1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! Library to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! [Pinning][pinning] is Rust's way of ensuring data does not move. 6 //! 7 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 8 //! overflow. 9 //! 10 //! This library's main use-case is in [Rust-for-Linux]. Although this version can be used 11 //! standalone. 12 //! 13 //! There are cases when you want to in-place initialize a struct. For example when it is very big 14 //! and moving it from the stack is not an option, because it is bigger than the stack itself. 15 //! Another reason would be that you need the address of the object to initialize it. This stands 16 //! in direct conflict with Rust's normal process of first initializing an object and then moving 17 //! it into it's final memory location. For more information, see 18 //! <https://rust-for-linux.com/the-safe-pinned-initialization-problem>. 19 //! 20 //! This library allows you to do in-place initialization safely. 21 //! 22 //! ## Nightly Needed for `alloc` feature 23 //! 24 //! This library requires the [`allocator_api` unstable feature] when the `alloc` feature is 25 //! enabled and thus this feature can only be used with a nightly compiler. When enabling the 26 //! `alloc` feature, the user will be required to activate `allocator_api` as well. 27 //! 28 //! [`allocator_api` unstable feature]: https://doc.rust-lang.org/nightly/unstable-book/library-features/allocator-api.html 29 //! 30 //! The feature is enabled by default, thus by default `pin-init` will require a nightly compiler. 31 //! However, using the crate on stable compilers is possible by disabling `alloc`. In practice this 32 //! will require the `std` feature, because stable compilers have neither `Box` nor `Arc` in no-std 33 //! mode. 34 //! 35 //! ## Nightly needed for `unsafe-pinned` feature 36 //! 37 //! This feature enables the `Wrapper` implementation on the unstable `core::pin::UnsafePinned` type. 38 //! This requires the [`unsafe_pinned` unstable feature](https://github.com/rust-lang/rust/issues/125735) 39 //! and therefore a nightly compiler. Note that this feature is not enabled by default. 40 //! 41 //! # Overview 42 //! 43 //! To initialize a `struct` with an in-place constructor you will need two things: 44 //! - an in-place constructor, 45 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 46 //! [`Box<T>`] or any other smart pointer that supports this library). 47 //! 48 //! To get an in-place constructor there are generally three options: 49 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 50 //! - a custom function/macro returning an in-place constructor provided by someone else, 51 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 52 //! 53 //! Aside from pinned initialization, this library also supports in-place construction without 54 //! pinning, the macros/types/functions are generally named like the pinned variants without the 55 //! `pin_` prefix. 56 //! 57 //! # Examples 58 //! 59 //! Throughout the examples we will often make use of the `CMutex` type which can be found in 60 //! `../examples/mutex.rs`. It is essentially a userland rebuild of the `struct mutex` type from 61 //! the Linux kernel. It also uses a wait list and a basic spinlock. Importantly the wait list 62 //! requires it to be pinned to be locked and thus is a prime candidate for using this library. 63 //! 64 //! ## Using the [`pin_init!`] macro 65 //! 66 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 67 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 68 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 69 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 70 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 71 //! 72 //! ```rust 73 //! # #![expect(clippy::disallowed_names)] 74 //! # #![feature(allocator_api)] 75 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 76 //! # use core::pin::Pin; 77 //! use pin_init::{pin_data, pin_init, InPlaceInit}; 78 //! 79 //! #[pin_data] 80 //! struct Foo { 81 //! #[pin] 82 //! a: CMutex<usize>, 83 //! b: u32, 84 //! } 85 //! 86 //! let foo = pin_init!(Foo { 87 //! a <- CMutex::new(42), 88 //! b: 24, 89 //! }); 90 //! # let _ = Box::pin_init(foo); 91 //! ``` 92 //! 93 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 94 //! (or just the stack) to actually initialize a `Foo`: 95 //! 96 //! ```rust 97 //! # #![expect(clippy::disallowed_names)] 98 //! # #![feature(allocator_api)] 99 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 100 //! # use core::{alloc::AllocError, pin::Pin}; 101 //! # use pin_init::*; 102 //! # 103 //! # #[pin_data] 104 //! # struct Foo { 105 //! # #[pin] 106 //! # a: CMutex<usize>, 107 //! # b: u32, 108 //! # } 109 //! # 110 //! # let foo = pin_init!(Foo { 111 //! # a <- CMutex::new(42), 112 //! # b: 24, 113 //! # }); 114 //! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo); 115 //! ``` 116 //! 117 //! For more information see the [`pin_init!`] macro. 118 //! 119 //! ## Using a custom function/macro that returns an initializer 120 //! 121 //! Many types that use this library supply a function/macro that returns an initializer, because 122 //! the above method only works for types where you can access the fields. 123 //! 124 //! ```rust 125 //! # #![feature(allocator_api)] 126 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 127 //! # use pin_init::*; 128 //! # use std::sync::Arc; 129 //! # use core::pin::Pin; 130 //! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42)); 131 //! ``` 132 //! 133 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 134 //! 135 //! ```rust 136 //! # #![feature(allocator_api)] 137 //! # use pin_init::*; 138 //! # #[path = "../examples/error.rs"] mod error; use error::Error; 139 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 140 //! #[pin_data] 141 //! struct DriverData { 142 //! #[pin] 143 //! status: CMutex<i32>, 144 //! buffer: Box<[u8; 1_000_000]>, 145 //! } 146 //! 147 //! impl DriverData { 148 //! fn new() -> impl PinInit<Self, Error> { 149 //! pin_init!(Self { 150 //! status <- CMutex::new(0), 151 //! buffer: Box::init(pin_init::init_zeroed())?, 152 //! }? Error) 153 //! } 154 //! } 155 //! ``` 156 //! 157 //! ## Manual creation of an initializer 158 //! 