AllocError)
830 ///     }
831 /// }
832 /// ```
833 // For a detailed example of how this macro works, see the module documentation of the hidden
834 // module `__internal` inside of `init/__internal.rs`.
835 #[macro_export]
836 macro_rules! try_init {
837     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
838         $($fields:tt)*
839     }) => {
840         $crate::__init_internal!(
841             @this($($this)?),
842             @typ($t $(::<$($generics),*>)?),
843             @fields($($fields)*),
844             @error($crate::error::Error),
845             @data(InitData, /*no use_data*/),
846             @has_data(HasInitData, __init_data),
847             @construct_closure(init_from_closure),
848             @munch_fields($($fields)*),
849         )
850     };
851     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
852         $($fields:tt)*
853     }? $err:ty) => {
854         $crate::__init_internal!(
855             @this($($this)?),
856             @typ($t $(::<$($generics),*>)?),
857             @fields($($fields)*),
858             @error($err),
859             @data(InitData, /*no use_data*/),
860             @has_data(HasInitData, __init_data),
861             @construct_closure(init_from_closure),
862             @munch_fields($($fields)*),
863         )
864     };
865 }
866 
867 /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is
868 /// structurally pinned.
869 ///
870 /// # Example
871 ///
872 /// This will succeed:
873 /// ```ignore
874 /// use pin_init::assert_pinned;
875 /// #[pin_data]
876 /// struct MyStruct {
877 ///     #[pin]
878 ///     some_field: u64,
879 /// }
880 ///
881 /// assert_pinned!(MyStruct, some_field, u64);
882 /// ```
883 ///
884 /// This will fail:
885 /// ```compile_fail,ignore
886 /// use pin_init::assert_pinned;
887 /// #[pin_data]
888 /// struct MyStruct {
889 ///     some_field: u64,
890 /// }
891 ///
892 /// assert_pinned!(MyStruct, some_field, u64);
893 /// ```
894 ///
895 /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To
896 /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can
897 /// only be used when the macro is invoked from a function body.
898 /// ```ignore
899 /// use pin_init::assert_pinned;
900 /// #[pin_data]
901 /// struct Foo<T> {
902 ///     #[pin]
903 ///     elem: T,
904 /// }
905 ///
906 /// impl<T> Foo<T> {
907 ///     fn project(self: Pin<&mut Self>) -> Pin<&mut T> {
908 ///         assert_pinned!(Foo<T>, elem, T, inline);
909 ///
910 ///         // SAFETY: The field is structurally pinned.
911 ///         unsafe { self.map_unchecked_mut(|me| &mut me.elem) }
912 ///     }
913 /// }
914 /// ```
915 #[macro_export]
916 macro_rules! assert_pinned {
917     ($ty:ty, $field:ident, $field_ty:ty, inline) => {
918         let _ = move |ptr: *mut $field_ty| {
919             // SAFETY: This code is unreachable.
920             let data = unsafe { <$ty as $crate::init::__internal::HasPinData>::__pin_data() };
921             let init = $crate::init::__internal::AlwaysFail::<$field_ty>::new();
922             // SAFETY: This code is unreachable.
923             unsafe { data.$field(ptr, init) }.ok();
924         };
925     };
926 
927     ($ty:ty, $field:ident, $field_ty:ty) => {
928         const _: () = {
929             $crate::assert_pinned!($ty, $field, $field_ty, inline);
930         };
931     };
932 }
933 
934 /// A pin-initializer for the type `T`.
935 ///
936 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
937 /// be [`KBox<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use
938 /// the [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
939 ///
940 /// Also see the [module description](self).
941 ///
942 /// # Safety
943 ///
944 /// When implementing this trait you will need to take great care. Also there are probably very few
945 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
946 ///
947 /// The [`PinInit::__pinned_init`] function:
948 /// - returns `Ok(())` if it initialized every field of `slot`,
949 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
950 ///     - `slot` can be deallocated without UB occurring,
951 ///     - `slot` does not need to be dropped,
952 ///     - `slot` is not partially initialized.
