1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! Library to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! [Pinning][pinning] is Rust's way of ensuring data does not move. 6 //! 7 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 8 //! overflow. 9 //! 10 //! This library's main use-case is in [Rust-for-Linux]. Although this version can be used 11 //! standalone. 12 //! 13 //! There are cases when you want to in-place initialize a struct. For example when it is very big 14 //! and moving it from the stack is not an option, because it is bigger than the stack itself. 15 //! Another reason would be that you need the address of the object to initialize it. This stands 16 //! in direct conflict with Rust's normal process of first initializing an object and then moving 17 //! it into it's final memory location. For more information, see 18 //! <https://rust-for-linux.com/the-safe-pinned-initialization-problem>. 19 //! 20 //! This library allows you to do in-place initialization safely. 21 //! 22 //! ## Nightly Needed for `alloc` feature 23 //! 24 //! This library requires the [`allocator_api` unstable feature] when the `alloc` feature is 25 //! enabled and thus this feature can only be used with a nightly compiler. When enabling the 26 //! `alloc` feature, the user will be required to activate `allocator_api` as well. 27 //! 28 //! [`allocator_api` unstable feature]: https://doc.rust-lang.org/nightly/unstable-book/library-features/allocator-api.html 29 //! 30 //! The feature is enabled by default, thus by default `pin-init` will require a nightly compiler. 31 //! However, using the crate on stable compilers is possible by disabling `alloc`. In practice this 32 //! will require the `std` feature, because stable compilers have neither `Box` nor `Arc` in no-std 33 //! mode. 34 //! 35 //! ## Nightly needed for `unsafe-pinned` feature 36 //! 37 //! This feature enables the `Wrapper` implementation on the unstable `core::pin::UnsafePinned` type. 38 //! This requires the [`unsafe_pinned` unstable feature](https://github.com/rust-lang/rust/issues/125735) 39 //! and therefore a nightly compiler. Note that this feature is not enabled by default. 40 //! 41 //! # Overview 42 //! 43 //! To initialize a `struct` with an in-place constructor you will need two things: 44 //! - an in-place constructor, 45 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 46 //! [`Box<T>`] or any other smart pointer that supports this library). 47 //! 48 //! To get an in-place constructor there are generally three options: 49 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 50 //! - a custom function/macro returning an in-place constructor provided by someone else, 51 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 52 //! 53 //! Aside from pinned initialization, this library also supports in-place construction without 54 //! pinning, the macros/types/functions are generally named like the pinned variants without the 55 //! `pin_` prefix. 56 //! 57 //! # Examples 58 //! 59 //! Throughout the examples we will often make use of the `CMutex` type which can be found in 60 //! `../examples/mutex.rs`. It is essentially a userland rebuild of the `struct mutex` type from 61 //! the Linux kernel. It also uses a wait list and a basic spinlock. Importantly the wait list 62 //! requires it to be pinned to be locked and thus is a prime candidate for using this library. 63 //! 64 //! ## Using the [`pin_init!`] macro 65 //! 66 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 67 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 68 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 69 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 70 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 71 //! 72 //! ```rust 73 //! # #![expect(clippy::disallowed_names)] 74 //! # #![feature(allocator_api)] 75 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 76 //! # use core::pin::Pin; 77 //! use pin_init::{pin_data, pin_init, InPlaceInit}; 78 //! 79 //! #[pin_data] 80 //! struct Foo { 81 //! #[pin] 82 //! a: CMutex<usize>, 83 //! b: u32, 84 //! } 85 //! 86 //! let foo = pin_init!(Foo { 87 //! a <- CMutex::new(42), 88 //! b: 24, 89 //! }); 90 //! # let _ = Box::pin_init(foo); 91 //! ``` 92 //! 93 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 94 //! (or just the stack) to actually initialize a `Foo`: 95 //! 96 //! ```rust 97 //! # #![expect(clippy::disallowed_names)] 98 //! # #![feature(allocator_api)] 99 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 100 //! # use core::{alloc::AllocError, pin::Pin}; 101 //! # use pin_init::*; 102 //! # 103 //! # #[pin_data] 104 //! # struct Foo { 105 //! # #[pin] 106 //! # a: CMutex<usize>, 107 //! # b: u32, 108 //! # } 109 //! # 110 //! # let foo = pin_init!(Foo { 111 //! # a <- CMutex::new(42), 112 //! # b: 24, 113 //! # }); 114 //! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo); 115 //! ``` 116 //! 117 //! For more information see the [`pin_init!`] macro. 118 //! 119 //! ## Using a custom function/macro that returns an initializer 120 //! 121 //! Many types that use this library supply a function/macro that returns an initializer, because 122 //! the above method only works for types where you can access the fields. 123 //! 124 //! ```rust 125 //! # #![feature(allocator_api)] 126 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 127 //! # use pin_init::*; 128 //! # use std::sync::Arc; 129 //! # use core::pin::Pin; 130 //! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42)); 131 //! ``` 132 //! 133 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 134 //! 135 //! ```rust 136 //! # #![feature(allocator_api)] 137 //! # use pin_init::*; 138 //! # #[path = "../examples/error.rs"] mod error; use error::Error; 139 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 140 //! #[pin_data] 141 //! struct DriverData { 142 //! #[pin] 143 //! status: CMutex<i32>, 144 //! buffer: Box<[u8; 1_000_000]>, 145 //! } 146 //! 147 //! impl DriverData { 148 //! fn new() -> impl PinInit<Self, Error> { 149 //! pin_init!(Self { 150 //! status <- CMutex::new(0), 151 //! buffer: Box::init(pin_init::init_zeroed())?, 152 //! }? Error) 153 //! } 154 //! } 155 //! ``` 156 //! 157 //! ## Manual creation of an initializer 158 //! 159 //! Often when working with primitives the previous approaches are not sufficient. That is where 160 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 161 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 162 //! actually does the initialization in the correct way. Here are the things to look out for 163 //! (we are calling the parameter to the closure `slot`): 164 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 165 //! `slot` now contains a valid bit pattern for the type `T`, 166 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 167 //! you need to take care to clean up anything if your initialization fails mid-way, 168 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 169 //! `slot` gets called. 170 //! 