159 //! Often when working with primitives the previous approaches are not sufficient. That is where 160 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 161 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 162 //! actually does the initialization in the correct way. Here are the things to look out for 163 //! (we are calling the parameter to the closure `slot`): 164 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 165 //! `slot` now contains a valid bit pattern for the type `T`, 166 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 167 //! you need to take care to clean up anything if your initialization fails mid-way, 168 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 169 //! `slot` gets called. 170 //! 171 //! ```rust 172 //! # #![feature(extern_types)] 173 //! use pin_init::{pin_data, pinned_drop, PinInit, PinnedDrop, pin_init_from_closure}; 174 //! use core::{ 175 //! ptr::addr_of_mut, 176 //! marker::PhantomPinned, 177 //! cell::UnsafeCell, 178 //! pin::Pin, 179 //! mem::MaybeUninit, 180 //! }; 181 //! mod bindings { 182 //! #[repr(C)] 183 //! pub struct foo { 184 //! /* fields from C ... */ 185 //! } 186 //! extern "C" { 187 //! pub fn init_foo(ptr: *mut foo); 188 //! pub fn destroy_foo(ptr: *mut foo); 189 //! #[must_use = "you must check the error return code"] 190 //! pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32; 191 //! } 192 //! } 193 //! 194 //! /// # Invariants 195 //! /// 196 //! /// `foo` is always initialized 197 //! #[pin_data(PinnedDrop)] 198 //! pub struct RawFoo { 199 //! #[pin] 200 //! _p: PhantomPinned, 201 //! #[pin] 202 //! foo: UnsafeCell<MaybeUninit<bindings::foo>>, 203 //! } 204 //! 205 //! impl RawFoo { 206 //! pub fn new(flags: u32) -> impl PinInit<Self, i32> { 207 //! // SAFETY: 208 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 209 //! // enabled `foo`, 210 //! // - when it returns `Err(e)`, then it has cleaned up before 211 //! unsafe { 212 //! pin_init_from_closure(move |slot: *mut Self| { 213 //! // `slot` contains uninit memory, avoid creating a reference. 214 //! let foo = addr_of_mut!((*slot).foo); 215 //! let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>(); 216 //! 217 //! // Initialize the `foo` 218 //! bindings::init_foo(foo); 219 //! 220 //! // Try to enable it. 221 //! let err = bindings::enable_foo(foo, flags); 222 //! if err != 0 { 223 //! // Enabling has failed, first clean up the foo and then return the error. 224 //! bindings::destroy_foo(foo); 225 //! Err(err) 226 //! } else { 227 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 228 //! Ok(()) 229 //! } 230 //! }) 231 //! } 232 //! } 233 //! } 234 //! 235 //! #[pinned_drop] 236 //! impl PinnedDrop for RawFoo { 237 //! fn drop(self: Pin<&mut Self>) { 238 //! // SAFETY: Since `foo` is initialized, destroying is safe. 239 //! unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) }; 240 //! } 241 //! } 242 //! ``` 243 //! 244 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 245 //! the `kernel` crate. The [`sync`] module is a good starting point. 246 //! 247 //! [`sync`]: https://rust.docs.kernel.org/kernel/sync/index.html 248 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 249 //! [structurally pinned fields]: 250 //! https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning 251 //! [stack]: crate::stack_pin_init 252 #![cfg_attr( 253 kernel, 254 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 255 )] 256 #![cfg_attr( 257 kernel, 258 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 259 )] 260 #![cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 261 #![cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 262 //! [`impl PinInit<Foo>`]: crate::PinInit 263 //! [`impl PinInit<T, E>`]: crate::PinInit 264 //! [`impl Init<T, E>`]: crate::Init 265 //! [Rust-for-Linux]: https://rust-for-linux.com/ 266 267 #![cfg_attr(not(RUSTC_LINT_REASONS_IS_STABLE), feature(lint_reasons))] 268 #![cfg_attr( 269 all( 270 any(feature = "alloc", feature = "std"), 271 not(RUSTC_NEW_UNINIT_IS_STABLE) 272 ), 273 feature(new_uninit) 274 )] 275 #![forbid(missing_docs, unsafe_op_in_unsafe_fn)] 276 #![cfg_attr(not(feature = "std"), no_std)] 277 #![cfg_attr(feature = "alloc", feature(allocator_api))] 278 #![cfg_attr( 279 all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED), 280 feature(unsafe_pinned) 281 )] 282 283 use core::{ 284 cell::UnsafeCell, 285 convert::Infallible, 286 marker::PhantomData, 287 mem::MaybeUninit, 288 num::*, 289 pin::Pin, 290 ptr::{self, NonNull}, 291 }; 292 293 // This is used by doc-tests -- the proc-macros expand to `::pin_init::...` and without this the 294 // doc-tests wouldn't have an extern crate named `pin_init`. 295 #[allow(unused_extern_crates)] 296 extern crate self as pin_init; 297 298 #[doc(hidden)] 299 pub mod __internal; 300 301 #[cfg(any(feature = "std", feature = "alloc"))] 302 mod alloc; 303 #[cfg(any(feature = "std", feature = "alloc"))] 304 pub use alloc::InPlaceInit; 305 306 /// Used to specify the pinning information of the fields of a struct. 307 /// 308 /// This is somewhat similar in purpose as 309 /// [pin-project-lite](https://crates.io/crates/pin-project-lite). 310 /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each 311 /// field you want to structurally pin. 312 /// 313 /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`, 314 /// then `#[pin]` directs the type of initializer that is required. 315 /// 316 /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this 317 /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with 318 /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care. 319 /// 320 /// # Examples 321 /// 322 /// ``` 323 /// # #![feature(allocator_api)] 324 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 325 /// use pin_init::pin_data; 326 /// 327 /// enum Command { 328 /// /* ... */ 329 /// } 330 /// 331 /// #[pin_data] 332 /// struct DriverData { 333 /// #[pin] 334 /// queue: CMutex<Vec<Command>>, 335 /// buf: Box<[u8; 1024 * 1024]>, 336 /// } 337 /// ``` 338 /// 339 /// ``` 340 /// # #![feature(allocator_api)] 341 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 342 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} } 343 /// use core::pin::Pin; 344 /// use pin_init::{pin_data, pinned_drop, PinnedDrop}; 345 /// 346 /// enum Command { 347 /// /* ... */ 348 /// } 349 /// 350 /// #[pin_data(PinnedDrop)] 351 /// struct DriverData { 352 /// #[pin] 353 /// queue: CMutex<Vec<Command>>, 354 /// buf: Box<[u8; 1024 * 1024]>, 355 /// raw_info: *mut bindings::info, 356 /// } 357 /// 358 /// #[pinned_drop] 359 /// impl PinnedDrop for DriverData { 360 /// fn drop(self: Pin<&mut Self>) { 361 /// unsafe { bindings::destroy_info(self.raw_info) }; 362 /// } 363 /// } 364 /// ``` 365 pub use ::pin_init_internal::pin_data; 366 367 /// Used to implement `PinnedDrop` safely. 368 /// 369 /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`. 