953 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
954 ///
955 /// [`Arc<T>`]: crate::sync::Arc
956 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init
957 #[must_use = "An initializer must be used in order to create its value."]
958 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
959     /// Initializes `slot`.
960     ///
961     /// # Safety
962     ///
963     /// - `slot` is a valid pointer to uninitialized memory.
964     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
965     ///   deallocate.
966     /// - `slot` will not move until it is dropped, i.e. it will be pinned.
967     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
968 
969     /// First initializes the value using `self` then calls the function `f` with the initialized
970     /// value.
971     ///
972     /// If `f` returns an error the value is dropped and the initializer will forward the error.
973     ///
974     /// # Examples
975     ///
976     /// ```rust,ignore
977     /// # #![feature(allocator_api)]
978     /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
979     /// # use pin_init::*;
980     /// let mtx_init = CMutex::new(42);
981     /// // Make the initializer print the value.
982     /// let mtx_init = mtx_init.pin_chain(|mtx| {
983     ///     println!("{:?}", mtx.get_data_mut());
984     ///     Ok(())
985     /// });
986     /// ```
987     fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
988     where
989         F: FnOnce(Pin<&mut T>) -> Result<(), E>,
990     {
991         ChainPinInit(self, f, PhantomData)
992     }
993 }
994 
995 /// An initializer returned by [`PinInit::pin_chain`].
996 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, KBox<T>)>);
997 
998 // SAFETY: The `__pinned_init` function is implemented such that it
999 // - returns `Ok(())` on successful initialization,
1000 // - returns `Err(err)` on error and in this case `slot` will be dropped.
1001 // - considers `slot` pinned.
1002 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
1003 where
1004     I: PinInit<T, E>,
1005     F: FnOnce(Pin<&mut T>) -> Result<(), E>,
1006 {
1007     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1008         // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
1009         unsafe { self.0.__pinned_init(slot)? };
1010         // SAFETY: The above call initialized `slot` and we still have unique access.
1011         let val = unsafe { &mut *slot };
1012         // SAFETY: `slot` is considered pinned.
1013         let val = unsafe { Pin::new_unchecked(val) };
1014         // SAFETY: `slot` was initialized above.
1015         (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) })
1016     }
1017 }
1018 
1019 /// An initializer for `T`.
1020 ///
1021 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
1022 /// be [`KBox<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use
1023 /// the [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
1024 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
1025 ///
1026 /// Also see the [module description](self).
1027 ///
1028 /// # Safety
1029 ///
1030 /// When implementing this trait you will need to take great care. Also there are probably very few
1031 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
1032 ///
1033 /// The [`Init::__init`] function:
1034 /// - returns `Ok(())` if it initialized every field of `slot`,
1035 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1036 ///     - `slot` can be deallocated without UB occurring,
1037 ///     - `slot` does not need to be dropped,
1038 ///     - `slot` is not partially initialized.
1039 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1040 ///
1041 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
1042 /// code as `__init`.
1043 ///
1044 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
1045 /// move the pointee after initialization.
1046 ///
1047 /// [`Arc<T>`]: crate::sync::Arc
1048 #[must_use = "An initializer must be used in order to create its value."]
1049 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
1050     /// Initializes `slot`.
1051     ///
1052     /// # Safety
1053     ///
1054     /// - `slot` is a valid pointer to uninitialized memory.
1055     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1056     ///   deallocate.
1057     unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
1058 
1059     /// First initializes the value using `self` then calls the function `f` with the initialized
1060     /// value.
1061     ///
1062     /// If `f` returns an error the value is dropped and the initializer will forward the error.
