1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! Library to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! [Pinning][pinning] is Rust's way of ensuring data does not move. 6 //! 7 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 8 //! overflow. 9 //! 10 //! This library's main use-case is in [Rust-for-Linux]. Although this version can be used 11 //! standalone. 12 //! 13 //! There are cases when you want to in-place initialize a struct. For example when it is very big 14 //! and moving it from the stack is not an option, because it is bigger than the stack itself. 15 //! Another reason would be that you need the address of the object to initialize it. This stands 16 //! in direct conflict with Rust's normal process of first initializing an object and then moving 17 //! it into it's final memory location. For more information, see 18 //! <https://rust-for-linux.com/the-safe-pinned-initialization-problem>. 19 //! 20 //! This library allows you to do in-place initialization safely. 21 //! 22 //! ## Nightly Needed for `alloc` feature 23 //! 24 //! This library requires the [`allocator_api` unstable feature] when the `alloc` feature is 25 //! enabled and thus this feature can only be used with a nightly compiler. When enabling the 26 //! `alloc` feature, the user will be required to activate `allocator_api` as well. 27 //! 28 //! [`allocator_api` unstable feature]: https://doc.rust-lang.org/nightly/unstable-book/library-features/allocator-api.html 29 //! 30 //! The feature is enabled by default, thus by default `pin-init` will require a nightly compiler. 31 //! However, using the crate on stable compilers is possible by disabling `alloc`. In practice this 32 //! will require the `std` feature, because stable compilers have neither `Box` nor `Arc` in no-std 33 //! mode. 34 //! 35 //! # Overview 36 //! 37 //! To initialize a `struct` with an in-place constructor you will need two things: 38 //! - an in-place constructor, 39 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 40 //! [`Box<T>`] or any other smart pointer that supports this library). 41 //! 42 //! To get an in-place constructor there are generally three options: 43 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 44 //! - a custom function/macro returning an in-place constructor provided by someone else, 45 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 46 //! 47 //! Aside from pinned initialization, this library also supports in-place construction without 48 //! pinning, the macros/types/functions are generally named like the pinned variants without the 49 //! `pin_` prefix. 50 //! 51 //! # Examples 52 //! 53 //! Throughout the examples we will often make use of the `CMutex` type which can be found in 54 //! `../examples/mutex.rs`. It is essentially a userland rebuild of the `struct mutex` type from 55 //! the Linux kernel. It also uses a wait list and a basic spinlock. Importantly the wait list 56 //! requires it to be pinned to be locked and thus is a prime candidate for using this library. 57 //! 58 //! ## Using the [`pin_init!`] macro 59 //! 60 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 61 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 62 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 63 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 64 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 65 //! 66 //! ```rust,ignore 67 //! # #![expect(clippy::disallowed_names)] 68 //! # #![feature(allocator_api)] 69 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 70 //! # use core::pin::Pin; 71 //! use pin_init::{pin_data, pin_init, InPlaceInit}; 72 //! 73 //! #[pin_data] 74 //! struct Foo { 75 //! #[pin] 76 //! a: CMutex<usize>, 77 //! b: u32, 78 //! } 79 //! 80 //! let foo = pin_init!(Foo { 81 //! a <- CMutex::new(42), 82 //! b: 24, 83 //! }); 84 //! # let _ = Box::pin_init(foo); 85 //! ``` 86 //! 87 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 88 //! (or just the stack) to actually initialize a `Foo`: 89 //! 90 //! ```rust,ignore 91 //! # #![expect(clippy::disallowed_names)] 92 //! # #![feature(allocator_api)] 93 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 94 //! # use core::{alloc::AllocError, pin::Pin}; 95 //! # use pin_init::*; 96 //! # 97 //! # #[pin_data] 98 //! # struct Foo { 99 //! # #[pin] 100 //! # a: CMutex<usize>, 101 //! # b: u32, 102 //! # } 103 //! # 104 //! # let foo = pin_init!(Foo { 105 //! # a <- CMutex::new(42), 106 //! # b: 24, 107 //! # }); 108 //! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo); 109 //! ``` 110 //! 111 //! For more information see the [`pin_init!`] macro. 112 //! 113 //! ## Using a custom function/macro that returns an initializer 114 //! 115 //! Many types that use this library supply a function/macro that returns an initializer, because 116 //! the above method only works for types where you can access the fields. 117 //! 118 //! ```rust,ignore 119 //! # #![feature(allocator_api)] 120 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 121 //! # use pin_init::*; 122 //! # use std::sync::Arc; 123 //! # use core::pin::Pin; 124 //! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42)); 125 //! ``` 126 //! 127 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 128 //! 129 //! ```rust,ignore 130 //! # #![feature(allocator_api)] 131 //! # use pin_init::*; 132 //! # #[path = "../examples/error.rs"] mod error; use error::Error; 133 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 134 //! #[pin_data] 135 //! struct DriverData { 136 //! #[pin] 137 //! status: CMutex<i32>, 138 //! buffer: Box<[u8; 1_000_000]>, 139 //! } 140 //! 141 //! impl DriverData { 142 //! fn new() -> impl PinInit<Self, Error> { 143 //! try_pin_init!(Self { 144 //! status <- CMutex::new(0), 145 //! buffer: Box::init(pin_init::zeroed())?, 146 //! }? Error) 147 //! } 148 //! } 149 //! ``` 150 //! 151 //! ## Manual creation of an initializer 152 //! 