xref: /linux/rust/pin-init/src/lib.rs (revision 4b11798e82d6f340c2afc94c57823b6fbc109fad)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
4 //!
5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
6 //! overflow.
7 //!
8 //! # Overview
9 //!
10 //! To initialize a `struct` with an in-place constructor you will need two things:
11 //! - an in-place constructor,
12 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
13 //!   [`UniqueArc<T>`], [`KBox<T>`] or any other smart pointer that implements [`InPlaceInit`]).
14 //!
15 //! To get an in-place constructor there are generally three options:
16 //! - directly creating an in-place constructor using the [`pin_init!`] macro,
17 //! - a custom function/macro returning an in-place constructor provided by someone else,
18 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
19 //!
20 //! Aside from pinned initialization, this API also supports in-place construction without pinning,
21 //! the macros/types/functions are generally named like the pinned variants without the `pin`
22 //! prefix.
23 //!
24 //! # Examples
25 //!
26 //! ## Using the [`pin_init!`] macro
27 //!
28 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with
29 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
30 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
31 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
32 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
33 //!
34 //! ```rust,ignore
35 //! # #![expect(clippy::disallowed_names)]
36 //! use kernel::sync::{new_mutex, Mutex};
37 //! # use core::pin::Pin;
38 //! #[pin_data]
39 //! struct Foo {
40 //!     #[pin]
41 //!     a: Mutex<usize>,
42 //!     b: u32,
43 //! }
44 //!
45 //! let foo = pin_init!(Foo {
46 //!     a <- new_mutex!(42, "Foo::a"),
47 //!     b: 24,
48 //! });
49 //! ```
50 //!
51 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
52 //! (or just the stack) to actually initialize a `Foo`:
53 //!
54 //! ```rust,ignore
55 //! # #![expect(clippy::disallowed_names)]
56 //! # use kernel::sync::{new_mutex, Mutex};
57 //! # use core::pin::Pin;
58 //! # #[pin_data]
59 //! # struct Foo {
60 //! #     #[pin]
61 //! #     a: Mutex<usize>,
62 //! #     b: u32,
63 //! # }
64 //! # let foo = pin_init!(Foo {
65 //! #     a <- new_mutex!(42, "Foo::a"),
66 //! #     b: 24,
67 //! # });
68 //! let foo: Result<Pin<KBox<Foo>>> = KBox::pin_init(foo, GFP_KERNEL);
69 //! ```
70 //!
71 //! For more information see the [`pin_init!`] macro.
72 //!
73 //! ## Using a custom function/macro that returns an initializer
74 //!
75 //! Many types from the kernel supply a function/macro that returns an initializer, because the
76 //! above method only works for types where you can access the fields.
77 //!
78 //! ```rust,ignore
79 //! # use kernel::sync::{new_mutex, Arc, Mutex};
80 //! let mtx: Result<Arc<Mutex<usize>>> =
81 //!     Arc::pin_init(new_mutex!(42, "example::mtx"), GFP_KERNEL);
82 //! ```
83 //!
84 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
85 //!
86 //! ```rust,ignore
87 //! # use kernel::{sync::Mutex, new_mutex, init::PinInit, try_pin_init};
88 //! #[pin_data]
89 //! struct DriverData {
90 //!     #[pin]
91 //!     status: Mutex<i32>,
92 //!     buffer: KBox<[u8; 1_000_000]>,
93 //! }
94 //!
95 //! impl DriverData {
96 //!     fn new() -> impl PinInit<Self, Error> {
97 //!         try_pin_init!(Self {
98 //!             status <- new_mutex!(0, "DriverData::status"),
99 //!             buffer: KBox::init(kernel::init::zeroed(), GFP_KERNEL)?,
100 //!         })
101 //!     }
102 //! }
103 //! ```
104 //!
105 //! ## Manual creation of an initializer
106 //!
107 //! Often when working with primitives the previous approaches are not sufficient. That is where
108 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
109 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
110 //! actually does the initialization in the correct way. Here are the things to look out for
111 //! (we are calling the parameter to the closure `slot`):
112 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
113 //!   `slot` now contains a valid bit pattern for the type `T`,
114 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
115 //!   you need to take care to clean up anything if your initialization fails mid-way,
116 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
117 //!   `slot` gets called.
118 //!
119 //! ```rust,ignore
120 //! # #![expect(unreachable_pub, clippy::disallowed_names)]
121 //! use kernel::{init, types::Opaque};
122 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
123 //! # mod bindings {
124 //! #     #![expect(non_camel_case_types)]
125 //! #     #![expect(clippy::missing_safety_doc)]
126 //! #     pub struct foo;
127 //! #     pub unsafe fn init_foo(_ptr: *mut foo) {}
128 //! #     pub unsafe fn destroy_foo(_ptr: *mut foo) {}
129 //! #     pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
130 //! # }
131 //! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround.
132 //! # trait FromErrno {
133 //! #     fn from_errno(errno: kernel::ffi::c_int) -> Error {
134 //! #         // Dummy error that can be constructed outside the `kernel` crate.
135 //! #         Error::from(core::fmt::Error)
136 //! #     }
137 //! # }
138 //! # impl FromErrno for Error {}
139 //! /// # Invariants
140 //! ///
141 //! /// `foo` is always initialized
142 //! #[pin_data(PinnedDrop)]
143 //! pub struct RawFoo {
144 //!     #[pin]
145 //!     foo: Opaque<bindings::foo>,
146 //!     #[pin]
147 //!     _p: PhantomPinned,
148 //! }
149 //!
150 //! impl RawFoo {
151 //!     pub fn new(flags: u32) -> impl PinInit<Self, Error> {
152 //!         // SAFETY:
153 //!         // - when the closure returns `Ok(())`, then it has successfully initialized and
154 //!         //   enabled `foo`,
155 //!         // - when it returns `Err(e)`, then it has cleaned up before
156 //!         unsafe {
157 //!             init::pin_init_from_closure(move |slot: *mut Self| {
158 //!                 // `slot` contains uninit memory, avoid creating a reference.
159 //!                 let foo = addr_of_mut!((*slot).foo);
160 //!
161 //!                 // Initialize the `foo`
162 //!                 bindings::init_foo(Opaque::raw_get(foo));
163 //!
164 //!                 // Try to enable it.
165 //!                 let err = bindings::enable_foo(Opaque::raw_get(foo), flags);
166 //!                 if err != 0 {
167 //!                     // Enabling has failed, first clean up the foo and then return the error.