1063     ///
1064     /// # Examples
1065     ///
1066     /// ```rust,ignore
1067     /// # #![expect(clippy::disallowed_names)]
1068     /// use pin_init::{init_from_closure, zeroed};
1069     /// struct Foo {
1070     ///     buf: [u8; 1_000_000],
1071     /// }
1072     ///
1073     /// impl Foo {
1074     ///     fn setup(&mut self) {
1075     ///         pr_info!("Setting up foo");
1076     ///     }
1077     /// }
1078     ///
1079     /// let foo = init!(Foo {
1080     ///     buf <- zeroed()
1081     /// }).chain(|foo| {
1082     ///     foo.setup();
1083     ///     Ok(())
1084     /// });
1085     /// ```
1086     fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
1087     where
1088         F: FnOnce(&mut T) -> Result<(), E>,
1089     {
1090         ChainInit(self, f, PhantomData)
1091     }
1092 }
1093 
1094 /// An initializer returned by [`Init::chain`].
1095 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, KBox<T>)>);
1096 
1097 // SAFETY: The `__init` function is implemented such that it
1098 // - returns `Ok(())` on successful initialization,
1099 // - returns `Err(err)` on error and in this case `slot` will be dropped.
1100 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
1101 where
1102     I: Init<T, E>,
1103     F: FnOnce(&mut T) -> Result<(), E>,
1104 {
1105     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1106         // SAFETY: All requirements fulfilled since this function is `__init`.
1107         unsafe { self.0.__pinned_init(slot)? };
1108         // SAFETY: The above call initialized `slot` and we still have unique access.
1109         (self.1)(unsafe { &mut *slot }).inspect_err(|_|
1110             // SAFETY: `slot` was initialized above.
1111             unsafe { core::ptr::drop_in_place(slot) })
1112     }
1113 }
1114 
1115 // SAFETY: `__pinned_init` behaves exactly the same as `__init`.
1116 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
1117 where
1118     I: Init<T, E>,
1119     F: FnOnce(&mut T) -> Result<(), E>,
1120 {
1121     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1122         // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
1123         unsafe { self.__init(slot) }
1124     }
1125 }
1126 
1127 /// Creates a new [`PinInit<T, E>`] from the given closure.
1128 ///
1129 /// # Safety
1130 ///
1131 /// The closure:
1132 /// - returns `Ok(())` if it initialized every field of `slot`,
1133 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1134 ///     - `slot` can be deallocated without UB occurring,
1135 ///     - `slot` does not need to be dropped,
1136 ///     - `slot` is not partially initialized.
1137 /// - may assume that the `slot` does not move if `T: !Unpin`,
1138 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1139 #[inline]
1140 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
1141     f: impl FnOnce(*mut T) -> Result<(), E>,
1142 ) -> impl PinInit<T, E> {
1143     __internal::InitClosure(f, PhantomData)
1144 }
1145 
1146 /// Creates a new [`Init<T, E>`] from the given closure.
1147 ///
1148 /// # Safety
1149 ///
1150 /// The closure:
1151 /// - returns `Ok(())` if it initialized every field of `slot`,
1152 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1153 ///     - `slot` can be deallocated without UB occurring,
1154 ///     - `slot` does not need to be dropped,
1155 ///     - `slot` is not partially initialized.
1156 /// - the `slot` may move after initialization.
1157 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1158 #[inline]
1159 pub const unsafe fn init_from_closure<T: ?Sized, E>(
1160     f: impl FnOnce(*mut T) -> Result<(), E>,
1161 ) -> impl Init<T, E> {
1162     __internal::InitClosure(f, PhantomData)
1163 }
1164 
1165 /// An initializer that leaves the memory uninitialized.
1166 ///
1167 /// The initializer is a no-op. The `slot` memory is not changed.
1168 #[inline]
1169 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
1170     // SAFETY: The memory is allowed to be uninitialized.
1171     unsafe { init_from_closure(|_| Ok(())) }
1172 }
1173 
1174 /// Initializes an array by initializing each element via the provided initializer.