153 //! Often when working with primitives the previous approaches are not sufficient. That is where 154 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 155 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 156 //! actually does the initialization in the correct way. Here are the things to look out for 157 //! (we are calling the parameter to the closure `slot`): 158 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 159 //! `slot` now contains a valid bit pattern for the type `T`, 160 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 161 //! you need to take care to clean up anything if your initialization fails mid-way, 162 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 163 //! `slot` gets called. 164 //! 165 //! ```rust,ignore 166 //! # #![feature(extern_types)] 167 //! use pin_init::{pin_data, pinned_drop, PinInit, PinnedDrop, pin_init_from_closure}; 168 //! use core::{ 169 //! ptr::addr_of_mut, 170 //! marker::PhantomPinned, 171 //! cell::UnsafeCell, 172 //! pin::Pin, 173 //! mem::MaybeUninit, 174 //! }; 175 //! mod bindings { 176 //! #[repr(C)] 177 //! pub struct foo { 178 //! /* fields from C ... */ 179 //! } 180 //! extern "C" { 181 //! pub fn init_foo(ptr: *mut foo); 182 //! pub fn destroy_foo(ptr: *mut foo); 183 //! #[must_use = "you must check the error return code"] 184 //! pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32; 185 //! } 186 //! } 187 //! 188 //! /// # Invariants 189 //! /// 190 //! /// `foo` is always initialized 191 //! #[pin_data(PinnedDrop)] 192 //! pub struct RawFoo { 193 //! #[pin] 194 //! _p: PhantomPinned, 195 //! #[pin] 196 //! foo: UnsafeCell<MaybeUninit<bindings::foo>>, 197 //! } 198 //! 199 //! impl RawFoo { 200 //! pub fn new(flags: u32) -> impl PinInit<Self, i32> { 201 //! // SAFETY: 202 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 203 //! // enabled `foo`, 204 //! // - when it returns `Err(e)`, then it has cleaned up before 205 //! unsafe { 206 //! pin_init_from_closure(move |slot: *mut Self| { 207 //! // `slot` contains uninit memory, avoid creating a reference. 208 //! let foo = addr_of_mut!((*slot).foo); 209 //! let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>(); 210 //! 211 //! // Initialize the `foo` 212 //! bindings::init_foo(foo); 213 //! 214 //! // Try to enable it. 215 //! let err = bindings::enable_foo(foo, flags); 216 //! if err != 0 { 217 //! // Enabling has failed, first clean up the foo and then return the error. 218 //! bindings::destroy_foo(foo); 219 //! Err(err) 220 //! } else { 221 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 222 //! Ok(()) 223 //! } 224 //! }) 225 //! } 226 //! } 227 //! } 228 //! 229 //! #[pinned_drop] 230 //! impl PinnedDrop for RawFoo { 231 //! fn drop(self: Pin<&mut Self>) { 232 //! // SAFETY: Since `foo` is initialized, destroying is safe. 233 //! unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) }; 234 //! } 235 //! } 236 //! ``` 237 //! 238 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 239 //! the `kernel` crate. The [`sync`] module is a good starting point. 240 //! 241 //! [`sync`]: https://rust.docs.kernel.org/kernel/sync/index.html 242 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 243 //! [structurally pinned fields]: 244 //! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field 245 //! [stack]: crate::stack_pin_init 246 #![cfg_attr( 247 kernel, 248 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 249 )] 250 #![cfg_attr( 251 kernel, 252 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 253 )] 254 #![cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 255 #![cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 256 //! [`impl PinInit<Foo>`]: crate::PinInit 257 //! [`impl PinInit<T, E>`]: crate::PinInit 258 //! [`impl Init<T, E>`]: crate::Init 259 //! [Rust-for-Linux]: https://rust-for-linux.com/ 260 261 #![cfg_attr(not(RUSTC_LINT_REASONS_IS_STABLE), feature(lint_reasons))] 262 #![cfg_attr( 263 all( 264 any(feature = "alloc", feature = "std"), 265 not(RUSTC_NEW_UNINIT_IS_STABLE) 266 ), 267 feature(new_uninit) 268 )] 269 #![forbid(missing_docs, unsafe_op_in_unsafe_fn)] 270 #![cfg_attr(not(feature = "std"), no_std)] 271 #![cfg_attr(feature = "alloc", feature(allocator_api))] 272 273 use core::{ 274 cell::UnsafeCell, 275 convert::Infallible, 276 marker::PhantomData, 277 mem::MaybeUninit, 278 num::*, 279 pin::Pin, 280 ptr::{self, NonNull}, 281 }; 282 283 #[doc(hidden)] 284 pub mod __internal; 285 #[doc(hidden)] 286 pub mod macros; 287 288 #[cfg(any(feature = "std", feature = "alloc"))] 289 mod alloc; 290 #[cfg(any(feature = "std", feature = "alloc"))] 291 pub use alloc::InPlaceInit; 292 293 /// Used to specify the pinning information of the fields of a struct. 294 /// 295 /// This is somewhat similar in purpose as 296 /// [pin-project-lite](https://crates.io/crates/pin-project-lite). 297 /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each 298 /// field you want to structurally pin. 299 /// 300 /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`, 301 /// then `#[pin]` directs the type of initializer that is required. 302 /// 303 /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this 304 /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with 305 /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care. 306 /// 307 /// # Examples 308 /// 309 /// ```ignore 310 /// # #![feature(allocator_api)] 311 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 312 /// use pin_init::pin_data; 313 /// 314 /// enum Command { 315 /// /* ... */ 316 /// } 317 /// 318 /// #[pin_data] 319 /// struct DriverData { 320 /// #[pin] 321 /// queue: CMutex<Vec<Command>>, 322 /// buf: Box<[u8; 1024 * 1024]>, 323 /// } 324 /// ``` 325 /// 326 /// ```ignore 327 /// # #![feature(allocator_api)] 328 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 329 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} } 330 /// use core::pin::Pin; 331 /// use pin_init::{pin_data, pinned_drop, PinnedDrop}; 332 /// 333 /// enum Command { 334 /// /* ... */ 335 /// } 336 /// 337 /// #[pin_data(PinnedDrop)] 338 /// struct DriverData { 339 /// #[pin] 340 /// queue: CMutex<Vec<Command>>, 341 /// buf: Box<[u8; 1024 * 1024]>, 342 /// raw_info: *mut bindings::info, 343 /// } 344 /// 345 /// #[pinned_drop] 346 /// impl PinnedDrop for DriverData { 347 /// fn drop(self: Pin<&mut Self>) { 348 /// unsafe { bindings::destroy_info(self.raw_info) }; 349 /// } 350 /// } 351 /// ``` 352 /// 353 /// [`pin_init!