171 //! ```rust 172 //! # #![feature(extern_types)] 173 //! use pin_init::{pin_data, pinned_drop, PinInit, PinnedDrop, pin_init_from_closure}; 174 //! use core::{ 175 //! ptr::addr_of_mut, 176 //! marker::PhantomPinned, 177 //! cell::UnsafeCell, 178 //! pin::Pin, 179 //! mem::MaybeUninit, 180 //! }; 181 //! mod bindings { 182 //! #[repr(C)] 183 //! pub struct foo { 184 //! /* fields from C ... */ 185 //! } 186 //! extern "C" { 187 //! pub fn init_foo(ptr: *mut foo); 188 //! pub fn destroy_foo(ptr: *mut foo); 189 //! #[must_use = "you must check the error return code"] 190 //! pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32; 191 //! } 192 //! } 193 //! 194 //! /// # Invariants 195 //! /// 196 //! /// `foo` is always initialized 197 //! #[pin_data(PinnedDrop)] 198 //! pub struct RawFoo { 199 //! #[pin] 200 //! _p: PhantomPinned, 201 //! #[pin] 202 //! foo: UnsafeCell<MaybeUninit<bindings::foo>>, 203 //! } 204 //! 205 //! impl RawFoo { 206 //! pub fn new(flags: u32) -> impl PinInit<Self, i32> { 207 //! // SAFETY: 208 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 209 //! // enabled `foo`, 210 //! // - when it returns `Err(e)`, then it has cleaned up before 211 //! unsafe { 212 //! pin_init_from_closure(move |slot: *mut Self| { 213 //! // `slot` contains uninit memory, avoid creating a reference. 214 //! let foo = addr_of_mut!((*slot).foo); 215 //! let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>(); 216 //! 217 //! // Initialize the `foo` 218 //! bindings::init_foo(foo); 219 //! 220 //! // Try to enable it. 221 //! let err = bindings::enable_foo(foo, flags); 222 //! if err != 0 { 223 //! // Enabling has failed, first clean up the foo and then return the error. 224 //! bindings::destroy_foo(foo); 225 //! Err(err) 226 //! } else { 227 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 228 //! Ok(()) 229 //! } 230 //! }) 231 //! } 232 //! } 233 //! } 234 //! 235 //! #[pinned_drop] 236 //! impl PinnedDrop for RawFoo { 237 //! fn drop(self: Pin<&mut Self>) { 238 //! // SAFETY: Since `foo` is initialized, destroying is safe. 239 //! unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) }; 240 //! } 241 //! } 242 //! ``` 243 //! 244 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 245 //! the `kernel` crate. The [`sync`] module is a good starting point. 246 //! 247 //! [`sync`]: https://rust.docs.kernel.org/kernel/sync/index.html 248 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 249 //! [structurally pinned fields]: 250 //! https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning 251 //! [stack]: crate::stack_pin_init 252 #![cfg_attr( 253 kernel, 254 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 255 )] 256 #![cfg_attr( 257 kernel, 258 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 259 )] 260 #![cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 261 #![cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 262 //! [`impl PinInit<Foo>`]: crate::PinInit 263 //! [`impl PinInit<T, E>`]: crate::PinInit 264 //! [`impl Init<T, E>`]: crate::Init 265 //! [Rust-for-Linux]: https://rust-for-linux.com/ 266 267 #![cfg_attr(not(RUSTC_LINT_REASONS_IS_STABLE), feature(lint_reasons))] 268 #![cfg_attr( 269 all( 270 any(feature = "alloc", feature = "std"), 271 not(RUSTC_NEW_UNINIT_IS_STABLE) 272 ), 273 feature(new_uninit) 274 )] 275 #![forbid(missing_docs, unsafe_op_in_unsafe_fn)] 276 #![cfg_attr(not(feature = "std"), no_std)] 277 #![cfg_attr(feature = "alloc", feature(allocator_api))] 278 #![cfg_attr( 279 all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED), 280 feature(unsafe_pinned) 281 )] 282 283 use core::{ 284 cell::UnsafeCell, 285 convert::Infallible, 286 marker::PhantomData, 287 mem::MaybeUninit, 288 num::*, 289 pin::Pin, 290 ptr::{self, NonNull}, 291 }; 292 293 #[doc(hidden)] 294 pub mod __internal; 295 #[doc(hidden)] 296 pub mod macros; 297 298 #[cfg(any(feature = "std", feature = "alloc"))] 299 mod alloc; 300 #[cfg(any(feature = "std", feature = "alloc"))] 301 pub use alloc::InPlaceInit; 302 303 /// Used to specify the pinning information of the fields of a struct. 304 /// 305 /// This is somewhat similar in purpose as 306 /// [pin-project-lite](https://crates.io/crates/pin-project-lite). 307 /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each 308 /// field you want to structurally pin. 309 /// 310 /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`, 311 /// then `#[pin]` directs the type of initializer that is required. 312 /// 313 /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this 314 /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with 315 /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care. 316 /// 317 /// # Examples 318 /// 319 /// ``` 320 /// # #![feature(allocator_api)] 321 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 322 /// use pin_init::pin_data; 323 /// 324 /// enum Command { 325 /// /* ... */ 326 /// } 327 /// 328 /// #[pin_data] 329 /// struct DriverData { 330 /// #[pin] 331 /// queue: CMutex<Vec<Command>>, 332 /// buf: Box<[u8; 1024 * 1024]>, 333 /// } 334 /// ``` 335 /// 336 /// ``` 337 /// # #![feature(allocator_api)] 338 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 339 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} } 340 /// use core::pin::Pin; 341 /// use pin_init::{pin_data, pinned_drop, PinnedDrop}; 342 /// 343 /// enum Command { 344 /// /* ... */ 345 /// } 346 /// 347 /// #[pin_data(PinnedDrop)] 348 /// struct DriverData { 349 /// #[pin] 350 /// queue: CMutex<Vec<Command>>, 351 /// buf: Box<[u8; 1024 * 1024]>, 352 /// raw_info: *mut bindings::info, 353 /// } 354 /// 355 /// #[pinned_drop] 356 /// impl PinnedDrop for DriverData { 357 /// fn drop(self: Pin<&mut Self>) { 358 /// unsafe { bindings::destroy_info(self.raw_info) }; 359 /// } 360 /// } 361 /// ``` 362 pub use ::pin_init_internal::pin_data; 363 364 /// Used to implement `PinnedDrop` safely. 365 /// 366 /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`. 367 /// 368 /// # Examples 369 /// 370 /// ``` 371 /// # #![feature(allocator_api)] 372 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 373 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} } 374 /// use core::pin::Pin; 375 /// use pin_init::{pin_data, pinned_drop, PinnedDrop}; 376 /// 377 /// enum Command { 378 /// /* ... */ 379 /// } 380 /// 381 /// #[pin_data(PinnedDrop)] 382 /// struct DriverData { 383 /// #[pin] 384 /// queue: CMutex<Vec<Command>>, 385 /// buf: Box<[u8; 1024 * 1024]>, 386 /// raw_info: *mut bindings::info, 387 /// } 388 /// 389 /// #[pinned_drop] 390 /// impl PinnedDrop for DriverData { 391 /// fn drop(self: Pin<&mut Self>) { 392 /// unsafe { bindings::destroy_info(self.raw_info) }; 393 /// } 394 /// } 395 /// ``` 396 pub use ::pin_init_internal::pinned_drop; 397 398 /// Derives the [`Zeroable`] trait for the given `struct` or `union`. 399 /// 400 /// This can only be used for `struct`s/`union`s where every field implements the [`Zeroable`] 401 /// trait. 402 /// 403 /// # Examples 404 /// 405 /// ``` 406 /// use pin_init::Zeroable; 407 /// 408 /// #[derive(Zeroable)] 409 /// pub struct DriverData { 410 /// pub(crate) id: i64, 411 /// buf_ptr: *mut u8, 412 /// len: usize, 413 /// } 414 /// ``` 415 /// 416 /// ``` 417 /// use pin_init::Zeroable; 418 /// 419 /// #[derive(Zeroable)] 420 /// pub union SignCast { 421 /// signed: i64, 422 /// unsigned: u64, 423 /// } 424 /// ``` 425 pub use ::pin_init_internal::Zeroable; 426 427 /// Derives the [`Zeroable`] trait for the given `struct` or `union` if all fields implement 428 /// [`Zeroable`]. 