370 /// 371 /// # Examples 372 /// 373 /// ``` 374 /// # #![feature(allocator_api)] 375 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 376 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} } 377 /// use core::pin::Pin; 378 /// use pin_init::{pin_data, pinned_drop, PinnedDrop}; 379 /// 380 /// enum Command { 381 /// /* ... */ 382 /// } 383 /// 384 /// #[pin_data(PinnedDrop)] 385 /// struct DriverData { 386 /// #[pin] 387 /// queue: CMutex<Vec<Command>>, 388 /// buf: Box<[u8; 1024 * 1024]>, 389 /// raw_info: *mut bindings::info, 390 /// } 391 /// 392 /// #[pinned_drop] 393 /// impl PinnedDrop for DriverData { 394 /// fn drop(self: Pin<&mut Self>) { 395 /// unsafe { bindings::destroy_info(self.raw_info) }; 396 /// } 397 /// } 398 /// ``` 399 pub use ::pin_init_internal::pinned_drop; 400 401 /// Derives the [`Zeroable`] trait for the given `struct` or `union`. 402 /// 403 /// This can only be used for `struct`s/`union`s where every field implements the [`Zeroable`] 404 /// trait. 405 /// 406 /// # Examples 407 /// 408 /// ``` 409 /// use pin_init::Zeroable; 410 /// 411 /// #[derive(Zeroable)] 412 /// pub struct DriverData { 413 /// pub(crate) id: i64, 414 /// buf_ptr: *mut u8, 415 /// len: usize, 416 /// } 417 /// ``` 418 /// 419 /// ``` 420 /// use pin_init::Zeroable; 421 /// 422 /// #[derive(Zeroable)] 423 /// pub union SignCast { 424 /// signed: i64, 425 /// unsigned: u64, 426 /// } 427 /// ``` 428 pub use ::pin_init_internal::Zeroable; 429 430 /// Derives the [`Zeroable`] trait for the given `struct` or `union` if all fields implement 431 /// [`Zeroable`]. 432 /// 433 /// Contrary to the derive macro named [`macro@Zeroable`], this one silently fails when a field 434 /// doesn't implement [`Zeroable`]. 435 /// 436 /// # Examples 437 /// 438 /// ``` 439 /// use pin_init::MaybeZeroable; 440 /// 441 /// // implmements `Zeroable` 442 /// #[derive(MaybeZeroable)] 443 /// pub struct DriverData { 444 /// pub(crate) id: i64, 445 /// buf_ptr: *mut u8, 446 /// len: usize, 447 /// } 448 /// 449 /// // does not implmement `Zeroable` 450 /// #[derive(MaybeZeroable)] 451 /// pub struct DriverData2 { 452 /// pub(crate) id: i64, 453 /// buf_ptr: *mut u8, 454 /// len: usize, 455 /// // this field doesn't implement `Zeroable` 456 /// other_data: &'static i32, 457 /// } 458 /// ``` 459 pub use ::pin_init_internal::MaybeZeroable; 460 461 /// Initialize and pin a type directly on the stack. 462 /// 463 /// # Examples 464 /// 465 /// ```rust 466 /// # #![expect(clippy::disallowed_names)] 467 /// # #![feature(allocator_api)] 468 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 469 /// # use pin_init::*; 470 /// # use core::pin::Pin; 471 /// #[pin_data] 472 /// struct Foo { 473 /// #[pin] 474 /// a: CMutex<usize>, 475 /// b: Bar, 476 /// } 477 /// 478 /// #[pin_data] 479 /// struct Bar { 480 /// x: u32, 481 /// } 482 /// 483 /// stack_pin_init!(let foo = pin_init!(Foo { 484 /// a <- CMutex::new(42), 485 /// b: Bar { 486 /// x: 64, 487 /// }, 488 /// })); 489 /// let foo: Pin<&mut Foo> = foo; 490 /// println!("a: {}", &*foo.a.lock()); 491 /// ``` 492 /// 493 /// # Syntax 494 /// 495 /// A normal `let` binding with optional type annotation. The expression is expected to implement 496 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 497 /// type, then use [`stack_try_pin_init!`]. 498 #[macro_export] 499 macro_rules! stack_pin_init { 500 (let $var:ident $(: $t:ty)? = $val:expr) => { 501 let val = $val; 502 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 503 let mut $var = match $crate::__internal::StackInit::init($var, val) { 504 Ok(res) => res, 505 Err(x) => { 506 let x: ::core::convert::Infallible = x; 507 match x {} 508 } 509 }; 510 }; 511 } 512 513 /// Initialize and pin a type directly on the stack. 514 /// 515 /// # Examples 516 /// 517 /// ```rust 518 /// # #![expect(clippy::disallowed_names)] 519 /// # #![feature(allocator_api)] 520 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 521 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 522 /// # use pin_init::*; 523 /// #[pin_data] 524 /// struct Foo { 525 /// #[pin] 526 /// a: CMutex<usize>, 527 /// b: Box<Bar>, 528 /// } 529 /// 530 /// struct Bar { 531 /// x: u32, 532 /// } 533 /// 534 /// stack_try_pin_init!(let foo: Foo = pin_init!(Foo { 535 /// a <- CMutex::new(42), 536 /// b: Box::try_new(Bar { 537 /// x: 64, 538 /// })?, 539 /// }? Error)); 540 /// let foo = foo.unwrap(); 541 /// println!("a: {}", &*foo.a.lock()); 542 /// ``` 543 /// 544 /// ```rust 545 /// # #![expect(clippy::disallowed_names)] 546 /// # #![feature(allocator_api)] 547 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 548 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 549 /// # use pin_init::*; 550 /// #[pin_data] 551 /// struct Foo { 552 /// #[pin] 553 /// a: CMutex<usize>, 554 /// b: Box<Bar>, 555 /// } 556 /// 557 /// struct Bar { 558 /// x: u32, 559 /// } 560 /// 561 /// stack_try_pin_init!(let foo: Foo =? pin_init!(Foo { 562 /// a <- CMutex::new(42), 563 /// b: Box::try_new(Bar { 564 /// x: 64, 565 /// })?, 566 /// }? Error)); 567 /// println!("a: {}", &*foo.a.lock()); 568 /// # Ok::<_, Error>(()) 569 /// ``` 570 /// 571 /// # Syntax 572 /// 573 /// A normal `let` binding with optional type annotation. The expression is expected to implement 574 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 575 /// `=` will propagate this error. 576 #[macro_export] 577 macro_rules! stack_try_pin_init { 578 (let $var:ident $(: $t:ty)? = $val:expr) => { 579 let val = $val; 580 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 581 let mut $var = $crate::__internal::StackInit::init($var, val); 582 }; 583 (let $var:ident $(: $t:ty)? =? $val:expr) => { 584 let val = $val; 585 let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit()); 586 let mut $var = $crate::__internal::StackInit::init($var, val)?; 587 }; 588 } 589 590 /// Construct an in-place, fallible pinned initializer for `struct`s. 591 /// 592 /// The error type defaults to [`Infallible`]; if you need a different one, write `? Error` at the 593 /// end, after the struct initializer. 594 /// 595 /// The syntax is almost identical to that of a normal `struct` initializer: 596 /// 597 /// ```rust 598 /// # use pin_init::*; 599 /// # use core::pin::Pin; 600 /// #[pin_data] 601 /// struct Foo { 602 /// a: usize, 603 /// b: Bar, 604 /// } 605 /// 606 /// #[pin_data] 607 /// struct Bar { 608 /// x: u32, 609 /// } 610 /// 611 /// # fn demo() -> impl PinInit<Foo> { 612 /// let a = 42; 613 /// 614 /// let initializer = pin_init!(Foo { 615 /// a, 616 /// b: Bar { 617 /// x: 64, 618 /// }, 619 /// }); 620 /// # initializer } 621 /// # Box::pin_init(demo()).unwrap(); 622 /// ``` 623 /// 624 /// Arbitrary Rust expressions can be used to set the value of a variable. 