`]: crate::pin_init 354 pub use ::pin_init_internal::pin_data; 355 356 /// Used to implement `PinnedDrop` safely. 357 /// 358 /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`. 359 /// 360 /// # Examples 361 /// 362 /// ```ignore 363 /// # #![feature(allocator_api)] 364 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 365 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} } 366 /// use core::pin::Pin; 367 /// use pin_init::{pin_data, pinned_drop, PinnedDrop}; 368 /// 369 /// enum Command { 370 /// /* ... */ 371 /// } 372 /// 373 /// #[pin_data(PinnedDrop)] 374 /// struct DriverData { 375 /// #[pin] 376 /// queue: CMutex<Vec<Command>>, 377 /// buf: Box<[u8; 1024 * 1024]>, 378 /// raw_info: *mut bindings::info, 379 /// } 380 /// 381 /// #[pinned_drop] 382 /// impl PinnedDrop for DriverData { 383 /// fn drop(self: Pin<&mut Self>) { 384 /// unsafe { bindings::destroy_info(self.raw_info) }; 385 /// } 386 /// } 387 /// ``` 388 pub use ::pin_init_internal::pinned_drop; 389 390 /// Derives the [`Zeroable`] trait for the given struct. 391 /// 392 /// This can only be used for structs where every field implements the [`Zeroable`] trait. 393 /// 394 /// # Examples 395 /// 396 /// ```ignore 397 /// use pin_init::Zeroable; 398 /// 399 /// #[derive(Zeroable)] 400 /// pub struct DriverData { 401 /// id: i64, 402 /// buf_ptr: *mut u8, 403 /// len: usize, 404 /// } 405 /// ``` 406 pub use ::pin_init_internal::Zeroable; 407 408 /// Initialize and pin a type directly on the stack. 409 /// 410 /// # Examples 411 /// 412 /// ```rust,ignore 413 /// # #![expect(clippy::disallowed_names)] 414 /// # #![feature(allocator_api)] 415 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 416 /// # use pin_init::*; 417 /// # use core::pin::Pin; 418 /// #[pin_data] 419 /// struct Foo { 420 /// #[pin] 421 /// a: CMutex<usize>, 422 /// b: Bar, 423 /// } 424 /// 425 /// #[pin_data] 426 /// struct Bar { 427 /// x: u32, 428 /// } 429 /// 430 /// stack_pin_init!(let foo = pin_init!(Foo { 431 /// a <- CMutex::new(42), 432 /// b: Bar { 433 /// x: 64, 434 /// }, 435 /// })); 436 /// let foo: Pin<&mut Foo> = foo; 437 /// println!("a: {}", &*foo.a.lock()); 438 /// ``` 439 /// 440 /// # Syntax 441 /// 442 /// A normal `let` binding with optional type annotation. The expression is expected to implement 443 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 444 /// type, then use [`stack_try_pin_init!`]. 445 #[macro_export] 446 macro_rules! stack_pin_init { 447 (let $var:ident $(: $t:ty)? = $val:expr) => { 448 let val = $val; 449 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 450 let mut $var = match $crate::__internal::StackInit::init($var, val) { 451 Ok(res) => res, 452 Err(x) => { 453 let x: ::core::convert::Infallible = x; 454 match x {} 455 } 456 }; 457 }; 458 } 459 460 /// Initialize and pin a type directly on the stack. 461 /// 462 /// # Examples 463 /// 464 /// ```rust,ignore 465 /// # #![expect(clippy::disallowed_names)] 466 /// # #![feature(allocator_api)] 467 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 468 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 469 /// # use pin_init::*; 470 /// #[pin_data] 471 /// struct Foo { 472 /// #[pin] 473 /// a: CMutex<usize>, 474 /// b: Box<Bar>, 475 /// } 476 /// 477 /// struct Bar { 478 /// x: u32, 479 /// } 480 /// 481 /// stack_try_pin_init!(let foo: Foo = try_pin_init!(Foo { 482 /// a <- CMutex::new(42), 483 /// b: Box::try_new(Bar { 484 /// x: 64, 485 /// })?, 486 /// }? Error)); 487 /// let foo = foo.unwrap(); 488 /// println!("a: {}", &*foo.a.lock()); 489 /// ``` 490 /// 491 /// ```rust,ignore 492 /// # #![expect(clippy::disallowed_names)] 493 /// # #![feature(allocator_api)] 494 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 495 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 496 /// # use pin_init::*; 497 /// #[pin_data] 498 /// struct Foo { 499 /// #[pin] 500 /// a: CMutex<usize>, 501 /// b: Box<Bar>, 502 /// } 503 /// 504 /// struct Bar { 505 /// x: u32, 506 /// } 507 /// 508 /// stack_try_pin_init!(let foo: Foo =? try_pin_init!(Foo { 509 /// a <- CMutex::new(42), 510 /// b: Box::try_new(Bar { 511 /// x: 64, 512 /// })?, 513 /// }? Error)); 514 /// println!("a: {}", &*foo.a.lock()); 515 /// # Ok::<_, Error>(()) 516 /// ``` 517 /// 518 /// # Syntax 519 /// 520 /// A normal `let` binding with optional type annotation. The expression is expected to implement 521 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 522 /// `=` will propagate this error. 523 #[macro_export] 524 macro_rules! stack_try_pin_init { 525 (let $var:ident $(: $t:ty)? = $val:expr) => { 526 let val = $val; 527 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 528 let mut $var = $crate::__internal::StackInit::init($var, val); 529 }; 530 (let $var:ident $(: $t:ty)? =? $val:expr) => { 531 let val = $val; 532 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 533 let mut $var = $crate::__internal::StackInit::init($var, val)?; 534 }; 535 } 536 537 /// Construct an in-place, pinned initializer for `struct`s. 538 /// 539 /// This macro defaults the error to [`Infallible`]. If you need a different error, then use 540 /// [`try_pin_init!`]. 541 /// 542 /// The syntax is almost identical to that of a normal `struct` initializer: 543 /// 544 /// ```rust,ignore 545 /// # use pin_init::*; 546 /// # use core::pin::Pin; 547 /// #[pin_data] 548 /// struct Foo { 549 /// a: usize, 550 /// b: Bar, 551 /// } 552 /// 553 /// #[pin_data] 554 /// struct Bar { 555 /// x: u32, 556 /// } 557 /// 558 /// # fn demo() -> impl PinInit<Foo> { 559 /// let a = 42; 560 /// 561 /// let initializer = pin_init!(Foo { 562 /// a, 563 /// b: Bar { 564 /// x: 64, 565 /// }, 566 /// }); 567 /// # initializer } 568 /// # Box::pin_init(demo()).unwrap(); 569 /// ``` 570 /// 571 /// Arbitrary Rust expressions can be used to set the value of a variable. 