429 /// 430 /// Contrary to the derive macro named [`macro@Zeroable`], this one silently fails when a field 431 /// doesn't implement [`Zeroable`]. 432 /// 433 /// # Examples 434 /// 435 /// ``` 436 /// use pin_init::MaybeZeroable; 437 /// 438 /// // implmements `Zeroable` 439 /// #[derive(MaybeZeroable)] 440 /// pub struct DriverData { 441 /// pub(crate) id: i64, 442 /// buf_ptr: *mut u8, 443 /// len: usize, 444 /// } 445 /// 446 /// // does not implmement `Zeroable` 447 /// #[derive(MaybeZeroable)] 448 /// pub struct DriverData2 { 449 /// pub(crate) id: i64, 450 /// buf_ptr: *mut u8, 451 /// len: usize, 452 /// // this field doesn't implement `Zeroable` 453 /// other_data: &'static i32, 454 /// } 455 /// ``` 456 pub use ::pin_init_internal::MaybeZeroable; 457 458 /// Initialize and pin a type directly on the stack. 459 /// 460 /// # Examples 461 /// 462 /// ```rust 463 /// # #![expect(clippy::disallowed_names)] 464 /// # #![feature(allocator_api)] 465 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 466 /// # use pin_init::*; 467 /// # use core::pin::Pin; 468 /// #[pin_data] 469 /// struct Foo { 470 /// #[pin] 471 /// a: CMutex<usize>, 472 /// b: Bar, 473 /// } 474 /// 475 /// #[pin_data] 476 /// struct Bar { 477 /// x: u32, 478 /// } 479 /// 480 /// stack_pin_init!(let foo = pin_init!(Foo { 481 /// a <- CMutex::new(42), 482 /// b: Bar { 483 /// x: 64, 484 /// }, 485 /// })); 486 /// let foo: Pin<&mut Foo> = foo; 487 /// println!("a: {}", &*foo.a.lock()); 488 /// ``` 489 /// 490 /// # Syntax 491 /// 492 /// A normal `let` binding with optional type annotation. The expression is expected to implement 493 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 494 /// type, then use [`stack_try_pin_init!`]. 495 #[macro_export] 496 macro_rules! stack_pin_init { 497 (let $var:ident $(: $t:ty)? = $val:expr) => { 498 let val = $val; 499 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 500 let mut $var = match $crate::__internal::StackInit::init($var, val) { 501 Ok(res) => res, 502 Err(x) => { 503 let x: ::core::convert::Infallible = x; 504 match x {} 505 } 506 }; 507 }; 508 } 509 510 /// Initialize and pin a type directly on the stack. 511 /// 512 /// # Examples 513 /// 514 /// ```rust 515 /// # #![expect(clippy::disallowed_names)] 516 /// # #![feature(allocator_api)] 517 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 518 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 519 /// # use pin_init::*; 520 /// #[pin_data] 521 /// struct Foo { 522 /// #[pin] 523 /// a: CMutex<usize>, 524 /// b: Box<Bar>, 525 /// } 526 /// 527 /// struct Bar { 528 /// x: u32, 529 /// } 530 /// 531 /// stack_try_pin_init!(let foo: Foo = pin_init!(Foo { 532 /// a <- CMutex::new(42), 533 /// b: Box::try_new(Bar { 534 /// x: 64, 535 /// })?, 536 /// }? Error)); 537 /// let foo = foo.unwrap(); 538 /// println!("a: {}", &*foo.a.lock()); 539 /// ``` 540 /// 541 /// ```rust 542 /// # #![expect(clippy::disallowed_names)] 543 /// # #![feature(allocator_api)] 544 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 545 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 546 /// # use pin_init::*; 547 /// #[pin_data] 548 /// struct Foo { 549 /// #[pin] 550 /// a: CMutex<usize>, 551 /// b: Box<Bar>, 552 /// } 553 /// 554 /// struct Bar { 555 /// x: u32, 556 /// } 557 /// 558 /// stack_try_pin_init!(let foo: Foo =? pin_init!(Foo { 559 /// a <- CMutex::new(42), 560 /// b: Box::try_new(Bar { 561 /// x: 64, 562 /// })?, 563 /// }? Error)); 564 /// println!("a: {}", &*foo.a.lock()); 565 /// # Ok::<_, Error>(()) 566 /// ``` 567 /// 568 /// # Syntax 569 /// 570 /// A normal `let` binding with optional type annotation. The expression is expected to implement 571 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 572 /// `=` will propagate this error. 573 #[macro_export] 574 macro_rules! stack_try_pin_init { 575 (let $var:ident $(: $t:ty)? = $val:expr) => { 576 let val = $val; 577 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 578 let mut $var = $crate::__internal::StackInit::init($var, val); 579 }; 580 (let $var:ident $(: $t:ty)? =? $val:expr) => { 581 let val = $val; 582 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 583 let mut $var = $crate::__internal::StackInit::init($var, val)?; 584 }; 585 } 586 587 /// Construct an in-place, fallible pinned initializer for `struct`s. 588 /// 589 /// The error type defaults to [`Infallible`]; if you need a different one, write `? Error` at the 590 /// end, after the struct initializer. 591 /// 592 /// The syntax is almost identical to that of a normal `struct` initializer: 593 /// 594 /// ```rust 595 /// # use pin_init::*; 596 /// # use core::pin::Pin; 597 /// #[pin_data] 598 /// struct Foo { 599 /// a: usize, 600 /// b: Bar, 601 /// } 602 /// 603 /// #[pin_data] 604 /// struct Bar { 605 /// x: u32, 606 /// } 607 /// 608 /// # fn demo() -> impl PinInit<Foo> { 609 /// let a = 42; 610 /// 611 /// let initializer = pin_init!(Foo { 612 /// a, 613 /// b: Bar { 614 /// x: 64, 615 /// }, 616 /// }); 617 /// # initializer } 618 /// # Box::pin_init(demo()).unwrap(); 619 /// ``` 620 /// 621 /// Arbitrary Rust expressions can be used to set the value of a variable. 622 /// 623 /// The fields are initialized in the order that they appear in the initializer. So it is possible 624 /// to read already initialized fields using raw pointers. 625 /// 626 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 627 /// initializer. 628 /// 629 /// # Init-functions 630 /// 631 /// When working with this library it is often desired to let others construct your types without 632 /// giving access to all fields. This is where you would normally write a plain function `new` that 633 /// would return a new instance of your type. With this library that is also possible. However, 634 /// there are a few extra things to keep in mind. 635 /// 636 /// To create an initializer function, simply declare it like this: 637 /// 638 /// ```rust 639 /// # use pin_init::*; 640 /// # use core::pin::Pin; 641 /// # #[pin_data] 642 /// # struct Foo { 643 /// # a: usize, 644 /// # b: Bar, 645 /// # } 646 /// # #[pin_data] 647 /// # struct Bar { 648 /// # x: u32, 649 /// # } 650 /// impl Foo { 651 /// fn new() -> impl PinInit<Self> { 652 /// pin_init!(Self { 653 /// a: 42, 654 /// b: Bar { 655 /// x: 64, 656 /// }, 657 /// }) 658 /// } 659 /// } 660 /// ``` 661 /// 662 /// Users of `Foo` can now create it like this: 663 /// 664 /// ```rust 665 /// # #![expect(clippy::disallowed_names)] 666 /// # use pin_init::*; 667 /// # use core::pin::Pin; 668 /// # #[pin_data] 669 /// # struct Foo { 670 /// # a: usize, 671 /// # b: Bar, 672 /// # } 673 /// # #[pin_data] 674 /// # struct Bar { 675 /// # x: u32, 676 /// # } 677 /// # impl Foo { 678 /// # fn new() -> impl PinInit<Self> { 679 /// # pin_init!