625 /// 626 /// The fields are initialized in the order that they appear in the initializer. So it is possible 627 /// to read already initialized fields using raw pointers. 628 /// 629 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 630 /// initializer. 631 /// 632 /// # Init-functions 633 /// 634 /// When working with this library it is often desired to let others construct your types without 635 /// giving access to all fields. This is where you would normally write a plain function `new` that 636 /// would return a new instance of your type. With this library that is also possible. However, 637 /// there are a few extra things to keep in mind. 638 /// 639 /// To create an initializer function, simply declare it like this: 640 /// 641 /// ```rust 642 /// # use pin_init::*; 643 /// # use core::pin::Pin; 644 /// # #[pin_data] 645 /// # struct Foo { 646 /// # a: usize, 647 /// # b: Bar, 648 /// # } 649 /// # #[pin_data] 650 /// # struct Bar { 651 /// # x: u32, 652 /// # } 653 /// impl Foo { 654 /// fn new() -> impl PinInit<Self> { 655 /// pin_init!(Self { 656 /// a: 42, 657 /// b: Bar { 658 /// x: 64, 659 /// }, 660 /// }) 661 /// } 662 /// } 663 /// ``` 664 /// 665 /// Users of `Foo` can now create it like this: 666 /// 667 /// ```rust 668 /// # #![expect(clippy::disallowed_names)] 669 /// # use pin_init::*; 670 /// # use core::pin::Pin; 671 /// # #[pin_data] 672 /// # struct Foo { 673 /// # a: usize, 674 /// # b: Bar, 675 /// # } 676 /// # #[pin_data] 677 /// # struct Bar { 678 /// # x: u32, 679 /// # } 680 /// # impl Foo { 681 /// # fn new() -> impl PinInit<Self> { 682 /// # pin_init!(Self { 683 /// # a: 42, 684 /// # b: Bar { 685 /// # x: 64, 686 /// # }, 687 /// # }) 688 /// # } 689 /// # } 690 /// let foo = Box::pin_init(Foo::new()); 691 /// ``` 692 /// 693 /// They can also easily embed it into their own `struct`s: 694 /// 695 /// ```rust 696 /// # use pin_init::*; 697 /// # use core::pin::Pin; 698 /// # #[pin_data] 699 /// # struct Foo { 700 /// # a: usize, 701 /// # b: Bar, 702 /// # } 703 /// # #[pin_data] 704 /// # struct Bar { 705 /// # x: u32, 706 /// # } 707 /// # impl Foo { 708 /// # fn new() -> impl PinInit<Self> { 709 /// # pin_init!(Self { 710 /// # a: 42, 711 /// # b: Bar { 712 /// # x: 64, 713 /// # }, 714 /// # }) 715 /// # } 716 /// # } 717 /// #[pin_data] 718 /// struct FooContainer { 719 /// #[pin] 720 /// foo1: Foo, 721 /// #[pin] 722 /// foo2: Foo, 723 /// other: u32, 724 /// } 725 /// 726 /// impl FooContainer { 727 /// fn new(other: u32) -> impl PinInit<Self> { 728 /// pin_init!(Self { 729 /// foo1 <- Foo::new(), 730 /// foo2 <- Foo::new(), 731 /// other, 732 /// }) 733 /// } 734 /// } 735 /// ``` 736 /// 737 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 738 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 739 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 740 /// 741 /// # Syntax 742 /// 743 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 744 /// the following modifications is expected: 745 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 746 /// - You can use `_: { /* run any user-code here */ },` anywhere where you can place fields in 747 /// order to run arbitrary code. 748 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 749 /// pointer named `this` inside of the initializer. 750 /// - Using struct update syntax one can place `..Zeroable::init_zeroed()` at the very end of the 751 /// struct, this initializes every field with 0 and then runs all initializers specified in the 752 /// body. This can only be done if [`Zeroable`] is implemented for the struct. 753 /// 754 /// For instance: 755 /// 756 /// ```rust 757 /// # use pin_init::*; 758 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 759 /// #[pin_data] 760 /// #[derive(Zeroable)] 761 /// struct Buf { 762 /// // `ptr` points into `buf`. 763 /// ptr: *mut u8, 764 /// buf: [u8; 64], 765 /// #[pin] 766 /// pin: PhantomPinned, 767 /// } 768 /// 769 /// let init = pin_init!(&this in Buf { 770 /// buf: [0; 64], 771 /// // SAFETY: TODO. 772 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 773 /// pin: PhantomPinned, 774 /// }); 775 /// let init = pin_init!(Buf { 776 /// buf: [1; 64], 777 /// ..Zeroable::init_zeroed() 778 /// }); 779 /// ``` 780 /// 781 /// [`NonNull<Self>`]: core::ptr::NonNull 782 pub use pin_init_internal::pin_init; 783 784 /// Construct an in-place, fallible initializer for `struct`s. 785 /// 786 /// This macro defaults the error to [`Infallible`]; if you need a different one, write `? Error` 787 /// at the end, after the struct initializer. 788 /// 789 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 790 /// - `unsafe` code must guarantee either full initialization or return an error and allow 791 /// deallocation of the memory. 792 /// - the fields are initialized in the order given in the initializer. 793 /// - no references to fields are allowed to be created inside of the initializer. 794 /// 795 /// This initializer is for initializing data in-place that might later be moved. If you want to 796 /// pin-initialize, use [`pin_init!`]. 797 /// 798 /// # Examples 799 /// 800 /// ```rust 801 /// # #![feature(allocator_api)] 802 /// # #[path = "../examples/error.rs"] mod error; use error::Error; 803 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 804 /// # use pin_init::InPlaceInit; 805 /// use pin_init::{init, Init, init_zeroed}; 806 /// 807 /// struct BigBuf { 808 /// small: [u8; 1024 * 1024], 809 /// } 810 /// 811 /// impl BigBuf { 812 /// fn new() -> impl Init<Self> { 813 /// init!(Self { 814 /// small <- init_zeroed(), 815 /// }) 816 /// } 817 /// } 818 /// # let _ = Box::init(BigBuf::new()); 819 /// ``` 820 pub use pin_init_internal::init; 821 822 /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is 823 /// structurally pinned. 824 /// 825 /// # Examples 826 /// 827 /// This will succeed: 828 /// ``` 829 /// use pin_init::{pin_data, assert_pinned}; 830 /// 831 /// #[pin_data] 832 /// struct MyStruct { 833 /// #[pin] 834 /// some_field: u64, 835 /// } 836 /// 837 /// assert_pinned!(MyStruct, some_field, u64); 838 /// ``` 839 /// 840 /// This will fail: 841 /// ```compile_fail 842 /// use pin_init::{pin_data, assert_pinned}; 843 /// 844 /// #[pin_data] 845 /// struct MyStruct { 846 /// some_field: u64, 847 /// } 848 /// 849 /// assert_pinned!