168 //!                     bindings::destroy_foo(Opaque::raw_get(foo));
169 //!                     return Err(Error::from_errno(err));
170 //!                 }
171 //!
172 //!                 // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
173 //!                 Ok(())
174 //!             })
175 //!         }
176 //!     }
177 //! }
178 //!
179 //! #[pinned_drop]
180 //! impl PinnedDrop for RawFoo {
181 //!     fn drop(self: Pin<&mut Self>) {
182 //!         // SAFETY: Since `foo` is initialized, destroying is safe.
183 //!         unsafe { bindings::destroy_foo(self.foo.get()) };
184 //!     }
185 //! }
186 //! ```
187 //!
188 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html
189 //! [structurally pinned fields]:
190 //!     https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
191 //! [stack]: crate::stack_pin_init
192 //! [`Arc<T>`]: crate::sync::Arc
193 //! [`impl PinInit<Foo>`]: PinInit
194 //! [`impl PinInit<T, E>`]: PinInit
195 //! [`impl Init<T, E>`]: Init
196 //! [`pin_data`]: ::macros::pin_data
197 //! [`pin_init!`]: crate::pin_init!
198 
199 use crate::{
200     alloc::{AllocError, Flags, KBox},
201     error::{self, Error},
202     sync::Arc,
203     sync::UniqueArc,
204     types::{Opaque, ScopeGuard},
205 };
206 use core::{
207     cell::UnsafeCell,
208     convert::Infallible,
209     marker::PhantomData,
210     mem::MaybeUninit,
211     num::*,
212     pin::Pin,
213     ptr::{self, NonNull},
214 };
215 
216 #[doc(hidden)]
217 pub mod __internal;
218 #[doc(hidden)]
219 pub mod macros;
220 
221 /// Used to specify the pinning information of the fields of a struct.
222 ///
223 /// This is somewhat similar in purpose as
224 /// [pin-project-lite](https://crates.io/crates/pin-project-lite).
225 /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
226 /// field you want to structurally pin.
227 ///
228 /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
229 /// then `#[pin]` directs the type of initializer that is required.
230 ///
231 /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
232 /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
233 /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
234 ///
235 /// # Examples
236 ///
237 /// ```ignore
238 /// # #![feature(lint_reasons)]
239 /// # use kernel::prelude::*;
240 /// # use std::{sync::Mutex, process::Command};
241 /// # use kernel::macros::pin_data;
242 /// #[pin_data]
243 /// struct DriverData {
244 ///     #[pin]
245 ///     queue: Mutex<KVec<Command>>,
246 ///     buf: KBox<[u8; 1024 * 1024]>,
247 /// }
248 /// ```
249 ///
250 /// ```ignore
251 /// # #![feature(lint_reasons)]
252 /// # use kernel::prelude::*;
253 /// # use std::{sync::Mutex, process::Command};
254 /// # use core::pin::Pin;
255 /// # pub struct Info;
256 /// # mod bindings {
257 /// #     pub unsafe fn destroy_info(_ptr: *mut super::Info) {}
258 /// # }
259 /// use kernel::macros::{pin_data, pinned_drop};
260 ///
261 /// #[pin_data(PinnedDrop)]
262 /// struct DriverData {
263 ///     #[pin]
264 ///     queue: Mutex<KVec<Command>>,
265 ///     buf: KBox<[u8; 1024 * 1024]>,
266 ///     raw_info: *mut Info,
267 /// }
268 ///
269 /// #[pinned_drop]
270 /// impl PinnedDrop for DriverData {
271 ///     fn drop(self: Pin<&mut Self>) {
272 ///         unsafe { bindings::destroy_info(self.raw_info) };
273 ///     }
274 /// }
275 /// # fn main() {}
276 /// ```
277 ///
278 /// [`pin_init!`]: crate::pin_init
279 pub use ::macros::pin_data;
280 
281 /// Used to implement `PinnedDrop` safely.
282 ///
283 /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
284 ///
285 /// # Examples
286 ///
287 /// ```ignore
288 /// # #![feature(lint_reasons)]
289 /// # use kernel::prelude::*;
290 /// # use macros::{pin_data, pinned_drop};
291 /// # use std::{sync::Mutex, process::Command};
292 /// # use core::pin::Pin;
293 /// # mod bindings {
294 /// #     pub struct Info;
295 /// #     pub unsafe fn destroy_info(_ptr: *mut Info) {}
296 /// # }
297 /// #[pin_data(PinnedDrop)]
298 /// struct DriverData {
299 ///     #[pin]
300 ///     queue: Mutex<KVec<Command>>,
301 ///     buf: KBox<[u8; 1024 * 1024]>,
302 ///     raw_info: *mut bindings::Info,
303 /// }
304 ///
305 /// #[pinned_drop]
306 /// impl PinnedDrop for DriverData {
307 ///     fn drop(self: Pin<&mut Self>) {
308 ///         unsafe { bindings::destroy_info(self.raw_info) };
309 ///     }
310 /// }
311 /// ```
312 pub use ::macros::pinned_drop;
313 
314 /// Derives the [`Zeroable`] trait for the given struct.
315 ///
316 /// This can only be used for structs where every field implements the [`Zeroable`] trait.
317 ///
318 /// # Examples
319 ///
320 /// ```ignore
321 /// use kernel::macros::Zeroable;
322 ///
323 /// #[derive(Zeroable)]
324 /// pub struct DriverData {
325 ///     id: i64,
326 ///     buf_ptr: *mut u8,
327 ///     len: usize,
328 /// }
329 /// ```
330 pub use ::macros::Zeroable;
331 
332 /// Initialize and pin a type directly on the stack.
333 ///
334 /// # Examples
335 ///
336 /// ```rust,ignore
337 /// # #![expect(clippy::disallowed_names)]
338 /// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex};
339 /// # use core::pin::Pin;
340 /// #[pin_data]
341 /// struct Foo {
342 ///     #[pin]
343 ///     a: Mutex<usize>,
344 ///     b: Bar,
345 /// }
346 ///
347 /// #[pin_data]
348 /// struct Bar {
349 ///     x: u32,
350 /// }
351 ///
352 /// stack_pin_init!(let foo = pin_init!(Foo {
353 ///     a <- new_mutex!(42),
354 ///     b: Bar {
355 ///         x: 64,
356 ///     },
357 /// }));
358 /// let foo: Pin<&mut Foo> = foo;
359 /// pr_info!("a: {}", &*foo.a.lock());
360 /// ```
361 ///
362 /// # Syntax
363 ///
364 /// A normal `let` binding with optional type annotation. The expression is expected to implement
365 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
366 /// type, then use [`stack_try_pin_init!`].