(Self { 680 /// # a: 42, 681 /// # b: Bar { 682 /// # x: 64, 683 /// # }, 684 /// # }) 685 /// # } 686 /// # } 687 /// let foo = Box::pin_init(Foo::new()); 688 /// ``` 689 /// 690 /// They can also easily embed it into their own `struct`s: 691 /// 692 /// ```rust 693 /// # use pin_init::*; 694 /// # use core::pin::Pin; 695 /// # #[pin_data] 696 /// # struct Foo { 697 /// # a: usize, 698 /// # b: Bar, 699 /// # } 700 /// # #[pin_data] 701 /// # struct Bar { 702 /// # x: u32, 703 /// # } 704 /// # impl Foo { 705 /// # fn new() -> impl PinInit<Self> { 706 /// # pin_init!(Self { 707 /// # a: 42, 708 /// # b: Bar { 709 /// # x: 64, 710 /// # }, 711 /// # }) 712 /// # } 713 /// # } 714 /// #[pin_data] 715 /// struct FooContainer { 716 /// #[pin] 717 /// foo1: Foo, 718 /// #[pin] 719 /// foo2: Foo, 720 /// other: u32, 721 /// } 722 /// 723 /// impl FooContainer { 724 /// fn new(other: u32) -> impl PinInit<Self> { 725 /// pin_init!(Self { 726 /// foo1 <- Foo::new(), 727 /// foo2 <- Foo::new(), 728 /// other, 729 /// }) 730 /// } 731 /// } 732 /// ``` 733 /// 734 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 735 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 736 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 737 /// 738 /// # Syntax 739 /// 740 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 741 /// the following modifications is expected: 742 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 743 /// - You can use `_: { /* run any user-code here */ },` anywhere where you can place fields in 744 /// order to run arbitrary code. 745 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 746 /// pointer named `this` inside of the initializer. 747 /// - Using struct update syntax one can place `..Zeroable::init_zeroed()` at the very end of the 748 /// struct, this initializes every field with 0 and then runs all initializers specified in the 749 /// body. This can only be done if [`Zeroable`] is implemented for the struct. 750 /// 751 /// For instance: 752 /// 753 /// ```rust 754 /// # use pin_init::*; 755 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 756 /// #[pin_data] 757 /// #[derive(Zeroable)] 758 /// struct Buf { 759 /// // `ptr` points into `buf`. 760 /// ptr: *mut u8, 761 /// buf: [u8; 64], 762 /// #[pin] 763 /// pin: PhantomPinned, 764 /// } 765 /// 766 /// let init = pin_init!(&this in Buf { 767 /// buf: [0; 64], 768 /// // SAFETY: TODO. 769 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 770 /// pin: PhantomPinned, 771 /// }); 772 /// let init = pin_init!(Buf { 773 /// buf: [1; 64], 774 /// ..Zeroable::init_zeroed() 775 /// }); 776 /// ``` 777 /// 778 /// [`NonNull<Self>`]: core::ptr::NonNull 779 // For a detailed example of how this macro works, see the module documentation of the hidden 780 // module `macros` inside of `macros.rs`. 781 #[macro_export] 782 macro_rules! pin_init { 783 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 784 $($fields:tt)* 785 }) => { 786 $crate::pin_init!($(&$this in)? $t $(::<$($generics),*>)? { 787 $($fields)* 788 }? ::core::convert::Infallible) 789 }; 790 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 791 $($fields:tt)* 792 }? $err:ty) => { 793 $crate::__init_internal!( 794 @this($($this)?), 795 @typ($t $(::<$($generics),*>)? ), 796 @fields($($fields)*), 797 @error($err), 798 @data(PinData, use_data), 799 @has_data(HasPinData, __pin_data), 800 @construct_closure(pin_init_from_closure), 801 @munch_fields($($fields)*), 802 ) 803 } 804 } 805 806 /// Construct an in-place, fallible initializer for `struct`s. 807 /// 808 /// This macro defaults the error to [`Infallible`]; if you need a different one, write `? Error` 809 /// at the end, after the struct initializer. 810 /// 811 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 812 /// - `unsafe` code must guarantee either full initialization or return an error and allow 813 /// deallocation of the memory. 814 /// - the fields are initialized in the order given in the initializer. 815 /// - no references to fields are allowed to be created inside of the initializer. 816 /// 817 /// This initializer is for initializing data in-place that might later be moved. If you want to 818 /// pin-initialize, use [`pin_init!`]. 819 /// 820 /// # Examples 821 /// 822 /// ```rust 823 /// # #![feature(allocator_api)] 824 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 825 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 826 /// # use pin_init::InPlaceInit; 827 /// use pin_init::{init, Init, init_zeroed}; 828 /// 829 /// struct BigBuf { 830 /// small: [u8; 1024 * 1024], 831 /// } 832 /// 833 /// impl BigBuf { 834 /// fn new() -> impl Init<Self> { 835 /// init!(Self { 836 /// small <- init_zeroed(), 837 /// }) 838 /// } 839 /// } 840 /// # let _ = Box::init(BigBuf::new()); 841 /// ``` 842 // For a detailed example of how this macro works, see the module documentation of the hidden 843 // module `macros` inside of `macros.rs`. 844 #[macro_export] 845 macro_rules! init { 846 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 847 $($fields:tt)* 848 }) => { 849 $crate::init!($(&$this in)? $t $(::<$($generics),*>)? { 850 $($fields)* 851 }? ::core::convert::Infallible) 852 }; 853 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 854 $($fields:tt)* 855 }? $err:ty) => { 856 $crate::__init_internal!( 857 @this($($this)?), 858 @typ($t $(::<$($generics),*>)?), 859 @fields($($fields)*), 860 @error($err), 861 @data(InitData, /*no use_data*/), 862 @has_data(HasInitData, __init_data), 863 @construct_closure(init_from_closure), 864 @munch_fields($($fields)*), 865 ) 866 } 867 } 868 869 /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is 870 /// structurally pinned. 871 /// 872 /// # Examples 873 /// 874 /// This will succeed: 875 /// ``` 876 /// use pin_init::{pin_data, assert_pinned}; 877 /// 878 /// #[pin_data] 879 /// struct MyStruct { 880 /// #[pin] 881 /// some_field: u64, 882 /// } 883 /// 884 /// assert_pinned!(MyStruct, some_field, u64); 885 /// ``` 886 /// 887 /// This will fail: 888 /// ```compile_fail 889 /// use pin_init::{pin_data, assert_pinned}; 890 /// 891 /// #[pin_data] 892 /// struct MyStruct { 893 /// some_field: u64, 894 /// } 895 /// 896 /// assert_pinned!(MyStruct, some_field, u64); 897 /// ``` 898 /// 899 /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To 900 /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can 901 /// only be used when the macro is invoked from a function body. 902 /// ``` 903 /// # use core::pin::Pin; 904 /// use pin_init::{pin_data, assert_pinned}; 905 /// 906 /// #[pin_data] 907 /// struct Foo<T> { 908 /// #[pin] 909 /// elem: T, 910 /// } 911 /// 912 /// impl<T> Foo<T> { 913 /// fn project_this(self: Pin<&mut Self>) -> Pin<&mut T> { 914 /// assert_pinned!(Foo<T>, elem, T, inline); 915 /// 916 /// // SAFETY: The field is structurally pinned. 917 /// unsafe { self.map_unchecked_mut(|me| &mut me.elem) } 918 /// } 919 /// } 920 /// ``` 921 #[macro_export] 922 macro_rules! assert_pinned { 923 ($ty:ty, $field:ident, $field_ty:ty, inline) => { 924 let _ = move |ptr: *mut $field_ty| { 925 // SAFETY: This code is unreachable. 926 let data = unsafe { <$ty as $crate::__internal::HasPinData>::__pin_data() }; 927 let init = $crate::__internal::AlwaysFail::<$field_ty>::new(); 928 // SAFETY: This code is unreachable. 