(MyStruct, some_field, u64); 850 /// ``` 851 /// 852 /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To 853 /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can 854 /// only be used when the macro is invoked from a function body. 855 /// ``` 856 /// # use core::pin::Pin; 857 /// use pin_init::{pin_data, assert_pinned}; 858 /// 859 /// #[pin_data] 860 /// struct Foo<T> { 861 /// #[pin] 862 /// elem: T, 863 /// } 864 /// 865 /// impl<T> Foo<T> { 866 /// fn project_this(self: Pin<&mut Self>) -> Pin<&mut T> { 867 /// assert_pinned!(Foo<T>, elem, T, inline); 868 /// 869 /// // SAFETY: The field is structurally pinned. 870 /// unsafe { self.map_unchecked_mut(|me| &mut me.elem) } 871 /// } 872 /// } 873 /// ``` 874 #[macro_export] 875 macro_rules! assert_pinned { 876 ($ty:ty, $field:ident, $field_ty:ty, inline) => { 877 let _ = move |ptr: *mut $field_ty| { 878 // SAFETY: This code is unreachable. 879 let data = unsafe { <$ty as $crate::__internal::HasPinData>::__pin_data() }; 880 let init = $crate::__internal::AlwaysFail::<$field_ty>::new(); 881 // SAFETY: This code is unreachable. 882 unsafe { data.$field(ptr, init) }.ok(); 883 }; 884 }; 885 886 ($ty:ty, $field:ident, $field_ty:ty) => { 887 const _: () = { 888 $crate::assert_pinned!($ty, $field, $field_ty, inline); 889 }; 890 }; 891 } 892 893 /// A pin-initializer for the type `T`. 894 /// 895 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 896 /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). 897 /// 898 /// Also see the [module description](self). 899 /// 900 /// # Safety 901 /// 902 /// When implementing this trait you will need to take great care. Also there are probably very few 903 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 904 /// 905 /// The [`PinInit::__pinned_init`] function: 906 /// - returns `Ok(())` if it initialized every field of `slot`, 907 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 908 /// - `slot` can be deallocated without UB occurring, 909 /// - `slot` does not need to be dropped, 910 /// - `slot` is not partially initialized. 911 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 912 /// 913 #[cfg_attr( 914 kernel, 915 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 916 )] 917 #[cfg_attr( 918 kernel, 919 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 920 )] 921 #[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 922 #[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 923 #[must_use = "An initializer must be used in order to create its value."] 924 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 925 /// Initializes `slot`. 926 /// 927 /// # Safety 928 /// 929 /// - `slot` is a valid pointer to uninitialized memory. 930 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 931 /// deallocate. 932 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 933 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 934 935 /// First initializes the value using `self` then calls the function `f` with the initialized 936 /// value. 937 /// 938 /// If `f` returns an error the value is dropped and the initializer will forward the error. 939 /// 940 /// # Examples 941 /// 942 /// ```rust 943 /// # #![feature(allocator_api)] 944 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 945 /// # use pin_init::*; 946 /// let mtx_init = CMutex::new(42); 947 /// // Make the initializer print the value. 948 /// let mtx_init = mtx_init.pin_chain(|mtx| { 949 /// println!("{:?}", mtx.get_data_mut()); 950 /// Ok(()) 951 /// }); 952 /// ``` 953 fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E> 954 where 955 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 956 { 957 ChainPinInit(self, f, PhantomData) 958 } 959 } 960 961 /// An initializer returned by [`PinInit::pin_chain`]. 962 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>); 963 964 // SAFETY: The `__pinned_init` function is implemented such that it 965 // - returns `Ok(())` on successful initialization, 966 // - returns `Err(err)` on error and in this case `slot` will be dropped. 967 // - considers `slot` pinned. 968 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E> 969 where 970 I: PinInit<T, E>, 971 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 972 { 973 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 974 // SAFETY: All requirements fulfilled since this function is `__pinned_init`. 975 unsafe { self.0.__pinned_init(slot)? }; 976 // SAFETY: The above call initialized `slot` and we still have unique access. 977 let val = unsafe { &mut *slot }; 978 // SAFETY: `slot` is considered pinned. 979 let val = unsafe { Pin::new_unchecked(val) }; 980 // SAFETY: `slot` was initialized above. 981 (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) }) 982 } 983 } 984 985 /// An initializer for `T`. 986 /// 987 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 988 /// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). Because 989 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 990 /// 991 /// Also see the [module description](self). 992 /// 993 /// # Safety 994 /// 995 /// When implementing this trait you will need to take great care. Also there are probably very few 996 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 997 /// 998 /// The [`Init::__init`] function: 999 /// - returns `Ok(())` if it initialized every field of `slot`, 1000 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1001 /// - `slot` can be deallocated without UB occurring, 1002 /// - `slot` does not need to be dropped, 1003 /// - `slot` is not partially initialized. 1004 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1005 /// 1006 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 1007 /// code as `__init`. 1008 /// 1009 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 1010 /// move the pointee after initialization. 1011 /// 1012 #[cfg_attr( 1013 kernel, 1014 doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html" 1015 )] 1016 #[cfg_attr( 1017 kernel, 1018 doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html" 1019 )] 1020 #[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")] 1021 #[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")] 1022 #[must_use = "An initializer must be used in order to create its value."] 1023 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> { 1024 /// Initializes `slot`. 1025 /// 1026 /// # Safety 1027 /// 1028 /// - `slot` is a valid pointer to uninitialized memory. 1029 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 1030 /// deallocate. 1031 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 1032 1033 /// First initializes the value using `self` then calls the function `f` with the initialized 1034 /// value. 1035 /// 1036 /// If `f` returns an error the value is dropped and the initializer will forward the error. 