367 ///
368 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
369 #[macro_export]
370 macro_rules! stack_pin_init {
371     (let $var:ident $(: $t:ty)? = $val:expr) => {
372         let val = $val;
373         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
374         let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
375             Ok(res) => res,
376             Err(x) => {
377                 let x: ::core::convert::Infallible = x;
378                 match x {}
379             }
380         };
381     };
382 }
383 
384 /// Initialize and pin a type directly on the stack.
385 ///
386 /// # Examples
387 ///
388 /// ```rust,ignore
389 /// # #![expect(clippy::disallowed_names)]
390 /// # use kernel::{
391 /// #     init,
392 /// #     pin_init,
393 /// #     stack_try_pin_init,
394 /// #     init::*,
395 /// #     sync::Mutex,
396 /// #     new_mutex,
397 /// #     alloc::AllocError,
398 /// # };
399 /// # use macros::pin_data;
400 /// # use core::pin::Pin;
401 /// #[pin_data]
402 /// struct Foo {
403 ///     #[pin]
404 ///     a: Mutex<usize>,
405 ///     b: KBox<Bar>,
406 /// }
407 ///
408 /// struct Bar {
409 ///     x: u32,
410 /// }
411 ///
412 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo {
413 ///     a <- new_mutex!(42),
414 ///     b: KBox::new(Bar {
415 ///         x: 64,
416 ///     }, GFP_KERNEL)?,
417 /// }));
418 /// let foo = foo.unwrap();
419 /// pr_info!("a: {}", &*foo.a.lock());
420 /// ```
421 ///
422 /// ```rust,ignore
423 /// # #![expect(clippy::disallowed_names)]
424 /// # use kernel::{
425 /// #     init,
426 /// #     pin_init,
427 /// #     stack_try_pin_init,
428 /// #     init::*,
429 /// #     sync::Mutex,
430 /// #     new_mutex,
431 /// #     alloc::AllocError,
432 /// # };
433 /// # use macros::pin_data;
434 /// # use core::pin::Pin;
435 /// #[pin_data]
436 /// struct Foo {
437 ///     #[pin]
438 ///     a: Mutex<usize>,
439 ///     b: KBox<Bar>,
440 /// }
441 ///
442 /// struct Bar {
443 ///     x: u32,
444 /// }
445 ///
446 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo {
447 ///     a <- new_mutex!(42),
448 ///     b: KBox::new(Bar {
449 ///         x: 64,
450 ///     }, GFP_KERNEL)?,
451 /// }));
452 /// pr_info!("a: {}", &*foo.a.lock());
453 /// # Ok::<_, AllocError>(())
454 /// ```
455 ///
456 /// # Syntax
457 ///
458 /// A normal `let` binding with optional type annotation. The expression is expected to implement
459 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
460 /// `=` will propagate this error.
461 #[macro_export]
462 macro_rules! stack_try_pin_init {
463     (let $var:ident $(: $t:ty)? = $val:expr) => {
464         let val = $val;
465         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
466         let mut $var = $crate::init::__internal::StackInit::init($var, val);
467     };
468     (let $var:ident $(: $t:ty)? =? $val:expr) => {
469         let val = $val;
470         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
471         let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
472     };
473 }
474 
475 /// Construct an in-place, pinned initializer for `struct`s.
476 ///
477 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
478 /// [`try_pin_init!`].
479 ///
480 /// The syntax is almost identical to that of a normal `struct` initializer:
481 ///
482 /// ```rust,ignore
483 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
484 /// # use core::pin::Pin;
485 /// #[pin_data]
486 /// struct Foo {
487 ///     a: usize,
488 ///     b: Bar,
489 /// }
490 ///
491 /// #[pin_data]
492 /// struct Bar {
493 ///     x: u32,
494 /// }
495 ///
496 /// # fn demo() -> impl PinInit<Foo> {
497 /// let a = 42;
498 ///
499 /// let initializer = pin_init!(Foo {
500 ///     a,
501 ///     b: Bar {
502 ///         x: 64,
503 ///     },
504 /// });
505 /// # initializer }
506 /// # KBox::pin_init(demo(), GFP_KERNEL).unwrap();
507 /// ```
508 ///
509 /// Arbitrary Rust expressions can be used to set the value of a variable.
510 ///
511 /// The fields are initialized in the order that they appear in the initializer. So it is possible
512 /// to read already initialized fields using raw pointers.
513 ///
514 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
515 /// initializer.
516 ///
517 /// # Init-functions
518 ///
519 /// When working with this API it is often desired to let others construct your types without
520 /// giving access to all fields. This is where you would normally write a plain function `new`
521 /// that would return a new instance of your type. With this API that is also possible.
522 /// However, there are a few extra things to keep in mind.