929 unsafe { data.$field(ptr, init) }.ok(); 930 }; 931 }; 932 933 ($ty:ty, $field:ident, $field_ty:ty) => { 934 const _: () = { 935 $crate::assert_pinned!($ty, $field, $field_ty, inline); 936 }; 937 }; 938 } 939 940 /// A pin-initializer for the type `T`. 941 /// 942 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 943 /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). 944 /// 945 /// Also see the [module description](self). 946 /// 947 /// # Safety 948 /// 949 /// When implementing this trait you will need to take great care. Also there are probably very few 950 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 951 /// 952 /// The [`PinInit::__pinned_init`] function: 953 /// - returns `Ok(())` if it initialized every field of `slot`, 954 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 955 /// - `slot` can be deallocated without UB occurring, 956 /// - `slot` does not need to be dropped, 957 /// - `slot` is not partially initialized. 958 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 959 /// 960 #[cfg_attr( 961 kernel, 962 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 963 )] 964 #[cfg_attr( 965 kernel, 966 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 967 )] 968 #[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 969 #[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 970 #[must_use = "An initializer must be used in order to create its value."] 971 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 972 /// Initializes `slot`. 973 /// 974 /// # Safety 975 /// 976 /// - `slot` is a valid pointer to uninitialized memory. 977 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 978 /// deallocate. 979 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 980 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 981 982 /// First initializes the value using `self` then calls the function `f` with the initialized 983 /// value. 984 /// 985 /// If `f` returns an error the value is dropped and the initializer will forward the error. 986 /// 987 /// # Examples 988 /// 989 /// ```rust 990 /// # #![feature(allocator_api)] 991 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 992 /// # use pin_init::*; 993 /// let mtx_init = CMutex::new(42); 994 /// // Make the initializer print the value. 995 /// let mtx_init = mtx_init.pin_chain(|mtx| { 996 /// println!("{:?}", mtx.get_data_mut()); 997 /// Ok(()) 998 /// }); 999 /// ``` 1000 fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E> 1001 where 1002 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 1003 { 1004 ChainPinInit(self, f, PhantomData) 1005 } 1006 } 1007 1008 /// An initializer returned by [`PinInit::pin_chain`]. 1009 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>); 1010 1011 // SAFETY: The `__pinned_init` function is implemented such that it 1012 // - returns `Ok(())` on successful initialization, 1013 // - returns `Err(err)` on error and in this case `slot` will be dropped. 1014 // - considers `slot` pinned. 1015 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E> 1016 where 1017 I: PinInit<T, E>, 1018 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 1019 { 1020 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1021 // SAFETY: All requirements fulfilled since this function is `__pinned_init`. 1022 unsafe { self.0.__pinned_init(slot)? }; 1023 // SAFETY: The above call initialized `slot` and we still have unique access. 1024 let val = unsafe { &mut *slot }; 1025 // SAFETY: `slot` is considered pinned. 1026 let val = unsafe { Pin::new_unchecked(val) }; 1027 // SAFETY: `slot` was initialized above. 1028 (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) }) 1029 } 1030 } 1031 1032 /// An initializer for `T`. 1033 /// 1034 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 1035 /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). Because 1036 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 1037 /// 1038 /// Also see the [module description](self). 1039 /// 1040 /// # Safety 1041 /// 1042 /// When implementing this trait you will need to take great care. Also there are probably very few 1043 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 1044 /// 1045 /// The [`Init::__init`] function: 1046 /// - returns `Ok(())` if it initialized every field of `slot`, 1047 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1048 /// - `slot` can be deallocated without UB occurring, 1049 /// - `slot` does not need to be dropped, 1050 /// - `slot` is not partially initialized. 1051 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1052 /// 1053 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 1054 /// code as `__init`. 1055 /// 1056 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 1057 /// move the pointee after initialization. 1058 /// 1059 #[cfg_attr( 1060 kernel, 1061 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 1062 )] 1063 #[cfg_attr( 1064 kernel, 1065 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 1066 )] 1067 #[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 1068 #[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 1069 #[must_use = "An initializer must be used in order to create its value."] 1070 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> { 1071 /// Initializes `slot`. 1072 /// 1073 /// # Safety 1074 /// 1075 /// - `slot` is a valid pointer to uninitialized memory. 1076 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 1077 /// deallocate. 1078 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 1079 1080 /// First initializes the value using `self` then calls the function `f` with the initialized 1081 /// value. 1082 /// 1083 /// If `f` returns an error the value is dropped and the initializer will forward the error. 1084 /// 1085 /// # Examples 1086 /// 1087 /// ```rust 1088 /// # #![expect(clippy::disallowed_names)] 1089 /// use pin_init::{init, init_zeroed, Init}; 1090 /// 1091 /// struct Foo { 1092 /// buf: [u8; 1_000_000], 1093 /// } 1094 /// 1095 /// impl Foo { 1096 /// fn setup(&mut self) { 1097 /// println!("Setting up foo"); 1098 /// } 1099 /// } 1100 /// 1101 /// let foo = init!(Foo { 1102 /// buf <- init_zeroed() 1103 /// }).chain(|foo| { 1104 /// foo.setup(); 1105 /// Ok(()) 1106 /// }); 1107 /// ``` 1108 fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E> 1109 where 1110 F: FnOnce(&mut T) -> Result<(), E>, 1111 { 1112 ChainInit(self, f, PhantomData) 1113 } 1114 } 1115 1116 /// An initializer returned by [`Init::chain`]. 1117 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>); 1118 1119 // SAFETY: The `__init` function is implemented such that it 1120 // - returns `Ok(())` on successful initialization, 1121 // - returns `Err(err)` on error and in this case `slot` will be dropped. 1122 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E> 1123 where 1124 I: Init<T, E>, 1125 F: FnOnce(&mut T) -> Result<(), E>, 1126 { 1127 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1128 // SAFETY: All requirements fulfilled since this function is `__init`. 1129 unsafe { self.0.