1037 /// 1038 /// # Examples 1039 /// 1040 /// ```rust 1041 /// # #![expect(clippy::disallowed_names)] 1042 /// use pin_init::{init, init_zeroed, Init}; 1043 /// 1044 /// struct Foo { 1045 /// buf: [u8; 1_000_000], 1046 /// } 1047 /// 1048 /// impl Foo { 1049 /// fn setup(&mut self) { 1050 /// println!("Setting up foo"); 1051 /// } 1052 /// } 1053 /// 1054 /// let foo = init!(Foo { 1055 /// buf <- init_zeroed() 1056 /// }).chain(|foo| { 1057 /// foo.setup(); 1058 /// Ok(()) 1059 /// }); 1060 /// ``` 1061 fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E> 1062 where 1063 F: FnOnce(&mut T) -> Result<(), E>, 1064 { 1065 ChainInit(self, f, PhantomData) 1066 } 1067 } 1068 1069 /// An initializer returned by [`Init::chain`]. 1070 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>); 1071 1072 // SAFETY: The `__init` function is implemented such that it 1073 // - returns `Ok(())` on successful initialization, 1074 // - returns `Err(err)` on error and in this case `slot` will be dropped. 1075 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E> 1076 where 1077 I: Init<T, E>, 1078 F: FnOnce(&mut T) -> Result<(), E>, 1079 { 1080 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1081 // SAFETY: All requirements fulfilled since this function is `__init`. 1082 unsafe { self.0.__pinned_init(slot)? }; 1083 // SAFETY: The above call initialized `slot` and we still have unique access. 1084 (self.1)(unsafe { &mut *slot }).inspect_err(|_| 1085 // SAFETY: `slot` was initialized above. 1086 unsafe { core::ptr::drop_in_place(slot) }) 1087 } 1088 } 1089 1090 // SAFETY: `__pinned_init` behaves exactly the same as `__init`. 1091 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E> 1092 where 1093 I: Init<T, E>, 1094 F: FnOnce(&mut T) -> Result<(), E>, 1095 { 1096 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1097 // SAFETY: `__init` has less strict requirements compared to `__pinned_init`. 1098 unsafe { self.__init(slot) } 1099 } 1100 } 1101 1102 /// Creates a new [`PinInit<T, E>`] from the given closure. 1103 /// 1104 /// # Safety 1105 /// 1106 /// The closure: 1107 /// - returns `Ok(())` if it initialized every field of `slot`, 1108 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1109 /// - `slot` can be deallocated without UB occurring, 1110 /// - `slot` does not need to be dropped, 1111 /// - `slot` is not partially initialized. 1112 /// - may assume that the `slot` does not move if `T: !Unpin`, 1113 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1114 #[inline] 1115 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 1116 f: impl FnOnce(*mut T) -> Result<(), E>, 1117 ) -> impl PinInit<T, E> { 1118 __internal::InitClosure(f, PhantomData) 1119 } 1120 1121 /// Creates a new [`Init<T, E>`] from the given closure. 1122 /// 1123 /// # Safety 1124 /// 1125 /// The closure: 1126 /// - returns `Ok(())` if it initialized every field of `slot`, 1127 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1128 /// - `slot` can be deallocated without UB occurring, 1129 /// - `slot` does not need to be dropped, 1130 /// - `slot` is not partially initialized. 1131 /// - the `slot` may move after initialization. 1132 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1133 #[inline] 1134 pub const unsafe fn init_from_closure<T: ?Sized, E>( 1135 f: impl FnOnce(*mut T) -> Result<(), E>, 1136 ) -> impl Init<T, E> { 1137 __internal::InitClosure(f, PhantomData) 1138 } 1139 1140 /// Changes the to be initialized type. 1141 /// 1142 /// # Safety 1143 /// 1144 /// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a 1145 /// pointer must result in a valid `U`. 1146 #[expect(clippy::let_and_return)] 1147 pub const unsafe fn cast_pin_init<T, U, E>(init: impl PinInit<T, E>) -> impl PinInit<U, E> { 1148 // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety 1149 // requirements. 1150 let res = unsafe { pin_init_from_closure(|ptr: *mut U| init.__pinned_init(ptr.cast::<T>())) }; 1151 // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a 1152 // cycle when computing the type returned by this function) 1153 res 1154 } 1155 1156 /// Changes the to be initialized type. 1157 /// 1158 /// # Safety 1159 /// 1160 /// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a 1161 /// pointer must result in a valid `U`. 1162 #[expect(clippy::let_and_return)] 1163 pub const unsafe fn cast_init<T, U, E>(init: impl Init<T, E>) -> impl Init<U, E> { 1164 // SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety 1165 // requirements. 1166 let res = unsafe { init_from_closure(|ptr: *mut U| init.__init(ptr.cast::<T>())) }; 1167 // FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a 1168 // cycle when computing the type returned by this function) 1169 res 1170 } 1171 1172 /// An initializer that leaves the memory uninitialized. 1173 /// 1174 /// The initializer is a no-op. The `slot` memory is not changed. 1175 #[inline] 1176 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 1177 // SAFETY: The memory is allowed to be uninitialized. 1178 unsafe { init_from_closure(|_| Ok(())) } 1179 } 1180 1181 /// Initializes an array by initializing each element via the provided initializer. 1182 /// 1183 /// # Examples 1184 /// 1185 /// ```rust 1186 /// # use pin_init::*; 1187 /// use pin_init::init_array_from_fn; 1188 /// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap(); 1189 /// assert_eq!(array.len(), 1_000); 1190 /// ``` 1191 pub fn init_array_from_fn<I, const N: usize, T, E>( 1192 mut make_init: impl FnMut(usize) -> I, 1193 ) -> impl Init<[T; N], E> 1194 where 1195 I: Init<T, E>, 1196 { 1197 let init = move |slot: *mut [T; N]| { 1198 let slot = slot.cast::<T>(); 1199 for i in 0..N { 1200 let init = make_init(i); 1201 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1202 let ptr = unsafe { slot.add(i) }; 1203 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1204 // requirements. 1205 if let Err(e) = unsafe { init.__init(ptr) } { 1206 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return 1207 // `Err` below, `slot` will be considered uninitialized memory. 1208 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1209 return Err(e); 1210 } 1211 } 1212 Ok(()) 1213 }; 1214 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1215 // any initialized elements and returns `Err`. 1216 unsafe { init_from_closure(init) } 1217 } 1218 1219 /// Initializes an array by initializing each element via the provided initializer. 