523 ///
524 /// To create an initializer function, simply declare it like this:
525 ///
526 /// ```rust,ignore
527 /// # use kernel::{init, pin_init, init::*};
528 /// # use core::pin::Pin;
529 /// # #[pin_data]
530 /// # struct Foo {
531 /// #     a: usize,
532 /// #     b: Bar,
533 /// # }
534 /// # #[pin_data]
535 /// # struct Bar {
536 /// #     x: u32,
537 /// # }
538 /// impl Foo {
539 ///     fn new() -> impl PinInit<Self> {
540 ///         pin_init!(Self {
541 ///             a: 42,
542 ///             b: Bar {
543 ///                 x: 64,
544 ///             },
545 ///         })
546 ///     }
547 /// }
548 /// ```
549 ///
550 /// Users of `Foo` can now create it like this:
551 ///
552 /// ```rust,ignore
553 /// # #![expect(clippy::disallowed_names)]
554 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
555 /// # use core::pin::Pin;
556 /// # #[pin_data]
557 /// # struct Foo {
558 /// #     a: usize,
559 /// #     b: Bar,
560 /// # }
561 /// # #[pin_data]
562 /// # struct Bar {
563 /// #     x: u32,
564 /// # }
565 /// # impl Foo {
566 /// #     fn new() -> impl PinInit<Self> {
567 /// #         pin_init!(Self {
568 /// #             a: 42,
569 /// #             b: Bar {
570 /// #                 x: 64,
571 /// #             },
572 /// #         })
573 /// #     }
574 /// # }
575 /// let foo = KBox::pin_init(Foo::new(), GFP_KERNEL);
576 /// ```
577 ///
578 /// They can also easily embed it into their own `struct`s:
579 ///
580 /// ```rust,ignore
581 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
582 /// # use core::pin::Pin;
583 /// # #[pin_data]
584 /// # struct Foo {
585 /// #     a: usize,
586 /// #     b: Bar,
587 /// # }
588 /// # #[pin_data]
589 /// # struct Bar {
590 /// #     x: u32,
591 /// # }
592 /// # impl Foo {
593 /// #     fn new() -> impl PinInit<Self> {
594 /// #         pin_init!(Self {
595 /// #             a: 42,
596 /// #             b: Bar {
597 /// #                 x: 64,
598 /// #             },
599 /// #         })
600 /// #     }
601 /// # }
602 /// #[pin_data]
603 /// struct FooContainer {
604 ///     #[pin]
605 ///     foo1: Foo,
606 ///     #[pin]
607 ///     foo2: Foo,
608 ///     other: u32,
609 /// }
610 ///
611 /// impl FooContainer {
612 ///     fn new(other: u32) -> impl PinInit<Self> {
613 ///         pin_init!(Self {
614 ///             foo1 <- Foo::new(),
615 ///             foo2 <- Foo::new(),
616 ///             other,
617 ///         })
618 ///     }
619 /// }
620 /// ```
621 ///
622 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
623 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just
624 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
625 ///
626 /// # Syntax
627 ///
628 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
629 /// the following modifications is expected:
630 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
631 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
632 ///   pointer named `this` inside of the initializer.
633 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
634 ///   struct, this initializes every field with 0 and then runs all initializers specified in the
635 ///   body. This can only be done if [`Zeroable`] is implemented for the struct.
636 ///
637 /// For instance:
638 ///
639 /// ```rust,ignore
640 /// # use kernel::{macros::{Zeroable, pin_data}, pin_init};
641 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
642 /// #[pin_data]
643 /// #[derive(Zeroable)]
644 /// struct Buf {
645 ///     // `ptr` points into `buf`.
646 ///     ptr: *mut u8,
647 ///     buf: [u8; 64],
648 ///     #[pin]
649 ///     pin: PhantomPinned,
650 /// }
651 /// pin_init!(&this in Buf {
652 ///     buf: [0; 64],
653 ///     // SAFETY: TODO.
654 ///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
655 ///     pin: PhantomPinned,
656 /// });
657 /// pin_init!(Buf {
658 ///     buf: [1; 64],
659 ///     ..Zeroable::zeroed()
660 /// });
661 /// ```
662 ///
663 /// [`try_pin_init!`]: kernel::try_pin_init
664 /// [`NonNull<Self>`]: core::ptr::NonNull
665 // For a detailed example of how this macro works, see the module documentation of the hidden
666 // module `__internal` inside of `init/__internal.rs`.
667 #[macro_export]
668 macro_rules! pin_init {
669     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
670         $($fields:tt)*
671     }) => {
672         $crate::__init_internal!(
673             @this($($this)?),
674             @typ($t $(::<$($generics),*>)?),
675             @fields($($fields)*),
676             @error(::core::convert::Infallible),
677             @data(PinData, use_data),
678             @has_data(HasPinData, __pin_data),
679             @construct_closure(pin_init_from_closure),
680             @munch_fields($($fields)*),
681         )
682     };
683 }
684 
685 /// Construct an in-place, fallible pinned initializer for `struct`s.
686 ///
687 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
688 ///
689 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
690 /// initialization and return the error.
691 ///
692 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
693 /// initialization fails, the memory can be safely deallocated without any further modifications.
694 ///
695 /// This macro defaults the error to [`Error`].
696 ///
697 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
698 /// after the `struct` initializer to specify the error type you want to use.
699 ///
700 /// # Examples
701 ///
702 /// ```rust,ignore
703 /// use kernel::{init::{self, PinInit}, error::Error};
704 /// #[pin_data]
705 /// struct BigBuf {
706 ///     big: KBox<[u8; 1024 * 1024 * 1024]>,
707 ///     small: [u8; 1024 * 1024],
708 ///     ptr: *mut u8,
709 /// }
710 ///
711 /// impl BigBuf {
712 ///     fn new() -> impl PinInit<Self, Error> {
713 ///         try_pin_init!(Self {
714 ///             big: KBox::init(init::zeroed(), GFP_KERNEL)?,
715 ///             small: [0; 1024 * 1024],
716 ///             ptr: core::ptr::null_mut(),
717 ///         }? Error)
718 ///     }
719 /// }
720 /// ```
721 // For a detailed example of how this macro works, see the module documentation of the hidden
722 // module `__internal` inside of `init/__internal.rs`.
723 #[macro_export]
724 macro_rules! try_pin_init {
725     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
726         $($fields:tt)*
727     }) => {
728         $crate::__init_internal!(
729             @this($($this)?),
730             @typ($t $(::<$($generics),*>)? ),
731             @fields($($fields)*),
732             @error($crate::error::Error),
733             @data(PinData, use_data),
734             @has_data(HasPinData, __pin_data),
735             @construct_closure(pin_init_from_closure),
736             @munch_fields($($fields)*),
737         )
738     };
739     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
740         $($fields:tt)*
741     }? $err:ty) => {
742         $crate::__init_internal!(
743             @this($($this)?),
744             @typ($t $(::<$($generics),*>)? ),
745             @fields($($fields)*),
746             @error($err),
747             @data(PinData, use_data),
748             @has_data(HasPinData, __pin_data),
749             @construct_closure(pin_init_from_closure),
750             @munch_fields($($fields)*),
751         )
752     };
753 }
754 
755 /// Construct an in-place initializer for `struct`s.
756 ///
757 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
758 /// [`try_init!`].
759 ///
760 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
761 /// - `unsafe` code must guarantee either full initialization or return an error and allow
762 ///   deallocation of the memory.
763 /// - the fields are initialized in the order given in the initializer.
764 /// - no references to fields are allowed to be created inside of the initializer.
765 ///
766 /// This initializer is for initializing data in-place that might later be moved. If you want to
767 /// pin-initialize, use [`pin_init!`].
768 ///
769 /// [`try_init!`]: crate::try_init!
770 // For a detailed example of how this macro works, see the module documentation of the hidden
771 // module `__internal` inside of `init/__internal.rs`.