1175 ///
1176 /// # Examples
1177 ///
1178 /// ```rust,ignore
1179 /// # use pin_init::*;
1180 /// use pin_init::init_array_from_fn;
1181 /// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap();
1182 /// assert_eq!(array.len(), 1_000);
1183 /// ```
1184 pub fn init_array_from_fn<I, const N: usize, T, E>(
1185     mut make_init: impl FnMut(usize) -> I,
1186 ) -> impl Init<[T; N], E>
1187 where
1188     I: Init<T, E>,
1189 {
1190     let init = move |slot: *mut [T; N]| {
1191         let slot = slot.cast::<T>();
1192         // Counts the number of initialized elements and when dropped drops that many elements from
1193         // `slot`.
1194         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1195             // We now free every element that has been initialized before.
1196             // SAFETY: The loop initialized exactly the values from 0..i and since we
1197             // return `Err` below, the caller will consider the memory at `slot` as
1198             // uninitialized.
1199             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1200         });
1201         for i in 0..N {
1202             let init = make_init(i);
1203             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1204             let ptr = unsafe { slot.add(i) };
1205             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1206             // requirements.
1207             unsafe { init.__init(ptr) }?;
1208             *init_count += 1;
1209         }
1210         init_count.dismiss();
1211         Ok(())
1212     };
1213     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1214     // any initialized elements and returns `Err`.
1215     unsafe { init_from_closure(init) }
1216 }
1217 
1218 /// Initializes an array by initializing each element via the provided initializer.
1219 ///
1220 /// # Examples
1221 ///
1222 /// ```rust,ignore
1223 /// # #![feature(allocator_api)]
1224 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1225 /// # use pin_init::*;
1226 /// # use core::pin::Pin;
1227 /// use pin_init::pin_init_array_from_fn;
1228 /// use std::sync::Arc;
1229 /// let array: Pin<Arc<[CMutex<usize>; 1_000]>> =
1230 ///     Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap();
1231 /// assert_eq!(array.len(), 1_000);
1232 /// ```
1233 pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
1234     mut make_init: impl FnMut(usize) -> I,
1235 ) -> impl PinInit<[T; N], E>
1236 where
1237     I: PinInit<T, E>,
1238 {
1239     let init = move |slot: *mut [T; N]| {
1240         let slot = slot.cast::<T>();
1241         // Counts the number of initialized elements and when dropped drops that many elements from
1242         // `slot`.
1243         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1244             // We now free every element that has been initialized before.
1245             // SAFETY: The loop initialized exactly the values from 0..i and since we
1246             // return `Err` below, the caller will consider the memory at `slot` as
1247             // uninitialized.
1248             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1249         });
1250         for i in 0..N {
1251             let init = make_init(i);
1252             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1253             let ptr = unsafe { slot.add(i) };
1254             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1255             // requirements.
1256             unsafe { init.__pinned_init(ptr) }?;
1257             *init_count += 1;
1258         }
1259         init_count.dismiss();
1260         Ok(())
1261     };
1262     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1263     // any initialized elements and returns `Err`.
1264     unsafe { pin_init_from_closure(init) }
1265 }
1266 
1267 // SAFETY: Every type can be initialized by-value.
1268 unsafe impl<T, E> Init<T, E> for T {
1269     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1270         // SAFETY: TODO.
1271         unsafe { slot.write(self) };
1272         Ok(())
1273     }
1274 }
1275 
1276 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`.
1277 unsafe impl<T, E> PinInit<T, E> for T {
1278     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1279         // SAFETY: TODO.
1280         unsafe { self.__init(slot) }
1281     }
1282 }
1283 
1284 /// Smart pointer that can initialize memory in-place.
1285 pub trait InPlaceInit<T>: Sized {
1286     /// Pinned version of `Self`.
1287     ///
1288     /// If a type already implicitly pins its pointee, `Pin<Self>` is unnecessary. In this case use
1289     /// `Self`, otherwise just use `Pin<Self>`.