572 /// 573 /// The fields are initialized in the order that they appear in the initializer. So it is possible 574 /// to read already initialized fields using raw pointers. 575 /// 576 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 577 /// initializer. 578 /// 579 /// # Init-functions 580 /// 581 /// When working with this library it is often desired to let others construct your types without 582 /// giving access to all fields. This is where you would normally write a plain function `new` that 583 /// would return a new instance of your type. With this library that is also possible. However, 584 /// there are a few extra things to keep in mind. 585 /// 586 /// To create an initializer function, simply declare it like this: 587 /// 588 /// ```rust,ignore 589 /// # use pin_init::*; 590 /// # use core::pin::Pin; 591 /// # #[pin_data] 592 /// # struct Foo { 593 /// # a: usize, 594 /// # b: Bar, 595 /// # } 596 /// # #[pin_data] 597 /// # struct Bar { 598 /// # x: u32, 599 /// # } 600 /// impl Foo { 601 /// fn new() -> impl PinInit<Self> { 602 /// pin_init!(Self { 603 /// a: 42, 604 /// b: Bar { 605 /// x: 64, 606 /// }, 607 /// }) 608 /// } 609 /// } 610 /// ``` 611 /// 612 /// Users of `Foo` can now create it like this: 613 /// 614 /// ```rust,ignore 615 /// # #![expect(clippy::disallowed_names)] 616 /// # use pin_init::*; 617 /// # use core::pin::Pin; 618 /// # #[pin_data] 619 /// # struct Foo { 620 /// # a: usize, 621 /// # b: Bar, 622 /// # } 623 /// # #[pin_data] 624 /// # struct Bar { 625 /// # x: u32, 626 /// # } 627 /// # impl Foo { 628 /// # fn new() -> impl PinInit<Self> { 629 /// # pin_init!(Self { 630 /// # a: 42, 631 /// # b: Bar { 632 /// # x: 64, 633 /// # }, 634 /// # }) 635 /// # } 636 /// # } 637 /// let foo = Box::pin_init(Foo::new()); 638 /// ``` 639 /// 640 /// They can also easily embed it into their own `struct`s: 641 /// 642 /// ```rust,ignore 643 /// # use pin_init::*; 644 /// # use core::pin::Pin; 645 /// # #[pin_data] 646 /// # struct Foo { 647 /// # a: usize, 648 /// # b: Bar, 649 /// # } 650 /// # #[pin_data] 651 /// # struct Bar { 652 /// # x: u32, 653 /// # } 654 /// # impl Foo { 655 /// # fn new() -> impl PinInit<Self> { 656 /// # pin_init!(Self { 657 /// # a: 42, 658 /// # b: Bar { 659 /// # x: 64, 660 /// # }, 661 /// # }) 662 /// # } 663 /// # } 664 /// #[pin_data] 665 /// struct FooContainer { 666 /// #[pin] 667 /// foo1: Foo, 668 /// #[pin] 669 /// foo2: Foo, 670 /// other: u32, 671 /// } 672 /// 673 /// impl FooContainer { 674 /// fn new(other: u32) -> impl PinInit<Self> { 675 /// pin_init!(Self { 676 /// foo1 <- Foo::new(), 677 /// foo2 <- Foo::new(), 678 /// other, 679 /// }) 680 /// } 681 /// } 682 /// ``` 683 /// 684 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 685 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 686 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 687 /// 688 /// # Syntax 689 /// 690 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 691 /// the following modifications is expected: 692 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 693 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 694 /// pointer named `this` inside of the initializer. 695 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the 696 /// struct, this initializes every field with 0 and then runs all initializers specified in the 697 /// body. This can only be done if [`Zeroable`] is implemented for the struct. 698 /// 699 /// For instance: 700 /// 701 /// ```rust,ignore 702 /// # use pin_init::*; 703 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 704 /// #[pin_data] 705 /// #[derive(Zeroable)] 706 /// struct Buf { 707 /// // `ptr` points into `buf`. 708 /// ptr: *mut u8, 709 /// buf: [u8; 64], 710 /// #[pin] 711 /// pin: PhantomPinned, 712 /// } 713 /// 714 /// let init = pin_init!(&this in Buf { 715 /// buf: [0; 64], 716 /// // SAFETY: TODO. 717 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 718 /// pin: PhantomPinned, 719 /// }); 720 /// let init = pin_init!(Buf { 721 /// buf: [1; 64], 722 /// ..Zeroable::zeroed() 723 /// }); 724 /// ``` 725 /// 726 /// [`NonNull<Self>`]: core::ptr::NonNull 727 // For a detailed example of how this macro works, see the module documentation of the hidden 728 // module `macros` inside of `macros.rs`. 729 #[macro_export] 730 macro_rules! pin_init { 731 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 732 $($fields:tt)* 733 }) => { 734 $crate::try_pin_init!($(&$this in)? $t $(::<$($generics),*>)? { 735 $($fields)* 736 }? ::core::convert::Infallible) 737 }; 738 } 739 740 /// Construct an in-place, fallible pinned initializer for `struct`s. 741 /// 742 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`]. 743 /// 744 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop 745 /// initialization and return the error. 746 /// 747 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when 748 /// initialization fails, the memory can be safely deallocated without any further modifications. 749 /// 750 /// The syntax is identical to [`pin_init!`] with the following exception: you must append `? $type` 751 /// after the `struct` initializer to specify the error type you want to use. 752 /// 753 /// # Examples 754 /// 755 /// ```rust,ignore 756 /// # #![feature(allocator_api)] 757 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 758 /// use pin_init::{pin_data, try_pin_init, PinInit, InPlaceInit, zeroed}; 759 /// 760 /// #[pin_data] 761 /// struct BigBuf { 762 /// big: Box<[u8; 1024 * 1024 * 1024]>, 763 /// small: [u8; 1024 * 1024], 764 /// ptr: *mut u8, 765 /// } 766 /// 767 /// impl BigBuf { 768 /// fn new() -> impl PinInit<Self, Error> { 769 /// try_pin_init!(Self { 770 /// big: Box::init(zeroed())?, 771 /// small: [0; 1024 * 1024], 772 /// ptr: core::ptr::null_mut(), 773 /// }? Error) 774 /// } 775 /// } 776 /// # let _ = Box::pin_init(BigBuf::new()); 777 /// ``` 778 // For a detailed example of how this macro works, see the module documentation of the hidden 779 // module `macros` inside of `macros.rs`. 