772 #[macro_export]
773 macro_rules! init {
774     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
775         $($fields:tt)*
776     }) => {
777         $crate::__init_internal!(
778             @this($($this)?),
779             @typ($t $(::<$($generics),*>)?),
780             @fields($($fields)*),
781             @error(::core::convert::Infallible),
782             @data(InitData, /*no use_data*/),
783             @has_data(HasInitData, __init_data),
784             @construct_closure(init_from_closure),
785             @munch_fields($($fields)*),
786         )
787     }
788 }
789 
790 /// Construct an in-place fallible initializer for `struct`s.
791 ///
792 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
793 /// [`init!`].
794 ///
795 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
796 /// append `? $type` after the `struct` initializer.
797 /// The safety caveats from [`try_pin_init!`] also apply:
798 /// - `unsafe` code must guarantee either full initialization or return an error and allow
799 ///   deallocation of the memory.
800 /// - the fields are initialized in the order given in the initializer.
801 /// - no references to fields are allowed to be created inside of the initializer.
802 ///
803 /// # Examples
804 ///
805 /// ```rust,ignore
806 /// use kernel::{alloc::KBox, init::{PinInit, zeroed}, error::Error};
807 /// struct BigBuf {
808 ///     big: KBox<[u8; 1024 * 1024 * 1024]>,
809 ///     small: [u8; 1024 * 1024],
810 /// }
811 ///
812 /// impl BigBuf {
813 ///     fn new() -> impl Init<Self, Error> {
814 ///         try_init!(Self {
815 ///             big: KBox::init(zeroed(), GFP_KERNEL)?,
816 ///             small: [0; 1024 * 1024],
817 ///         }? Error)
818 ///     }
819 /// }
820 /// ```
821 // For a detailed example of how this macro works, see the module documentation of the hidden
822 // module `__internal` inside of `init/__internal.rs`.
823 #[macro_export]
824 macro_rules! try_init {
825     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
826         $($fields:tt)*
827     }) => {
828         $crate::__init_internal!(
829             @this($($this)?),
830             @typ($t $(::<$($generics),*>)?),
831             @fields($($fields)*),
832             @error($crate::error::Error),
833             @data(InitData, /*no use_data*/),
834             @has_data(HasInitData, __init_data),
835             @construct_closure(init_from_closure),
836             @munch_fields($($fields)*),
837         )
838     };
839     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
840         $($fields:tt)*
841     }? $err:ty) => {
842         $crate::__init_internal!(
843             @this($($this)?),
844             @typ($t $(::<$($generics),*>)?),
845             @fields($($fields)*),
846             @error($err),
847             @data(InitData, /*no use_data*/),
848             @has_data(HasInitData, __init_data),
849             @construct_closure(init_from_closure),
850             @munch_fields($($fields)*),
851         )
852     };
853 }
854 
855 /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is
856 /// structurally pinned.
857 ///
858 /// # Example
859 ///
860 /// This will succeed:
861 /// ```ignore
862 /// use kernel::assert_pinned;
863 /// #[pin_data]
864 /// struct MyStruct {
865 ///     #[pin]
866 ///     some_field: u64,
867 /// }
868 ///
869 /// assert_pinned!(MyStruct, some_field, u64);
870 /// ```
871 ///
872 /// This will fail:
873 // TODO: replace with `compile_fail` when supported.
874 /// ```ignore
875 /// use kernel::assert_pinned;
876 /// #[pin_data]
877 /// struct MyStruct {
878 ///     some_field: u64,
879 /// }
880 ///
881 /// assert_pinned!(MyStruct, some_field, u64);
882 /// ```
883 ///
884 /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To
885 /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can
886 /// only be used when the macro is invoked from a function body.
887 /// ```ignore
888 /// use kernel::assert_pinned;
889 /// #[pin_data]
890 /// struct Foo<T> {
891 ///     #[pin]
892 ///     elem: T,
893 /// }
894 ///
895 /// impl<T> Foo<T> {
896 ///     fn project(self: Pin<&mut Self>) -> Pin<&mut T> {
897 ///         assert_pinned!(Foo<T>, elem, T, inline);
898 ///
899 ///         // SAFETY: The field is structurally pinned.
900 ///         unsafe { self.map_unchecked_mut(|me| &mut me.elem) }
901 ///     }
902 /// }
903 /// ```
904 #[macro_export]
905 macro_rules! assert_pinned {
906     ($ty:ty, $field:ident, $field_ty:ty, inline) => {
907         let _ = move |ptr: *mut $field_ty| {
908             // SAFETY: This code is unreachable.
909             let data = unsafe { <$ty as $crate::init::__internal::HasPinData>::__pin_data() };
910             let init = $crate::init::__internal::AlwaysFail::<$field_ty>::new();
911             // SAFETY: This code is unreachable.
912             unsafe { data.$field(ptr, init) }.ok();
913         };
914     };
915 
916     ($ty:ty, $field:ident, $field_ty:ty) => {
917         const _: () = {
918             $crate::assert_pinned!($ty, $field, $field_ty, inline);
919         };
920     };
921 }
922 
923 /// A pin-initializer for the type `T`.
924 ///
925 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
926 /// be [`KBox<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use
927 /// the [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
928 ///
929 /// Also see the [module description](self).
930 ///
931 /// # Safety
932 ///
933 /// When implementing this trait you will need to take great care. Also there are probably very few
934 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
935 ///
936 /// The [`PinInit::__pinned_init`] function:
937 /// - returns `Ok(())` if it initialized every field of `slot`,
938 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
939 ///     - `slot` can be deallocated without UB occurring,
940 ///     - `slot` does not need to be dropped,
941 ///     - `slot` is not partially initialized.
942 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
943 ///
944 /// [`Arc<T>`]: crate::sync::Arc
945 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init
946 #[must_use = "An initializer must be used in order to create its value."]
947 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
948     /// Initializes `slot`.
949     ///
950     /// # Safety
951     ///
952     /// - `slot` is a valid pointer to uninitialized memory.
953     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
954     ///   deallocate.
955     /// - `slot` will not move until it is dropped, i.e. it will be pinned.
956     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
957 
958     /// First initializes the value using `self` then calls the function `f` with the initialized
959     /// value.
960     ///
961     /// If `f` returns an error the value is dropped and the initializer will forward the error.