1290     type PinnedSelf;
1291 
1292     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1293     /// type.
1294     ///
1295     /// If `T: !Unpin` it will not be able to move afterwards.
1296     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
1297     where
1298         E: From<AllocError>;
1299 
1300     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1301     /// type.
1302     ///
1303     /// If `T: !Unpin` it will not be able to move afterwards.
1304     fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self::PinnedSelf>
1305     where
1306         Error: From<E>,
1307     {
1308         // SAFETY: We delegate to `init` and only change the error type.
1309         let init = unsafe {
1310             pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1311         };
1312         Self::try_pin_init(init, flags)
1313     }
1314 
1315     /// Use the given initializer to in-place initialize a `T`.
1316     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1317     where
1318         E: From<AllocError>;
1319 
1320     /// Use the given initializer to in-place initialize a `T`.
1321     fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self>
1322     where
1323         Error: From<E>,
1324     {
1325         // SAFETY: We delegate to `init` and only change the error type.
1326         let init = unsafe {
1327             init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1328         };
1329         Self::try_init(init, flags)
1330     }
1331 }
1332 
1333 impl<T> InPlaceInit<T> for Arc<T> {
1334     type PinnedSelf = Self;
1335 
1336     #[inline]
1337     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
1338     where
1339         E: From<AllocError>,
1340     {
1341         UniqueArc::try_pin_init(init, flags).map(|u| u.into())
1342     }
1343 
1344     #[inline]
1345     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1346     where
1347         E: From<AllocError>,
1348     {
1349         UniqueArc::try_init(init, flags).map(|u| u.into())
1350     }
1351 }
1352 
1353 impl<T> InPlaceInit<T> for UniqueArc<T> {
1354     type PinnedSelf = Pin<Self>;
1355 
1356     #[inline]
1357     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
1358     where
1359         E: From<AllocError>,
1360     {
1361         UniqueArc::new_uninit(flags)?.write_pin_init(init)
1362     }
1363 
1364     #[inline]
1365     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1366     where
1367         E: From<AllocError>,
1368     {
1369         UniqueArc::new_uninit(flags)?.write_init(init)
1370     }
1371 }
1372 
1373 /// Smart pointer containing uninitialized memory and that can write a value.
1374 pub trait InPlaceWrite<T> {
1375     /// The type `Self` turns into when the contents are initialized.
1376     type Initialized;
1377 
1378     /// Use the given initializer to write a value into `self`.
1379     ///
1380     /// Does not drop the current value and considers it as uninitialized memory.
1381     fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>;
1382 
1383     /// Use the given pin-initializer to write a value into `self`.
1384     ///
1385     /// Does not drop the current value and considers it as uninitialized memory.
1386     fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>;
1387 }
1388 
1389 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
1390     type Initialized = UniqueArc<T>;
1391 
1392     fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
1393         let slot = self.as_mut_ptr();
1394         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1395         // slot is valid.
1396         unsafe { init.__init(slot)? };
1397         // SAFETY: All fields have been initialized.
1398         Ok(unsafe { self.assume_init() })
1399     }
1400 
1401     fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
1402         let slot = self.as_mut_ptr();
1403         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1404         // slot is valid and will not be moved, because we pin it later.
1405         unsafe { init.__pinned_init(slot)? };
1406         // SAFETY: All fields have been initialized.
1407         Ok(unsafe { self.assume_init() }.into())
1408     }
1409 }
1410 
1411 /// Trait facilitating pinned destruction.