780 #[macro_export] 781 macro_rules! try_pin_init { 782 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 783 $($fields:tt)* 784 }? $err:ty) => { 785 $crate::__init_internal!( 786 @this($($this)?), 787 @typ($t $(::<$($generics),*>)? ), 788 @fields($($fields)*), 789 @error($err), 790 @data(PinData, use_data), 791 @has_data(HasPinData, __pin_data), 792 @construct_closure(pin_init_from_closure), 793 @munch_fields($($fields)*), 794 ) 795 } 796 } 797 798 /// Construct an in-place initializer for `struct`s. 799 /// 800 /// This macro defaults the error to [`Infallible`]. If you need a different error, then use 801 /// [`try_init!`]. 802 /// 803 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 804 /// - `unsafe` code must guarantee either full initialization or return an error and allow 805 /// deallocation of the memory. 806 /// - the fields are initialized in the order given in the initializer. 807 /// - no references to fields are allowed to be created inside of the initializer. 808 /// 809 /// This initializer is for initializing data in-place that might later be moved. If you want to 810 /// pin-initialize, use [`pin_init!`]. 811 /// 812 /// # Examples 813 /// 814 /// ```rust 815 /// # #![feature(allocator_api)] 816 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 817 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 818 /// # use pin_init::InPlaceInit; 819 /// use pin_init::{init, Init, zeroed}; 820 /// 821 /// struct BigBuf { 822 /// small: [u8; 1024 * 1024], 823 /// } 824 /// 825 /// impl BigBuf { 826 /// fn new() -> impl Init<Self> { 827 /// init!(Self { 828 /// small <- zeroed(), 829 /// }) 830 /// } 831 /// } 832 /// # let _ = Box::init(BigBuf::new()); 833 /// ``` 834 // For a detailed example of how this macro works, see the module documentation of the hidden 835 // module `macros` inside of `macros.rs`. 836 #[macro_export] 837 macro_rules! init { 838 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 839 $($fields:tt)* 840 }) => { 841 $crate::try_init!($(&$this in)? $t $(::<$($generics),*>)? { 842 $($fields)* 843 }? ::core::convert::Infallible) 844 } 845 } 846 847 /// Construct an in-place fallible initializer for `struct`s. 848 /// 849 /// If the initialization can complete without error (or [`Infallible`]), then use 850 /// [`init!`]. 851 /// 852 /// The syntax is identical to [`try_pin_init!`]. You need to specify a custom error 853 /// via `? $type` after the `struct` initializer. 854 /// The safety caveats from [`try_pin_init!`] also apply: 855 /// - `unsafe` code must guarantee either full initialization or return an error and allow 856 /// deallocation of the memory. 857 /// - the fields are initialized in the order given in the initializer. 858 /// - no references to fields are allowed to be created inside of the initializer. 859 /// 860 /// # Examples 861 /// 862 /// ```rust,ignore 863 /// # #![feature(allocator_api)] 864 /// # use core::alloc::AllocError; 865 /// # use pin_init::InPlaceInit; 866 /// use pin_init::{try_init, Init, zeroed}; 867 /// 868 /// struct BigBuf { 869 /// big: Box<[u8; 1024 * 1024 * 1024]>, 870 /// small: [u8; 1024 * 1024], 871 /// } 872 /// 873 /// impl BigBuf { 874 /// fn new() -> impl Init<Self, AllocError> { 875 /// try_init!(Self { 876 /// big: Box::init(zeroed())?, 877 /// small: [0; 1024 * 1024], 878 /// }? AllocError) 879 /// } 880 /// } 881 /// # let _ = Box::init(BigBuf::new()); 882 /// ``` 883 // For a detailed example of how this macro works, see the module documentation of the hidden 884 // module `macros` inside of `macros.rs`. 885 #[macro_export] 886 macro_rules! try_init { 887 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 888 $($fields:tt)* 889 }? $err:ty) => { 890 $crate::__init_internal!( 891 @this($($this)?), 892 @typ($t $(::<$($generics),*>)?), 893 @fields($($fields)*), 894 @error($err), 895 @data(InitData, /*no use_data*/), 896 @has_data(HasInitData, __init_data), 897 @construct_closure(init_from_closure), 898 @munch_fields($($fields)*), 899 ) 900 } 901 } 902 903 /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is 904 /// structurally pinned. 905 /// 906 /// # Example 907 /// 908 /// This will succeed: 909 /// ```ignore 910 /// use pin_init::{pin_data, assert_pinned}; 911 /// 912 /// #[pin_data] 913 /// struct MyStruct { 914 /// #[pin] 915 /// some_field: u64, 916 /// } 917 /// 918 /// assert_pinned!(MyStruct, some_field, u64); 919 /// ``` 920 /// 921 /// This will fail: 922 /// ```compile_fail,ignore 923 /// use pin_init::{pin_data, assert_pinned}; 924 /// 925 /// #[pin_data] 926 /// struct MyStruct { 927 /// some_field: u64, 928 /// } 929 /// 930 /// assert_pinned!(MyStruct, some_field, u64); 931 /// ``` 932 /// 933 /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To 934 /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can 935 /// only be used when the macro is invoked from a function body. 936 /// ```ignore 937 /// # use core::pin::Pin; 938 /// use pin_init::{pin_data, assert_pinned}; 939 /// 940 /// #[pin_data] 941 /// struct Foo<T> { 942 /// #[pin] 943 /// elem: T, 944 /// } 945 /// 946 /// impl<T> Foo<T> { 947 /// fn project(self: Pin<&mut Self>) -> Pin<&mut T> { 948 /// assert_pinned!(Foo<T>, elem, T, inline); 949 /// 950 /// // SAFETY: The field is structurally pinned. 951 /// unsafe { self.map_unchecked_mut(|me| &mut me.elem) } 952 /// } 953 /// } 954 /// ``` 955 #[macro_export] 956 macro_rules! assert_pinned { 957 ($ty:ty, $field:ident, $field_ty:ty, inline) => { 958 let _ = move |ptr: *mut $field_ty| { 959 // SAFETY: This code is unreachable. 960 let data = unsafe { <$ty as $crate::__internal::HasPinData>::__pin_data() }; 961 let init = $crate::__internal::AlwaysFail::<$field_ty>::new(); 962 // SAFETY: This code is unreachable. 963 unsafe { data.$field(ptr, init) }.ok(); 964 }; 965 }; 966 967 ($ty:ty, $field:ident, $field_ty:ty) => { 968 const _: () = { 969 $crate::assert_pinned!($ty, $field, $field_ty, inline); 970 }; 971 }; 972 } 973 974 /// A pin-initializer for the type `T`. 