__pinned_init(slot)? }; 1130 // SAFETY: The above call initialized `slot` and we still have unique access. 1131 (self.1)(unsafe { &mut *slot }).inspect_err(|_| 1132 // SAFETY: `slot` was initialized above. 1133 unsafe { core::ptr::drop_in_place(slot) }) 1134 } 1135 } 1136 1137 // SAFETY: `__pinned_init` behaves exactly the same as `__init`. 1138 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E> 1139 where 1140 I: Init<T, E>, 1141 F: FnOnce(&mut T) -> Result<(), E>, 1142 { 1143 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1144 // SAFETY: `__init` has less strict requirements compared to `__pinned_init`. 1145 unsafe { self.__init(slot) } 1146 } 1147 } 1148 1149 /// Creates a new [`PinInit<T, E>`] from the given closure. 1150 /// 1151 /// # Safety 1152 /// 1153 /// The closure: 1154 /// - returns `Ok(())` if it initialized every field of `slot`, 1155 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1156 /// - `slot` can be deallocated without UB occurring, 1157 /// - `slot` does not need to be dropped, 1158 /// - `slot` is not partially initialized. 1159 /// - may assume that the `slot` does not move if `T: !Unpin`, 1160 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1161 #[inline] 1162 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 1163 f: impl FnOnce(*mut T) -> Result<(), E>, 1164 ) -> impl PinInit<T, E> { 1165 __internal::InitClosure(f, PhantomData) 1166 } 1167 1168 /// Creates a new [`Init<T, E>`] from the given closure. 1169 /// 1170 /// # Safety 1171 /// 1172 /// The closure: 1173 /// - returns `Ok(())` if it initialized every field of `slot`, 1174 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1175 /// - `slot` can be deallocated without UB occurring, 1176 /// - `slot` does not need to be dropped, 1177 /// - `slot` is not partially initialized. 1178 /// - the `slot` may move after initialization. 1179 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1180 #[inline] 1181 pub const unsafe fn init_from_closure<T: ?Sized, E>( 1182 f: impl FnOnce(*mut T) -> Result<(), E>, 1183 ) -> impl Init<T, E> { 1184 __internal::InitClosure(f, PhantomData) 1185 } 1186 1187 /// Changes the to be initialized type. 1188 /// 1189 /// # Safety 1190 /// 1191 /// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a 1192 /// pointer must result in a valid `U`. 1193 #[expect(clippy::let_and_return)] 1194 pub const unsafe fn cast_pin_init<T, U, E>(init: impl PinInit<T, E>) -> impl PinInit<U, E> { 1195 // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety 1196 // requirements. 1197 let res = unsafe { pin_init_from_closure(|ptr: *mut U| init.__pinned_init(ptr.cast::<T>())) }; 1198 // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a 1199 // cycle when computing the type returned by this function) 1200 res 1201 } 1202 1203 /// Changes the to be initialized type. 1204 /// 1205 /// # Safety 1206 /// 1207 /// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a 1208 /// pointer must result in a valid `U`. 1209 #[expect(clippy::let_and_return)] 1210 pub const unsafe fn cast_init<T, U, E>(init: impl Init<T, E>) -> impl Init<U, E> { 1211 // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety 1212 // requirements. 1213 let res = unsafe { init_from_closure(|ptr: *mut U| init.__init(ptr.cast::<T>())) }; 1214 // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a 1215 // cycle when computing the type returned by this function) 1216 res 1217 } 1218 1219 /// An initializer that leaves the memory uninitialized. 1220 /// 1221 /// The initializer is a no-op. The `slot` memory is not changed. 1222 #[inline] 1223 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 1224 // SAFETY: The memory is allowed to be uninitialized. 1225 unsafe { init_from_closure(|_| Ok(())) } 1226 } 1227 1228 /// Initializes an array by initializing each element via the provided initializer. 1229 /// 1230 /// # Examples 1231 /// 1232 /// ```rust 1233 /// # use pin_init::*; 1234 /// use pin_init::init_array_from_fn; 1235 /// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap(); 1236 /// assert_eq!(array.len(), 1_000); 1237 /// ``` 1238 pub fn init_array_from_fn<I, const N: usize, T, E>( 1239 mut make_init: impl FnMut(usize) -> I, 1240 ) -> impl Init<[T; N], E> 1241 where 1242 I: Init<T, E>, 1243 { 1244 let init = move |slot: *mut [T; N]| { 1245 let slot = slot.cast::<T>(); 1246 for i in 0..N { 1247 let init = make_init(i); 1248 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1249 let ptr = unsafe { slot.add(i) }; 1250 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1251 // requirements. 1252 if let Err(e) = unsafe { init.__init(ptr) } { 1253 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return 1254 // `Err` below, `slot` will be considered uninitialized memory. 1255 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1256 return Err(e); 1257 } 1258 } 1259 Ok(()) 1260 }; 1261 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1262 // any initialized elements and returns `Err`. 1263 unsafe { init_from_closure(init) } 1264 } 1265 1266 /// Initializes an array by initializing each element via the provided initializer. 1267 /// 1268 /// # Examples 1269 /// 1270 /// ```rust 1271 /// # #![feature(allocator_api)] 1272 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 1273 /// # use pin_init::*; 1274 /// # use core::pin::Pin; 1275 /// use pin_init::pin_init_array_from_fn; 1276 /// use std::sync::Arc; 1277 /// let array: Pin<Arc<[CMutex<usize>; 1_000]>> = 1278 /// Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap(); 1279 /// assert_eq!(array.len(), 1_000); 1280 /// ``` 1281 pub fn pin_init_array_from_fn<I, const N: usize, T, E>( 1282 mut make_init: impl FnMut(usize) -> I, 1283 ) -> impl PinInit<[T; N], E> 1284 where 1285 I: PinInit<T, E>, 1286 { 1287 let init = move |slot: *mut [T; N]| { 1288 let slot = slot.cast::<T>(); 1289 for i in 0..N { 1290 let init = make_init(i); 1291 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1292 let ptr = unsafe { slot.add(i) }; 1293 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1294 // requirements. 1295 if let Err(e) = unsafe { init.__pinned_init(ptr) } { 1296 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return 1297 // `Err` below, `slot` will be considered uninitialized memory. 1298 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1299 return Err(e); 1300 } 1301 } 1302 Ok(()) 1303 }; 1304 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1305 // any initialized elements and returns `Err`. 1306 unsafe { pin_init_from_closure(init) } 1307 } 1308 1309 /// Construct an initializer in a closure and run it. 1310 /// 1311 /// Returns an initializer that first runs the closure and then the initializer returned by it. 1312 /// 1313 /// See also [`init_scope`]. 1314 /// 1315 /// # Examples 1316 /// 1317 /// ``` 1318 /// # use pin_init::*; 1319 /// # #[pin_data] 1320 /// # struct Foo { a: u64, b: isize } 1321 /// # struct Bar { a: u32, b: isize } 1322 /// # fn lookup_bar() -> Result<Bar, Error> { todo!() } 1323 /// # struct Error; 1324 /// fn init_foo() -> impl PinInit<Foo, Error> { 1325 /// pin_init_scope(|| { 1326 /// let bar = lookup_bar()?; 1327 /// Ok(pin_init!