962     ///
963     /// # Examples
964     ///
965     /// ```rust,ignore
966     /// # #![expect(clippy::disallowed_names)]
967     /// use kernel::{types::Opaque, init::pin_init_from_closure};
968     /// #[repr(C)]
969     /// struct RawFoo([u8; 16]);
970     /// extern "C" {
971     ///     fn init_foo(_: *mut RawFoo);
972     /// }
973     ///
974     /// #[pin_data]
975     /// struct Foo {
976     ///     #[pin]
977     ///     raw: Opaque<RawFoo>,
978     /// }
979     ///
980     /// impl Foo {
981     ///     fn setup(self: Pin<&mut Self>) {
982     ///         pr_info!("Setting up foo");
983     ///     }
984     /// }
985     ///
986     /// let foo = pin_init!(Foo {
987     ///     // SAFETY: TODO.
988     ///     raw <- unsafe {
989     ///         Opaque::ffi_init(|s| {
990     ///             init_foo(s);
991     ///         })
992     ///     },
993     /// }).pin_chain(|foo| {
994     ///     foo.setup();
995     ///     Ok(())
996     /// });
997     /// ```
998     fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
999     where
1000         F: FnOnce(Pin<&mut T>) -> Result<(), E>,
1001     {
1002         ChainPinInit(self, f, PhantomData)
1003     }
1004 }
1005 
1006 /// An initializer returned by [`PinInit::pin_chain`].
1007 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, KBox<T>)>);
1008 
1009 // SAFETY: The `__pinned_init` function is implemented such that it
1010 // - returns `Ok(())` on successful initialization,
1011 // - returns `Err(err)` on error and in this case `slot` will be dropped.
1012 // - considers `slot` pinned.
1013 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
1014 where
1015     I: PinInit<T, E>,
1016     F: FnOnce(Pin<&mut T>) -> Result<(), E>,
1017 {
1018     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1019         // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
1020         unsafe { self.0.__pinned_init(slot)? };
1021         // SAFETY: The above call initialized `slot` and we still have unique access.
1022         let val = unsafe { &mut *slot };
1023         // SAFETY: `slot` is considered pinned.
1024         let val = unsafe { Pin::new_unchecked(val) };
1025         // SAFETY: `slot` was initialized above.
1026         (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) })
1027     }
1028 }
1029 
1030 /// An initializer for `T`.
1031 ///
1032 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
1033 /// be [`KBox<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use
1034 /// the [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
1035 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
1036 ///
1037 /// Also see the [module description](self).
1038 ///
1039 /// # Safety
1040 ///
1041 /// When implementing this trait you will need to take great care. Also there are probably very few
1042 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
1043 ///
1044 /// The [`Init::__init`] function:
1045 /// - returns `Ok(())` if it initialized every field of `slot`,
1046 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1047 ///     - `slot` can be deallocated without UB occurring,
1048 ///     - `slot` does not need to be dropped,
1049 ///     - `slot` is not partially initialized.
1050 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1051 ///
1052 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
1053 /// code as `__init`.
1054 ///
1055 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
1056 /// move the pointee after initialization.
1057 ///
1058 /// [`Arc<T>`]: crate::sync::Arc
1059 #[must_use = "An initializer must be used in order to create its value."]
1060 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
1061     /// Initializes `slot`.
1062     ///
1063     /// # Safety
1064     ///
1065     /// - `slot` is a valid pointer to uninitialized memory.
1066     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1067     ///   deallocate.
1068     unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
1069 
1070     /// First initializes the value using `self` then calls the function `f` with the initialized
1071     /// value.
1072     ///
1073     /// If `f` returns an error the value is dropped and the initializer will forward the error.
1074     ///
1075     /// # Examples
1076     ///
1077     /// ```rust,ignore
1078     /// # #![expect(clippy::disallowed_names)]
1079     /// use kernel::{types::Opaque, init::{self, init_from_closure}};
1080     /// struct Foo {
1081     ///     buf: [u8; 1_000_000],
1082     /// }
1083     ///
1084     /// impl Foo {
1085     ///     fn setup(&mut self) {
1086     ///         pr_info!("Setting up foo");
1087     ///     }
1088     /// }
1089     ///
1090     /// let foo = init!(Foo {
1091     ///     buf <- init::zeroed()
1092     /// }).chain(|foo| {
1093     ///     foo.setup();
1094     ///     Ok(())
1095     /// });
1096     /// ```
1097     fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
1098     where
1099         F: FnOnce(&mut T) -> Result<(), E>,
1100     {
1101         ChainInit(self, f, PhantomData)
1102     }
1103 }
1104 
1105 /// An initializer returned by [`Init::chain`].
1106 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, KBox<T>)>);
1107 
1108 // SAFETY: The `__init` function is implemented such that it
1109 // - returns `Ok(())` on successful initialization,
1110 // - returns `Err(err)` on error and in this case `slot` will be dropped.
1111 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
1112 where
1113     I: Init<T, E>,
1114     F: FnOnce(&mut T) -> Result<(), E>,
1115 {
1116     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1117         // SAFETY: All requirements fulfilled since this function is `__init`.
1118         unsafe { self.0.__pinned_init(slot)? };
1119         // SAFETY: The above call initialized `slot` and we still have unique access.
1120         (self.1)(unsafe { &mut *slot }).inspect_err(|_|
1121             // SAFETY: `slot` was initialized above.
1122             unsafe { core::ptr::drop_in_place(slot) })
1123     }
1124 }
1125 
1126 // SAFETY: `__pinned_init` behaves exactly the same as `__init`.
1127 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
1128 where
1129     I: Init<T, E>,
1130     F: FnOnce(&mut T) -> Result<(), E>,
1131 {
1132     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1133         // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
1134         unsafe { self.__init(slot) }
1135     }
1136 }
1137 
1138 /// Creates a new [`PinInit<T, E>`] from the given closure.
1139 ///
1140 /// # Safety
1141 ///
1142 /// The closure:
1143 /// - returns `Ok(())` if it initialized every field of `slot`,
1144 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1145 ///     - `slot` can be deallocated without UB occurring,
1146 ///     - `slot` does not need to be dropped,
1147 ///     - `slot` is not partially initialized.
1148 /// - may assume that the `slot` does not move if `T: !Unpin`,
1149 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1150 #[inline]
1151 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
1152     f: impl FnOnce(*mut T) -> Result<(), E>,
1153 ) -> impl PinInit<T, E> {
1154     __internal::InitClosure(f, PhantomData)
1155 }
1156 
1157 /// Creates a new [`Init<T, E>`] from the given closure.