975 /// 976 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 977 /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). 978 /// 979 /// Also see the [module description](self). 980 /// 981 /// # Safety 982 /// 983 /// When implementing this trait you will need to take great care. Also there are probably very few 984 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 985 /// 986 /// The [`PinInit::__pinned_init`] function: 987 /// - returns `Ok(())` if it initialized every field of `slot`, 988 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 989 /// - `slot` can be deallocated without UB occurring, 990 /// - `slot` does not need to be dropped, 991 /// - `slot` is not partially initialized. 992 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 993 /// 994 #[cfg_attr( 995 kernel, 996 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 997 )] 998 #[cfg_attr( 999 kernel, 1000 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 1001 )] 1002 #[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 1003 #[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 1004 #[must_use = "An initializer must be used in order to create its value."] 1005 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 1006 /// Initializes `slot`. 1007 /// 1008 /// # Safety 1009 /// 1010 /// - `slot` is a valid pointer to uninitialized memory. 1011 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 1012 /// deallocate. 1013 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 1014 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 1015 1016 /// First initializes the value using `self` then calls the function `f` with the initialized 1017 /// value. 1018 /// 1019 /// If `f` returns an error the value is dropped and the initializer will forward the error. 1020 /// 1021 /// # Examples 1022 /// 1023 /// ```rust,ignore 1024 /// # #![feature(allocator_api)] 1025 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 1026 /// # use pin_init::*; 1027 /// let mtx_init = CMutex::new(42); 1028 /// // Make the initializer print the value. 1029 /// let mtx_init = mtx_init.pin_chain(|mtx| { 1030 /// println!("{:?}", mtx.get_data_mut()); 1031 /// Ok(()) 1032 /// }); 1033 /// ``` 1034 fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E> 1035 where 1036 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 1037 { 1038 ChainPinInit(self, f, PhantomData) 1039 } 1040 } 1041 1042 /// An initializer returned by [`PinInit::pin_chain`]. 1043 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>); 1044 1045 // SAFETY: The `__pinned_init` function is implemented such that it 1046 // - returns `Ok(())` on successful initialization, 1047 // - returns `Err(err)` on error and in this case `slot` will be dropped. 1048 // - considers `slot` pinned. 1049 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E> 1050 where 1051 I: PinInit<T, E>, 1052 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 1053 { 1054 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1055 // SAFETY: All requirements fulfilled since this function is `__pinned_init`. 1056 unsafe { self.0.__pinned_init(slot)? }; 1057 // SAFETY: The above call initialized `slot` and we still have unique access. 1058 let val = unsafe { &mut *slot }; 1059 // SAFETY: `slot` is considered pinned. 1060 let val = unsafe { Pin::new_unchecked(val) }; 1061 // SAFETY: `slot` was initialized above. 1062 (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) }) 1063 } 1064 } 1065 1066 /// An initializer for `T`. 1067 /// 1068 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 1069 /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). Because 1070 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 1071 /// 1072 /// Also see the [module description](self). 1073 /// 1074 /// # Safety 1075 /// 1076 /// When implementing this trait you will need to take great care. Also there are probably very few 1077 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 1078 /// 1079 /// The [`Init::__init`] function: 1080 /// - returns `Ok(())` if it initialized every field of `slot`, 1081 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1082 /// - `slot` can be deallocated without UB occurring, 1083 /// - `slot` does not need to be dropped, 1084 /// - `slot` is not partially initialized. 1085 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1086 /// 1087 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 1088 /// code as `__init`. 1089 /// 1090 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 1091 /// move the pointee after initialization. 1092 /// 1093 #[cfg_attr( 1094 kernel, 1095 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 1096 )] 1097 #[cfg_attr( 1098 kernel, 1099 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 1100 )] 1101 #[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 1102 #[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 1103 #[must_use = "An initializer must be used in order to create its value."] 1104 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> { 1105 /// Initializes `slot`. 1106 /// 1107 /// # Safety 1108 /// 1109 /// - `slot` is a valid pointer to uninitialized memory. 1110 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 1111 /// deallocate. 1112 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 1113 1114 /// First initializes the value using `self` then calls the function `f` with the initialized 1115 /// value. 1116 /// 1117 /// If `f` returns an error the value is dropped and the initializer will forward the error. 1118 /// 1119 /// # Examples 1120 /// 1121 /// ```rust,ignore 1122 /// # #![expect(clippy::disallowed_names)] 1123 /// use pin_init::{init, zeroed, Init}; 1124 /// 1125 /// struct Foo { 1126 /// buf: [u8; 1_000_000], 1127 /// } 1128 /// 1129 /// impl Foo { 1130 /// fn setup(&mut self) { 1131 /// println!("Setting up foo"); 1132 /// } 1133 /// } 1134 /// 1135 /// let foo = init!