1412 ///
1413 /// Use [`pinned_drop`] to implement this trait safely:
1414 ///
1415 /// ```rust,ignore
1416 /// # #![feature(allocator_api)]
1417 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1418 /// # use pin_init::*;
1419 /// use core::pin::Pin;
1420 /// #[pin_data(PinnedDrop)]
1421 /// struct Foo {
1422 ///     #[pin]
1423 ///     mtx: CMutex<usize>,
1424 /// }
1425 ///
1426 /// #[pinned_drop]
1427 /// impl PinnedDrop for Foo {
1428 ///     fn drop(self: Pin<&mut Self>) {
1429 ///         println!("Foo is being dropped!");
1430 ///     }
1431 /// }
1432 /// ```
1433 ///
1434 /// # Safety
1435 ///
1436 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1437 ///
1438 /// [`pinned_drop`]: kernel::macros::pinned_drop
1439 pub unsafe trait PinnedDrop: __internal::HasPinData {
1440     /// Executes the pinned destructor of this type.
1441     ///
1442     /// While this function is marked safe, it is actually unsafe to call it manually. For this
1443     /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1444     /// and thus prevents this function from being called where it should not.
1445     ///
1446     /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1447     /// automatically.
1448     fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1449 }
1450 
1451 /// Marker trait for types that can be initialized by writing just zeroes.
1452 ///
1453 /// # Safety
1454 ///
1455 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1456 /// this is not UB:
1457 ///
1458 /// ```rust,ignore
1459 /// let val: Self = unsafe { core::mem::zeroed() };
1460 /// ```
1461 pub unsafe trait Zeroable {}
1462 
1463 /// Create a new zeroed T.
1464 ///
1465 /// The returned initializer will write `0x00` to every byte of the given `slot`.
1466 #[inline]
1467 pub fn zeroed<T: Zeroable>() -> impl Init<T> {
1468     // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1469     // and because we write all zeroes, the memory is initialized.
1470     unsafe {
1471         init_from_closure(|slot: *mut T| {
1472             slot.write_bytes(0, 1);
1473             Ok(())
1474         })
1475     }
1476 }
1477 
1478 macro_rules! impl_zeroable {
1479     ($($({$($generics:tt)*})? $t:ty, )*) => {
1480         // SAFETY: Safety comments written in the macro invocation.
1481         $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1482     };
1483 }
1484 
1485 impl_zeroable! {
1486     // SAFETY: All primitives that are allowed to be zero.
1487     bool,
1488     char,
1489     u8, u16, u32, u64, u128, usize,
1490     i8, i16, i32, i64, i128, isize,
1491     f32, f64,
1492 
1493     // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
1494     // creating an instance of an uninhabited type is immediate undefined behavior. For more on
1495     // uninhabited/empty types, consult The Rustonomicon:
1496     // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
1497     // also has information on undefined behavior:
1498     // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
1499     //
1500     // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
1501     {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),
1502 
1503     // SAFETY: Type is allowed to take any value, including all zeros.
1504     {<T>} MaybeUninit<T>,
1505     // SAFETY: Type is allowed to take any value, including all zeros.
1506     {<T>} Opaque<T>,
1507 
1508     // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
1509     {<T: ?Sized + Zeroable>} UnsafeCell<T>,
1510 
1511     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1512     Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1513     Option<NonZeroU128>, Option<NonZeroUsize>,
1514     Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1515     Option<NonZeroI128>, Option<NonZeroIsize>,
1516 
1517     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1518     //
1519     // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
1520     {<T: ?Sized>} Option<NonNull<T>>,
1521     {<T: ?Sized>} Option<KBox<T>>,
1522 
1523     // SAFETY: `null` pointer is valid.
1524     //
1525     // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1526     // null.
1527     //
1528     // When `Pointee` gets stabilized, we could use
1529     // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1530     {<T>} *mut T, {<T>} *const T,
1531 
1532     // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1533     // zero.
1534     {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1535 
1536     // SAFETY: `T` is `Zeroable`.
1537     {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1538 }
1539 
1540 macro_rules! impl_tuple_zeroable {
1541     ($(,)?) => {};
1542     ($first:ident, $($t:ident),* $(,)?) => {
1543         // SAFETY: All elements are zeroable and padding can be zero.
1544         unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1545         impl_tuple_zeroable!($($t),* ,);
1546     }
1547 }
1548 
1549 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1550