1158 ///
1159 /// # Safety
1160 ///
1161 /// The closure:
1162 /// - returns `Ok(())` if it initialized every field of `slot`,
1163 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1164 ///     - `slot` can be deallocated without UB occurring,
1165 ///     - `slot` does not need to be dropped,
1166 ///     - `slot` is not partially initialized.
1167 /// - the `slot` may move after initialization.
1168 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1169 #[inline]
1170 pub const unsafe fn init_from_closure<T: ?Sized, E>(
1171     f: impl FnOnce(*mut T) -> Result<(), E>,
1172 ) -> impl Init<T, E> {
1173     __internal::InitClosure(f, PhantomData)
1174 }
1175 
1176 /// An initializer that leaves the memory uninitialized.
1177 ///
1178 /// The initializer is a no-op. The `slot` memory is not changed.
1179 #[inline]
1180 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
1181     // SAFETY: The memory is allowed to be uninitialized.
1182     unsafe { init_from_closure(|_| Ok(())) }
1183 }
1184 
1185 /// Initializes an array by initializing each element via the provided initializer.
1186 ///
1187 /// # Examples
1188 ///
1189 /// ```rust,ignore
1190 /// use kernel::{alloc::KBox, error::Error, init::init_array_from_fn};
1191 /// let array: KBox<[usize; 1_000]> =
1192 ///     KBox::init::<Error>(init_array_from_fn(|i| i), GFP_KERNEL)?;
1193 /// assert_eq!(array.len(), 1_000);
1194 /// # Ok::<(), Error>(())
1195 /// ```
1196 pub fn init_array_from_fn<I, const N: usize, T, E>(
1197     mut make_init: impl FnMut(usize) -> I,
1198 ) -> impl Init<[T; N], E>
1199 where
1200     I: Init<T, E>,
1201 {
1202     let init = move |slot: *mut [T; N]| {
1203         let slot = slot.cast::<T>();
1204         // Counts the number of initialized elements and when dropped drops that many elements from
1205         // `slot`.
1206         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1207             // We now free every element that has been initialized before.
1208             // SAFETY: The loop initialized exactly the values from 0..i and since we
1209             // return `Err` below, the caller will consider the memory at `slot` as
1210             // uninitialized.
1211             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1212         });
1213         for i in 0..N {
1214             let init = make_init(i);
1215             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1216             let ptr = unsafe { slot.add(i) };
1217             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1218             // requirements.
1219             unsafe { init.__init(ptr) }?;
1220             *init_count += 1;
1221         }
1222         init_count.dismiss();
1223         Ok(())
1224     };
1225     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1226     // any initialized elements and returns `Err`.
1227     unsafe { init_from_closure(init) }
1228 }
1229 
1230 /// Initializes an array by initializing each element via the provided initializer.
1231 ///
1232 /// # Examples
1233 ///
1234 /// ```rust,ignore
1235 /// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex};
1236 /// let array: Arc<[Mutex<usize>; 1_000]> =
1237 ///     Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i)), GFP_KERNEL)?;
1238 /// assert_eq!(array.len(), 1_000);
1239 /// # Ok::<(), Error>(())
1240 /// ```
1241 pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
1242     mut make_init: impl FnMut(usize) -> I,
1243 ) -> impl PinInit<[T; N], E>
1244 where
1245     I: PinInit<T, E>,
1246 {
1247     let init = move |slot: *mut [T; N]| {
1248         let slot = slot.cast::<T>();
1249         // Counts the number of initialized elements and when dropped drops that many elements from
1250         // `slot`.
1251         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1252             // We now free every element that has been initialized before.
1253             // SAFETY: The loop initialized exactly the values from 0..i and since we
1254             // return `Err` below, the caller will consider the memory at `slot` as
1255             // uninitialized.
1256             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1257         });
1258         for i in 0..N {
1259             let init = make_init(i);
1260             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1261             let ptr = unsafe { slot.add(i) };
1262             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1263             // requirements.
1264             unsafe { init.__pinned_init(ptr) }?;
1265             *init_count += 1;
1266         }
1267         init_count.dismiss();
1268         Ok(())
1269     };
1270     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1271     // any initialized elements and returns `Err`.
1272     unsafe { pin_init_from_closure(init) }
1273 }
1274 
1275 // SAFETY: Every type can be initialized by-value.
1276 unsafe impl<T, E> Init<T, E> for T {
1277     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1278         // SAFETY: TODO.
1279         unsafe { slot.write(self) };
1280         Ok(())
1281     }
1282 }
1283 
1284 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`.
1285 unsafe impl<T, E> PinInit<T, E> for T {
1286     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1287         // SAFETY: TODO.
1288         unsafe { self.__init(slot) }
1289     }
1290 }
1291 
1292 /// Smart pointer that can initialize memory in-place.
1293 pub trait InPlaceInit<T>: Sized {
1294     /// Pinned version of `Self`.
1295     ///
1296     /// If a type already implicitly pins its pointee, `Pin<Self>` is unnecessary. In this case use
1297     /// `Self`, otherwise just use `Pin<Self>`.
1298     type PinnedSelf;
1299 
1300     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1301     /// type.
1302     ///
1303     /// If `T: !Unpin` it will not be able to move afterwards.
1304     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
1305     where
1306         E: From<AllocError>;
1307 
1308     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1309     /// type.
1310     ///
1311     /// If `T: !Unpin` it will not be able to move afterwards.
1312     fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self::PinnedSelf>
1313     where
1314         Error: From<E>,
1315     {
1316         // SAFETY: We delegate to `init` and only change the error type.
1317         let init = unsafe {
1318             pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1319         };
1320         Self::try_pin_init(init, flags)
1321     }
1322 
1323     /// Use the given initializer to in-place initialize a `T`.
1324     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1325     where
1326         E: From<AllocError>;
1327 
1328     /// Use the given initializer to in-place initialize a `T`.
1329     fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self>
1330     where
1331         Error: From<E>,
1332     {
1333         // SAFETY: We delegate to `init` and only change the error type.