(Foo { 1136 /// buf <- zeroed() 1137 /// }).chain(|foo| { 1138 /// foo.setup(); 1139 /// Ok(()) 1140 /// }); 1141 /// ``` 1142 fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E> 1143 where 1144 F: FnOnce(&mut T) -> Result<(), E>, 1145 { 1146 ChainInit(self, f, PhantomData) 1147 } 1148 } 1149 1150 /// An initializer returned by [`Init::chain`]. 1151 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>); 1152 1153 // SAFETY: The `__init` function is implemented such that it 1154 // - returns `Ok(())` on successful initialization, 1155 // - returns `Err(err)` on error and in this case `slot` will be dropped. 1156 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E> 1157 where 1158 I: Init<T, E>, 1159 F: FnOnce(&mut T) -> Result<(), E>, 1160 { 1161 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1162 // SAFETY: All requirements fulfilled since this function is `__init`. 1163 unsafe { self.0.__pinned_init(slot)? }; 1164 // SAFETY: The above call initialized `slot` and we still have unique access. 1165 (self.1)(unsafe { &mut *slot }).inspect_err(|_| 1166 // SAFETY: `slot` was initialized above. 1167 unsafe { core::ptr::drop_in_place(slot) }) 1168 } 1169 } 1170 1171 // SAFETY: `__pinned_init` behaves exactly the same as `__init`. 1172 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E> 1173 where 1174 I: Init<T, E>, 1175 F: FnOnce(&mut T) -> Result<(), E>, 1176 { 1177 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1178 // SAFETY: `__init` has less strict requirements compared to `__pinned_init`. 1179 unsafe { self.__init(slot) } 1180 } 1181 } 1182 1183 /// Creates a new [`PinInit<T, E>`] from the given closure. 1184 /// 1185 /// # Safety 1186 /// 1187 /// The closure: 1188 /// - returns `Ok(())` if it initialized every field of `slot`, 1189 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1190 /// - `slot` can be deallocated without UB occurring, 1191 /// - `slot` does not need to be dropped, 1192 /// - `slot` is not partially initialized. 1193 /// - may assume that the `slot` does not move if `T: !Unpin`, 1194 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1195 #[inline] 1196 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 1197 f: impl FnOnce(*mut T) -> Result<(), E>, 1198 ) -> impl PinInit<T, E> { 1199 __internal::InitClosure(f, PhantomData) 1200 } 1201 1202 /// Creates a new [`Init<T, E>`] from the given closure. 1203 /// 1204 /// # Safety 1205 /// 1206 /// The closure: 1207 /// - returns `Ok(())` if it initialized every field of `slot`, 1208 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1209 /// - `slot` can be deallocated without UB occurring, 1210 /// - `slot` does not need to be dropped, 1211 /// - `slot` is not partially initialized. 1212 /// - the `slot` may move after initialization. 1213 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1214 #[inline] 1215 pub const unsafe fn init_from_closure<T: ?Sized, E>( 1216 f: impl FnOnce(*mut T) -> Result<(), E>, 1217 ) -> impl Init<T, E> { 1218 __internal::InitClosure(f, PhantomData) 1219 } 1220 1221 /// An initializer that leaves the memory uninitialized. 1222 /// 1223 /// The initializer is a no-op. The `slot` memory is not changed. 1224 #[inline] 1225 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 1226 // SAFETY: The memory is allowed to be uninitialized. 1227 unsafe { init_from_closure(|_| Ok(())) } 1228 } 1229 1230 /// Initializes an array by initializing each element via the provided initializer. 1231 /// 1232 /// # Examples 1233 /// 1234 /// ```rust,ignore 1235 /// # use pin_init::*; 1236 /// use pin_init::init_array_from_fn; 1237 /// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap(); 1238 /// assert_eq!(array.len(), 1_000); 1239 /// ``` 1240 pub fn init_array_from_fn<I, const N: usize, T, E>( 1241 mut make_init: impl FnMut(usize) -> I, 1242 ) -> impl Init<[T; N], E> 1243 where 1244 I: Init<T, E>, 1245 { 1246 let init = move |slot: *mut [T; N]| { 1247 let slot = slot.cast::<T>(); 1248 for i in 0..N { 1249 let init = make_init(i); 1250 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1251 let ptr = unsafe { slot.add(i) }; 1252 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1253 // requirements. 1254 if let Err(e) = unsafe { init.__init(ptr) } { 1255 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return 1256 // `Err` below, `slot` will be considered uninitialized memory. 1257 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1258 return Err(e); 1259 } 1260 } 1261 Ok(()) 1262 }; 1263 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1264 // any initialized elements and returns `Err`. 1265 unsafe { init_from_closure(init) } 1266 } 1267 1268 /// Initializes an array by initializing each element via the provided initializer. 1269 /// 1270 /// # Examples 1271 /// 1272 /// ```rust,ignore 1273 /// # #![feature(allocator_api)] 1274 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 1275 /// # use pin_init::*; 1276 /// # use core::pin::Pin; 1277 /// use pin_init::pin_init_array_from_fn; 1278 /// use std::sync::Arc; 1279 /// let array: Pin<Arc<[CMutex<usize>; 1_000]>> = 1280 /// Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap(); 1281 /// assert_eq!(array.len(), 1_000); 1282 /// ``` 1283 pub fn pin_init_array_from_fn<I, const N: usize, T, E>( 1284 mut make_init: impl FnMut(usize) -> I, 1285 ) -> impl PinInit<[T; N], E> 1286 where 1287 I: PinInit<T, E>, 1288 { 1289 let init = move |slot: *mut [T; N]| { 1290 let slot = slot.cast::<T>(); 1291 for i in 0..N { 1292 let init = make_init(i); 1293 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1294 let ptr = unsafe { slot.add(i) }; 1295 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1296 // requirements. 1297 if let Err(e) = unsafe { init.__pinned_init(ptr) } { 1298 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return 1299 // `Err` below, `slot` will be considered uninitialized memory. 1300 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1301 return Err(e); 1302 } 1303 } 1304 Ok(()) 1305 }; 1306 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1307 // any initialized elements and returns `Err`. 1308 unsafe { pin_init_from_closure(init) } 1309 } 1310 1311 // SAFETY: Every type can be initialized by-value. 