(Foo { a: bar.a.into(), b: bar.b }? Error)) 1328 /// }) 1329 /// } 1330 /// ``` 1331 /// 1332 /// This initializer will first execute `lookup_bar()`, match on it, if it returned an error, the 1333 /// initializer itself will fail with that error. If it returned `Ok`, then it will run the 1334 /// initializer returned by the [`pin_init!`] invocation. 1335 pub fn pin_init_scope<T, E, F, I>(make_init: F) -> impl PinInit<T, E> 1336 where 1337 F: FnOnce() -> Result<I, E>, 1338 I: PinInit<T, E>, 1339 { 1340 // SAFETY: 1341 // - If `make_init` returns `Err`, `Err` is returned and `slot` is completely uninitialized, 1342 // - If `make_init` returns `Ok`, safety requirement are fulfilled by `init.__pinned_init`. 1343 // - The safety requirements of `init.__pinned_init` are fulfilled, since it's being called 1344 // from an initializer. 1345 unsafe { 1346 pin_init_from_closure(move |slot: *mut T| -> Result<(), E> { 1347 let init = make_init()?; 1348 init.__pinned_init(slot) 1349 }) 1350 } 1351 } 1352 1353 /// Construct an initializer in a closure and run it. 1354 /// 1355 /// Returns an initializer that first runs the closure and then the initializer returned by it. 1356 /// 1357 /// See also [`pin_init_scope`]. 1358 /// 1359 /// # Examples 1360 /// 1361 /// ``` 1362 /// # use pin_init::*; 1363 /// # struct Foo { a: u64, b: isize } 1364 /// # struct Bar { a: u32, b: isize } 1365 /// # fn lookup_bar() -> Result<Bar, Error> { todo!() } 1366 /// # struct Error; 1367 /// fn init_foo() -> impl Init<Foo, Error> { 1368 /// init_scope(|| { 1369 /// let bar = lookup_bar()?; 1370 /// Ok(init!(Foo { a: bar.a.into(), b: bar.b }? Error)) 1371 /// }) 1372 /// } 1373 /// ``` 1374 /// 1375 /// This initializer will first execute `lookup_bar()`, match on it, if it returned an error, the 1376 /// initializer itself will fail with that error. If it returned `Ok`, then it will run the 1377 /// initializer returned by the [`init!`] invocation. 1378 pub fn init_scope<T, E, F, I>(make_init: F) -> impl Init<T, E> 1379 where 1380 F: FnOnce() -> Result<I, E>, 1381 I: Init<T, E>, 1382 { 1383 // SAFETY: 1384 // - If `make_init` returns `Err`, `Err` is returned and `slot` is completely uninitialized, 1385 // - If `make_init` returns `Ok`, safety requirement are fulfilled by `init.__init`. 1386 // - The safety requirements of `init.__init` are fulfilled, since it's being called from an 1387 // initializer. 1388 unsafe { 1389 init_from_closure(move |slot: *mut T| -> Result<(), E> { 1390 let init = make_init()?; 1391 init.__init(slot) 1392 }) 1393 } 1394 } 1395 1396 // SAFETY: the `__init` function always returns `Ok(())` and initializes every field of `slot`. 1397 unsafe impl<T> Init<T> for T { 1398 unsafe fn __init(self, slot: *mut T) -> Result<(), Infallible> { 1399 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1400 unsafe { slot.write(self) }; 1401 Ok(()) 1402 } 1403 } 1404 1405 // SAFETY: the `__pinned_init` function always returns `Ok(())` and initializes every field of 1406 // `slot`. Additionally, all pinning invariants of `T` are upheld. 1407 unsafe impl<T> PinInit<T> for T { 1408 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), Infallible> { 1409 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1410 unsafe { slot.write(self) }; 1411 Ok(()) 1412 } 1413 } 1414 1415 // SAFETY: when the `__init` function returns with 1416 // - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld. 1417 // - `Err(err)`, slot was not written to. 1418 unsafe impl<T, E> Init<T, E> for Result<T, E> { 1419 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1420 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1421 unsafe { slot.write(self?) }; 1422 Ok(()) 1423 } 1424 } 1425 1426 // SAFETY: when the `__pinned_init` function returns with 1427 // - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld. 1428 // - `Err(err)`, slot was not written to. 1429 unsafe impl<T, E> PinInit<T, E> for Result<T, E> { 1430 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1431 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1432 unsafe { slot.write(self?) }; 1433 Ok(()) 1434 } 1435 } 1436 1437 /// Smart pointer containing uninitialized memory and that can write a value. 1438 pub trait InPlaceWrite<T> { 1439 /// The type `Self` turns into when the contents are initialized. 1440 type Initialized; 1441 1442 /// Use the given initializer to write a value into `self`. 1443 /// 1444 /// Does not drop the current value and considers it as uninitialized memory. 1445 fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>; 1446 1447 /// Use the given pin-initializer to write a value into `self`. 1448 /// 1449 /// Does not drop the current value and considers it as uninitialized memory. 1450 fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>; 1451 } 1452 1453 /// Trait facilitating pinned destruction. 1454 /// 1455 /// Use [`pinned_drop`] to implement this trait safely: 1456 /// 1457 /// ```rust 1458 /// # #![feature(allocator_api)] 1459 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 1460 /// # use pin_init::*; 1461 /// use core::pin::Pin; 1462 /// #[pin_data(PinnedDrop)] 1463 /// struct Foo { 1464 /// #[pin] 1465 /// mtx: CMutex<usize>, 1466 /// } 1467 /// 1468 /// #[pinned_drop] 1469 /// impl PinnedDrop for Foo { 1470 /// fn drop(self: Pin<&mut Self>) { 1471 /// println!("Foo is being dropped!"); 1472 /// } 1473 /// } 1474 /// ``` 1475 /// 1476 /// # Safety 1477 /// 1478 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 1479 pub unsafe trait PinnedDrop: __internal::HasPinData { 1480 /// Executes the pinned destructor of this type. 1481 /// 1482 /// While this function is marked safe, it is actually unsafe to call it manually. For this 1483 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 1484 /// and thus prevents this function from being called where it should not. 1485 /// 1486 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1487 /// automatically. 1488 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1489 } 1490 1491 /// Marker trait for types that can be initialized by writing just zeroes. 1492 /// 1493 /// # Safety 1494 /// 1495 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1496 /// this is not UB: 1497 /// 1498 /// ```rust,ignore 1499 /// let val: Self = unsafe { core::mem::zeroed() }; 1500 /// ``` 1501 pub unsafe trait Zeroable { 1502 /// Create a new zeroed `Self`. 1503 /// 1504 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1505 #[inline] 1506 fn init_zeroed() -> impl Init<Self> 1507 where 1508 Self: Sized, 1509 { 1510 init_zeroed() 1511 } 1512 1513 /// Create a `Self` consisting of all zeroes. 1514 /// 1515 /// Whenever a type implements [`Zeroable`], this function should be preferred over 1516 /// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`. 1517 /// 1518 /// # Examples 1519 /// 1520 /// ``` 1521 /// use pin_init::{Zeroable, zeroed}; 1522 /// 1523 /// #[derive(Zeroable)] 1524 /// struct Point { 1525 /// x: u32, 1526 /// y: u32, 1527 /// } 1528 /// 1529 /// let point: Point = zeroed(); 1530 /// assert_eq!(point.x, 0); 1531 /// assert_eq!