1220 /// 1221 /// # Examples 1222 /// 1223 /// ```rust 1224 /// # #![feature(allocator_api)] 1225 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 1226 /// # use pin_init::*; 1227 /// # use core::pin::Pin; 1228 /// use pin_init::pin_init_array_from_fn; 1229 /// use std::sync::Arc; 1230 /// let array: Pin<Arc<[CMutex<usize>; 1_000]>> = 1231 /// Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap(); 1232 /// assert_eq!(array.len(), 1_000); 1233 /// ``` 1234 pub fn pin_init_array_from_fn<I, const N: usize, T, E>( 1235 mut make_init: impl FnMut(usize) -> I, 1236 ) -> impl PinInit<[T; N], E> 1237 where 1238 I: PinInit<T, E>, 1239 { 1240 let init = move |slot: *mut [T; N]| { 1241 let slot = slot.cast::<T>(); 1242 for i in 0..N { 1243 let init = make_init(i); 1244 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1245 let ptr = unsafe { slot.add(i) }; 1246 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1247 // requirements. 1248 if let Err(e) = unsafe { init.__pinned_init(ptr) } { 1249 // SAFETY: The loop has initialized the elements `slot[0..i]` and since we return 1250 // `Err` below, `slot` will be considered uninitialized memory. 1251 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1252 return Err(e); 1253 } 1254 } 1255 Ok(()) 1256 }; 1257 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1258 // any initialized elements and returns `Err`. 1259 unsafe { pin_init_from_closure(init) } 1260 } 1261 1262 /// Construct an initializer in a closure and run it. 1263 /// 1264 /// Returns an initializer that first runs the closure and then the initializer returned by it. 1265 /// 1266 /// See also [`init_scope`]. 1267 /// 1268 /// # Examples 1269 /// 1270 /// ``` 1271 /// # use pin_init::*; 1272 /// # #[pin_data] 1273 /// # struct Foo { a: u64, b: isize } 1274 /// # struct Bar { a: u32, b: isize } 1275 /// # fn lookup_bar() -> Result<Bar, Error> { todo!() } 1276 /// # struct Error; 1277 /// fn init_foo() -> impl PinInit<Foo, Error> { 1278 /// pin_init_scope(|| { 1279 /// let bar = lookup_bar()?; 1280 /// Ok(pin_init!(Foo { a: bar.a.into(), b: bar.b }? Error)) 1281 /// }) 1282 /// } 1283 /// ``` 1284 /// 1285 /// This initializer will first execute `lookup_bar()`, match on it, if it returned an error, the 1286 /// initializer itself will fail with that error. If it returned `Ok`, then it will run the 1287 /// initializer returned by the [`pin_init!`] invocation. 1288 pub fn pin_init_scope<T, E, F, I>(make_init: F) -> impl PinInit<T, E> 1289 where 1290 F: FnOnce() -> Result<I, E>, 1291 I: PinInit<T, E>, 1292 { 1293 // SAFETY: 1294 // - If `make_init` returns `Err`, `Err` is returned and `slot` is completely uninitialized, 1295 // - If `make_init` returns `Ok`, safety requirement are fulfilled by `init.__pinned_init`. 1296 // - The safety requirements of `init.__pinned_init` are fulfilled, since it's being called 1297 // from an initializer. 1298 unsafe { 1299 pin_init_from_closure(move |slot: *mut T| -> Result<(), E> { 1300 let init = make_init()?; 1301 init.__pinned_init(slot) 1302 }) 1303 } 1304 } 1305 1306 /// Construct an initializer in a closure and run it. 1307 /// 1308 /// Returns an initializer that first runs the closure and then the initializer returned by it. 1309 /// 1310 /// See also [`pin_init_scope`]. 1311 /// 1312 /// # Examples 1313 /// 1314 /// ``` 1315 /// # use pin_init::*; 1316 /// # struct Foo { a: u64, b: isize } 1317 /// # struct Bar { a: u32, b: isize } 1318 /// # fn lookup_bar() -> Result<Bar, Error> { todo!() } 1319 /// # struct Error; 1320 /// fn init_foo() -> impl Init<Foo, Error> { 1321 /// init_scope(|| { 1322 /// let bar = lookup_bar()?; 1323 /// Ok(init!(Foo { a: bar.a.into(), b: bar.b }? Error)) 1324 /// }) 1325 /// } 1326 /// ``` 1327 /// 1328 /// This initializer will first execute `lookup_bar()`, match on it, if it returned an error, the 1329 /// initializer itself will fail with that error. If it returned `Ok`, then it will run the 1330 /// initializer returned by the [`init!`] invocation. 1331 pub fn init_scope<T, E, F, I>(make_init: F) -> impl Init<T, E> 1332 where 1333 F: FnOnce() -> Result<I, E>, 1334 I: Init<T, E>, 1335 { 1336 // SAFETY: 1337 // - If `make_init` returns `Err`, `Err` is returned and `slot` is completely uninitialized, 1338 // - If `make_init` returns `Ok`, safety requirement are fulfilled by `init.__init`. 1339 // - The safety requirements of `init.__init` are fulfilled, since it's being called from an 1340 // initializer. 1341 unsafe { 1342 init_from_closure(move |slot: *mut T| -> Result<(), E> { 1343 let init = make_init()?; 1344 init.__init(slot) 1345 }) 1346 } 1347 } 1348 1349 // SAFETY: the `__init` function always returns `Ok(())` and initializes every field of `slot`. 1350 unsafe impl<T> Init<T> for T { 1351 unsafe fn __init(self, slot: *mut T) -> Result<(), Infallible> { 1352 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1353 unsafe { slot.write(self) }; 1354 Ok(()) 1355 } 1356 } 1357 1358 // SAFETY: the `__pinned_init` function always returns `Ok(())` and initializes every field of 1359 // `slot`. Additionally, all pinning invariants of `T` are upheld. 1360 unsafe impl<T> PinInit<T> for T { 1361 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), Infallible> { 1362 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1363 unsafe { slot.write(self) }; 1364 Ok(()) 1365 } 1366 } 1367 1368 // SAFETY: when the `__init` function returns with 1369 // - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld. 1370 // - `Err(err)`, slot was not written to. 1371 unsafe impl<T, E> Init<T, E> for Result<T, E> { 1372 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1373 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1374 unsafe { slot.write(self?) }; 1375 Ok(()) 1376 } 1377 } 1378 1379 // SAFETY: when the `__pinned_init` function returns with 1380 // - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld. 1381 // - `Err(err)`, slot was not written to. 1382 unsafe impl<T, E> PinInit<T, E> for Result<T, E> { 1383 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1384 // SAFETY: `slot` is valid for writes by the safety requirements of this function. 1385 unsafe { slot.write(self?) }; 1386 Ok(()) 1387 } 1388 } 1389 1390 /// Smart pointer containing uninitialized memory and that can write a value. 1391 pub trait InPlaceWrite<T> { 1392 /// The type `Self` turns into when the contents are initialized. 1393 type Initialized; 1394 1395 /// Use the given initializer to write a value into `self`. 1396 /// 1397 /// Does not drop the current value and considers it as uninitialized memory. 1398 fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>; 1399 1400 /// Use the given pin-initializer to write a value into `self`. 1401 /// 1402 /// Does not drop the current value and considers it as uninitialized memory. 