1312 unsafe impl<T, E> Init<T, E> for T { 1313 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1314 // SAFETY: TODO. 1315 unsafe { slot.write(self) }; 1316 Ok(()) 1317 } 1318 } 1319 1320 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`. 1321 unsafe impl<T, E> PinInit<T, E> for T { 1322 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1323 // SAFETY: TODO. 1324 unsafe { self.__init(slot) } 1325 } 1326 } 1327 1328 /// Smart pointer containing uninitialized memory and that can write a value. 1329 pub trait InPlaceWrite<T> { 1330 /// The type `Self` turns into when the contents are initialized. 1331 type Initialized; 1332 1333 /// Use the given initializer to write a value into `self`. 1334 /// 1335 /// Does not drop the current value and considers it as uninitialized memory. 1336 fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>; 1337 1338 /// Use the given pin-initializer to write a value into `self`. 1339 /// 1340 /// Does not drop the current value and considers it as uninitialized memory. 1341 fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>; 1342 } 1343 1344 /// Trait facilitating pinned destruction. 1345 /// 1346 /// Use [`pinned_drop`] to implement this trait safely: 1347 /// 1348 /// ```rust,ignore 1349 /// # #![feature(allocator_api)] 1350 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 1351 /// # use pin_init::*; 1352 /// use core::pin::Pin; 1353 /// #[pin_data(PinnedDrop)] 1354 /// struct Foo { 1355 /// #[pin] 1356 /// mtx: CMutex<usize>, 1357 /// } 1358 /// 1359 /// #[pinned_drop] 1360 /// impl PinnedDrop for Foo { 1361 /// fn drop(self: Pin<&mut Self>) { 1362 /// println!("Foo is being dropped!"); 1363 /// } 1364 /// } 1365 /// ``` 1366 /// 1367 /// # Safety 1368 /// 1369 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 1370 pub unsafe trait PinnedDrop: __internal::HasPinData { 1371 /// Executes the pinned destructor of this type. 1372 /// 1373 /// While this function is marked safe, it is actually unsafe to call it manually. For this 1374 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 1375 /// and thus prevents this function from being called where it should not. 1376 /// 1377 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1378 /// automatically. 1379 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1380 } 1381 1382 /// Marker trait for types that can be initialized by writing just zeroes. 1383 /// 1384 /// # Safety 1385 /// 1386 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1387 /// this is not UB: 1388 /// 1389 /// ```rust,ignore 1390 /// let val: Self = unsafe { core::mem::zeroed() }; 1391 /// ``` 1392 pub unsafe trait Zeroable {} 1393 1394 /// Marker trait for types that allow `Option<Self>` to be set to all zeroes in order to write 1395 /// `None` to that location. 1396 /// 1397 /// # Safety 1398 /// 1399 /// The implementer needs to ensure that `unsafe impl Zeroable for Option<Self> {}` is sound. 1400 pub unsafe trait ZeroableOption {} 1401 1402 // SAFETY: by the safety requirement of `ZeroableOption`, this is valid. 1403 unsafe impl<T: ZeroableOption> Zeroable for Option<T> {} 1404 1405 /// Create a new zeroed T. 1406 /// 1407 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1408 #[inline] 1409 pub fn zeroed<T: Zeroable>() -> impl Init<T> { 1410 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1411 // and because we write all zeroes, the memory is initialized. 1412 unsafe { 1413 init_from_closure(|slot: *mut T| { 1414 slot.write_bytes(0, 1); 1415 Ok(()) 1416 }) 1417 } 1418 } 1419 1420 macro_rules! impl_zeroable { 1421 ($($({$($generics:tt)*})? $t:ty, )*) => { 1422 // SAFETY: Safety comments written in the macro invocation. 1423 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1424 }; 1425 } 1426 1427 impl_zeroable! { 1428 // SAFETY: All primitives that are allowed to be zero. 1429 bool, 1430 char, 1431 u8, u16, u32, u64, u128, usize, 1432 i8, i16, i32, i64, i128, isize, 1433 f32, f64, 1434 1435 // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list; 1436 // creating an instance of an uninhabited type is immediate undefined behavior. For more on 1437 // uninhabited/empty types, consult The Rustonomicon: 1438 // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference 1439 // also has information on undefined behavior: 1440 // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>. 1441 // 1442 // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists. 1443 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (), 1444 1445 // SAFETY: Type is allowed to take any value, including all zeros. 1446 {<T>} MaybeUninit<T>, 1447 1448 // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`. 1449 {<T: ?Sized + Zeroable>} UnsafeCell<T>, 1450 1451 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1452 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1453 Option<NonZeroU128>, Option<NonZeroUsize>, 1454 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1455 Option<NonZeroI128>, Option<NonZeroIsize>, 1456 1457 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1458 // 1459 // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant. 1460 {<T: ?Sized>} Option<NonNull<T>>, 1461 1462 // SAFETY: `null` pointer is valid. 1463 // 1464 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1465 // null. 1466 // 1467 // When `Pointee` gets stabilized, we could use 1468 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1469 {<T>} *mut T, {<T>} *const T, 1470 1471 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1472 // zero. 1473 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1474 1475 // SAFETY: `T` is `Zeroable`. 1476 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1477 } 1478 1479 macro_rules! impl_tuple_zeroable { 1480 ($(,)?) => {}; 1481 ($first:ident, $($t:ident),* $(,)?) => { 1482 // SAFETY: All elements are zeroable and padding can be zero. 1483 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1484 impl_tuple_zeroable!($($t),* ,); 1485 } 1486 } 1487 1488 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1489