(point.y, 0); 1532 /// ``` 1533 fn zeroed() -> Self 1534 where 1535 Self: Sized, 1536 { 1537 zeroed() 1538 } 1539 } 1540 1541 /// Marker trait for types that allow `Option<Self>` to be set to all zeroes in order to write 1542 /// `None` to that location. 1543 /// 1544 /// # Safety 1545 /// 1546 /// The implementer needs to ensure that `unsafe impl Zeroable for Option<Self> {}` is sound. 1547 pub unsafe trait ZeroableOption {} 1548 1549 // SAFETY: by the safety requirement of `ZeroableOption`, this is valid. 1550 unsafe impl<T: ZeroableOption> Zeroable for Option<T> {} 1551 1552 // SAFETY: `Option<&T>` is part of the option layout optimization guarantee: 1553 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1554 unsafe impl<T> ZeroableOption for &T {} 1555 // SAFETY: `Option<&mut T>` is part of the option layout optimization guarantee: 1556 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1557 unsafe impl<T> ZeroableOption for &mut T {} 1558 // SAFETY: `Option<NonNull<T>>` is part of the option layout optimization guarantee: 1559 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1560 unsafe impl<T> ZeroableOption for NonNull<T> {} 1561 1562 /// Create an initializer for a zeroed `T`. 1563 /// 1564 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1565 #[inline] 1566 pub fn init_zeroed<T: Zeroable>() -> impl Init<T> { 1567 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1568 // and because we write all zeroes, the memory is initialized. 1569 unsafe { 1570 init_from_closure(|slot: *mut T| { 1571 slot.write_bytes(0, 1); 1572 Ok(()) 1573 }) 1574 } 1575 } 1576 1577 /// Create a `T` consisting of all zeroes. 1578 /// 1579 /// Whenever a type implements [`Zeroable`], this function should be preferred over 1580 /// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`. 1581 /// 1582 /// # Examples 1583 /// 1584 /// ``` 1585 /// use pin_init::{Zeroable, zeroed}; 1586 /// 1587 /// #[derive(Zeroable)] 1588 /// struct Point { 1589 /// x: u32, 1590 /// y: u32, 1591 /// } 1592 /// 1593 /// let point: Point = zeroed(); 1594 /// assert_eq!(point.x, 0); 1595 /// assert_eq!(point.y, 0); 1596 /// ``` 1597 pub const fn zeroed<T: Zeroable>() -> T { 1598 // SAFETY:By the type invariants of `Zeroable`, all zeroes is a valid bit pattern for `T`. 1599 unsafe { core::mem::zeroed() } 1600 } 1601 1602 macro_rules! impl_zeroable { 1603 ($($({$($generics:tt)*})? $t:ty, )*) => { 1604 // SAFETY: Safety comments written in the macro invocation. 1605 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1606 }; 1607 } 1608 1609 impl_zeroable! { 1610 // SAFETY: All primitives that are allowed to be zero. 1611 bool, 1612 char, 1613 u8, u16, u32, u64, u128, usize, 1614 i8, i16, i32, i64, i128, isize, 1615 f32, f64, 1616 1617 // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list; 1618 // creating an instance of an uninhabited type is immediate undefined behavior. For more on 1619 // uninhabited/empty types, consult The Rustonomicon: 1620 // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference 1621 // also has information on undefined behavior: 1622 // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>. 1623 // 1624 // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists. 1625 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (), 1626 1627 // SAFETY: Type is allowed to take any value, including all zeros. 1628 {<T>} MaybeUninit<T>, 1629 1630 // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`. 1631 {<T: ?Sized + Zeroable>} UnsafeCell<T>, 1632 1633 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee: 1634 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>). 1635 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1636 Option<NonZeroU128>, Option<NonZeroUsize>, 1637 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1638 Option<NonZeroI128>, Option<NonZeroIsize>, 1639 1640 // SAFETY: `null` pointer is valid. 1641 // 1642 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1643 // null. 1644 // 1645 // When `Pointee` gets stabilized, we could use 1646 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1647 {<T>} *mut T, {<T>} *const T, 1648 1649 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1650 // zero. 1651 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1652 1653 // SAFETY: `T` is `Zeroable`. 1654 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1655 } 1656 1657 macro_rules! impl_tuple_zeroable { 1658 ($(,)?) => {}; 1659 ($first:ident, $($t:ident),* $(,)?) => { 1660 // SAFETY: All elements are zeroable and padding can be zero. 1661 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1662 impl_tuple_zeroable!($($t),* ,); 1663 } 1664 } 1665 1666 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1667 1668 macro_rules! impl_fn_zeroable_option { 1669 ([$($abi:literal),* $(,)?] $args:tt) => { 1670 $(impl_fn_zeroable_option!({extern $abi} $args);)* 1671 $(impl_fn_zeroable_option!({unsafe extern $abi} $args);)* 1672 }; 1673 ({$($prefix:tt)*} {$(,)?}) => {}; 1674 ({$($prefix:tt)*} {$ret:ident, $($rest:ident),* $(,)?}) => { 1675 // SAFETY: function pointers are part of the option layout optimization: 1676 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1677 unsafe impl<$ret, $($rest),*> ZeroableOption for $($prefix)* fn($($rest),*) -> $ret {} 1678 impl_fn_zeroable_option!({$($prefix)*} {$($rest),*,}); 1679 }; 1680 } 1681 1682 impl_fn_zeroable_option!(["Rust", "C"] { A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U }); 1683 1684 /// This trait allows creating an instance of `Self` which contains exactly one 1685 /// [structurally pinned value](https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning). 1686 /// 1687 /// This is useful when using wrapper `struct`s like [`UnsafeCell`] or with new-type `struct`s. 1688 /// 1689 /// # Examples 1690 /// 1691 /// ``` 1692 /// # use core::cell::UnsafeCell; 1693 /// # use pin_init::{pin_data, pin_init, Wrapper}; 1694 /// 1695 /// #[pin_data] 1696 /// struct Foo {} 1697 /// 1698 /// #[pin_data] 1699 /// struct Bar { 1700 /// #[pin] 1701 /// content: UnsafeCell<Foo> 1702 /// }; 1703 /// 1704 /// let foo_initializer = pin_init!(Foo{}); 1705 /// let initializer = pin_init!(Bar { 1706 /// content <- UnsafeCell::pin_init(foo_initializer) 1707 /// }); 1708 /// ``` 1709 pub trait Wrapper<T> { 1710 /// Creates an pin-initializer for a [`Self`] containing `T` from the `value_init` initializer. 1711 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E>; 1712 } 1713 1714 impl<T> Wrapper<T> for UnsafeCell<T> { 1715 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> { 1716 // SAFETY: `UnsafeCell<T>` has a compatible layout to `T`. 1717 unsafe { cast_pin_init(value_init) } 1718 } 1719 } 1720 1721 impl<T> Wrapper<T> for MaybeUninit<T> { 1722 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> { 1723 // SAFETY: `MaybeUninit<T>` has a compatible layout to `T`. 1724 unsafe { cast_pin_init(value_init) } 1725 } 1726 } 1727 1728 #[cfg(all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED))] 1729 impl<T> Wrapper<T> for core::pin::UnsafePinned<T> { 1730 fn pin_init<E>(init: impl PinInit<T, E>) -> impl PinInit<Self, E> { 1731 // SAFETY: `UnsafePinned<T>` has a compatible layout to `T`. 1732 unsafe { cast_pin_init(init) } 1733 } 1734 } 1735