1334         let init = unsafe {
1335             init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1336         };
1337         Self::try_init(init, flags)
1338     }
1339 }
1340 
1341 impl<T> InPlaceInit<T> for Arc<T> {
1342     type PinnedSelf = Self;
1343 
1344     #[inline]
1345     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
1346     where
1347         E: From<AllocError>,
1348     {
1349         UniqueArc::try_pin_init(init, flags).map(|u| u.into())
1350     }
1351 
1352     #[inline]
1353     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1354     where
1355         E: From<AllocError>,
1356     {
1357         UniqueArc::try_init(init, flags).map(|u| u.into())
1358     }
1359 }
1360 
1361 impl<T> InPlaceInit<T> for UniqueArc<T> {
1362     type PinnedSelf = Pin<Self>;
1363 
1364     #[inline]
1365     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
1366     where
1367         E: From<AllocError>,
1368     {
1369         UniqueArc::new_uninit(flags)?.write_pin_init(init)
1370     }
1371 
1372     #[inline]
1373     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1374     where
1375         E: From<AllocError>,
1376     {
1377         UniqueArc::new_uninit(flags)?.write_init(init)
1378     }
1379 }
1380 
1381 /// Smart pointer containing uninitialized memory and that can write a value.
1382 pub trait InPlaceWrite<T> {
1383     /// The type `Self` turns into when the contents are initialized.
1384     type Initialized;
1385 
1386     /// Use the given initializer to write a value into `self`.
1387     ///
1388     /// Does not drop the current value and considers it as uninitialized memory.
1389     fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>;
1390 
1391     /// Use the given pin-initializer to write a value into `self`.
1392     ///
1393     /// Does not drop the current value and considers it as uninitialized memory.
1394     fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>;
1395 }
1396 
1397 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
1398     type Initialized = UniqueArc<T>;
1399 
1400     fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
1401         let slot = self.as_mut_ptr();
1402         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1403         // slot is valid.
1404         unsafe { init.__init(slot)? };
1405         // SAFETY: All fields have been initialized.
1406         Ok(unsafe { self.assume_init() })
1407     }
1408 
1409     fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
1410         let slot = self.as_mut_ptr();
1411         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1412         // slot is valid and will not be moved, because we pin it later.
1413         unsafe { init.__pinned_init(slot)? };
1414         // SAFETY: All fields have been initialized.
1415         Ok(unsafe { self.assume_init() }.into())
1416     }
1417 }
1418 
1419 /// Trait facilitating pinned destruction.
1420 ///
1421 /// Use [`pinned_drop`] to implement this trait safely:
1422 ///
1423 /// ```rust,ignore
1424 /// # use kernel::sync::Mutex;
1425 /// use kernel::macros::pinned_drop;
1426 /// use core::pin::Pin;
1427 /// #[pin_data(PinnedDrop)]
1428 /// struct Foo {
1429 ///     #[pin]
1430 ///     mtx: Mutex<usize>,
1431 /// }
1432 ///
1433 /// #[pinned_drop]
1434 /// impl PinnedDrop for Foo {
1435 ///     fn drop(self: Pin<&mut Self>) {
1436 ///         pr_info!("Foo is being dropped!");
1437 ///     }
1438 /// }
1439 /// ```
1440 ///
1441 /// # Safety
1442 ///
1443 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1444 ///
1445 /// [`pinned_drop`]: kernel::macros::pinned_drop
1446 pub unsafe trait PinnedDrop: __internal::HasPinData {
1447     /// Executes the pinned destructor of this type.
1448     ///
1449     /// While this function is marked safe, it is actually unsafe to call it manually. For this
1450     /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1451     /// and thus prevents this function from being called where it should not.
1452     ///
1453     /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1454     /// automatically.
1455     fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1456 }
1457 
1458 /// Marker trait for types that can be initialized by writing just zeroes.
1459 ///
1460 /// # Safety
1461 ///
1462 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1463 /// this is not UB:
1464 ///
1465 /// ```rust,ignore
1466 /// let val: Self = unsafe { core::mem::zeroed() };
1467 /// ```
1468 pub unsafe trait Zeroable {}
1469 
1470 /// Create a new zeroed T.
1471 ///
1472 /// The returned initializer will write `0x00` to every byte of the given `slot`.
1473 #[inline]
1474 pub fn zeroed<T: Zeroable>() -> impl Init<T> {
1475     // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1476     // and because we write all zeroes, the memory is initialized.
1477     unsafe {
1478         init_from_closure(|slot: *mut T| {
1479             slot.write_bytes(0, 1);
1480             Ok(())
1481         })
1482     }
1483 }
1484 
1485 macro_rules! impl_zeroable {
1486     ($($({$($generics:tt)*})? $t:ty, )*) => {
1487         // SAFETY: Safety comments written in the macro invocation.
1488         $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1489     };
1490 }
1491 
1492 impl_zeroable! {
1493     // SAFETY: All primitives that are allowed to be zero.
1494     bool,
1495     char,
1496     u8, u16, u32, u64, u128, usize,
1497     i8, i16, i32, i64, i128, isize,
1498     f32, f64,
1499 
1500     // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
1501     // creating an instance of an uninhabited type is immediate undefined behavior. For more on
1502     // uninhabited/empty types, consult The Rustonomicon:
1503     // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
1504     // also has information on undefined behavior:
1505     // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
1506     //
1507     // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
1508     {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),
1509 
1510     // SAFETY: Type is allowed to take any value, including all zeros.
1511     {<T>} MaybeUninit<T>,
1512     // SAFETY: Type is allowed to take any value, including all zeros.
1513     {<T>} Opaque<T>,
1514 
1515     // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
1516     {<T: ?Sized + Zeroable>} UnsafeCell<T>,
1517 
1518     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1519     Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1520     Option<NonZeroU128>, Option<NonZeroUsize>,
1521     Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1522     Option<NonZeroI128>, Option<NonZeroIsize>,
1523 
1524     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1525     //
1526     // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
1527     {<T: ?Sized>} Option<NonNull<T>>,
1528     {<T: ?Sized>} Option<KBox<T>>,
1529 
1530     // SAFETY: `null` pointer is valid.
1531     //
1532     // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1533     // null.
1534     //
1535     // When `Pointee` gets stabilized, we could use
1536     // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1537     {<T>} *mut T, {<T>} *const T,
1538 
1539     // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1540     // zero.
1541     {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1542 
1543     // SAFETY: `T` is `Zeroable`.
1544     {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1545 }
1546 
1547 macro_rules! impl_tuple_zeroable {
1548     ($(,)?) => {};
1549     ($first:ident, $($t:ident),* $(,)?) => {
1550         // SAFETY: All elements are zeroable and padding can be zero.
1551         unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1552         impl_tuple_zeroable!($($t),* ,);
1553     }
1554 }
1555 
1556 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1557