1403 fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>; 1404 } 1405 1406 impl<T> InPlaceWrite<T> for &'static mut MaybeUninit<T> { 1407 type Initialized = &'static mut T; 1408 1409 fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 1410 let slot = self.as_mut_ptr(); 1411 1412 // SAFETY: `slot` is a valid pointer to uninitialized memory. 1413 unsafe { init.__init(slot)? }; 1414 1415 // SAFETY: The above call initialized the memory. 1416 unsafe { Ok(self.assume_init_mut()) } 1417 } 1418 1419 fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 1420 let slot = self.as_mut_ptr(); 1421 1422 // SAFETY: `slot` is a valid pointer to uninitialized memory. 1423 // 1424 // The `'static` borrow guarantees the data will not be 1425 // moved/invalidated until it gets dropped (which is never). 1426 unsafe { init.__pinned_init(slot)? }; 1427 1428 // SAFETY: The above call initialized the memory. 1429 Ok(Pin::static_mut(unsafe { self.assume_init_mut() })) 1430 } 1431 } 1432 1433 /// Trait facilitating pinned destruction. 1434 /// 1435 /// Use [`pinned_drop`] to implement this trait safely: 1436 /// 1437 /// ```rust 1438 /// # #![feature(allocator_api)] 1439 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*; 1440 /// # use pin_init::*; 1441 /// use core::pin::Pin; 1442 /// #[pin_data(PinnedDrop)] 1443 /// struct Foo { 1444 /// #[pin] 1445 /// mtx: CMutex<usize>, 1446 /// } 1447 /// 1448 /// #[pinned_drop] 1449 /// impl PinnedDrop for Foo { 1450 /// fn drop(self: Pin<&mut Self>) { 1451 /// println!("Foo is being dropped!"); 1452 /// } 1453 /// } 1454 /// ``` 1455 /// 1456 /// # Safety 1457 /// 1458 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 1459 pub unsafe trait PinnedDrop: __internal::HasPinData { 1460 /// Executes the pinned destructor of this type. 1461 /// 1462 /// While this function is marked safe, it is actually unsafe to call it manually. For this 1463 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 1464 /// and thus prevents this function from being called where it should not. 1465 /// 1466 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1467 /// automatically. 1468 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1469 } 1470 1471 /// Marker trait for types that can be initialized by writing just zeroes. 1472 /// 1473 /// # Safety 1474 /// 1475 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1476 /// this is not UB: 1477 /// 1478 /// ```rust,ignore 1479 /// let val: Self = unsafe { core::mem::zeroed() }; 1480 /// ``` 1481 pub unsafe trait Zeroable { 1482 /// Create a new zeroed `Self`. 1483 /// 1484 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1485 #[inline] 1486 fn init_zeroed() -> impl Init<Self> 1487 where 1488 Self: Sized, 1489 { 1490 init_zeroed() 1491 } 1492 1493 /// Create a `Self` consisting of all zeroes. 1494 /// 1495 /// Whenever a type implements [`Zeroable`], this function should be preferred over 1496 /// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`. 1497 /// 1498 /// # Examples 1499 /// 1500 /// ``` 1501 /// use pin_init::{Zeroable, zeroed}; 1502 /// 1503 /// #[derive(Zeroable)] 1504 /// struct Point { 1505 /// x: u32, 1506 /// y: u32, 1507 /// } 1508 /// 1509 /// let point: Point = zeroed(); 1510 /// assert_eq!(point.x, 0); 1511 /// assert_eq!(point.y, 0); 1512 /// ``` 1513 fn zeroed() -> Self 1514 where 1515 Self: Sized, 1516 { 1517 zeroed() 1518 } 1519 } 1520 1521 /// Marker trait for types that allow `Option<Self>` to be set to all zeroes in order to write 1522 /// `None` to that location. 1523 /// 1524 /// # Safety 1525 /// 1526 /// The implementer needs to ensure that `unsafe impl Zeroable for Option<Self> {}` is sound. 1527 pub unsafe trait ZeroableOption {} 1528 1529 // SAFETY: by the safety requirement of `ZeroableOption`, this is valid. 1530 unsafe impl<T: ZeroableOption> Zeroable for Option<T> {} 1531 1532 // SAFETY: `Option<&T>` is part of the option layout optimization guarantee: 1533 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1534 unsafe impl<T> ZeroableOption for &T {} 1535 // SAFETY: `Option<&mut T>` is part of the option layout optimization guarantee: 1536 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1537 unsafe impl<T> ZeroableOption for &mut T {} 1538 // SAFETY: `Option<NonNull<T>>` is part of the option layout optimization guarantee: 1539 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1540 unsafe impl<T> ZeroableOption for NonNull<T> {} 1541 1542 /// Create an initializer for a zeroed `T`. 1543 /// 1544 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1545 #[inline] 1546 pub fn init_zeroed<T: Zeroable>() -> impl Init<T> { 1547 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1548 // and because we write all zeroes, the memory is initialized. 1549 unsafe { 1550 init_from_closure(|slot: *mut T| { 1551 slot.write_bytes(0, 1); 1552 Ok(()) 1553 }) 1554 } 1555 } 1556 1557 /// Create a `T` consisting of all zeroes. 1558 /// 1559 /// Whenever a type implements [`Zeroable`], this function should be preferred over 1560 /// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`. 1561 /// 1562 /// # Examples 1563 /// 1564 /// ``` 1565 /// use pin_init::{Zeroable, zeroed}; 1566 /// 1567 /// #[derive(Zeroable)] 1568 /// struct Point { 1569 /// x: u32, 1570 /// y: u32, 1571 /// } 1572 /// 1573 /// let point: Point = zeroed(); 1574 /// assert_eq!(point.x, 0); 1575 /// assert_eq!(point.y, 0); 1576 /// ``` 1577 pub const fn zeroed<T: Zeroable>() -> T { 1578 // SAFETY:By the type invariants of `Zeroable`, all zeroes is a valid bit pattern for `T`. 1579 unsafe { core::mem::zeroed() } 1580 } 1581 1582 macro_rules! impl_zeroable { 1583 ($($({$($generics:tt)*})? $t:ty, )*) => { 1584 // SAFETY: Safety comments written in the macro invocation. 1585 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1586 }; 1587 } 1588 1589 impl_zeroable! { 1590 // SAFETY: All primitives that are allowed to be zero. 1591 bool, 1592 char, 1593 u8, u16, u32, u64, u128, usize, 1594 i8, i16, i32, i64, i128, isize, 1595 f32, f64, 1596 1597 // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list; 1598 // creating an instance of an uninhabited type is immediate undefined behavior. For more on 1599 // uninhabited/empty types, consult The Rustonomicon: 1600 // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference 1601 // also has information on undefined behavior: 1602 // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>. 1603 // 1604 // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists. 1605 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (), 1606 1607 // SAFETY: Type is allowed to take any value, including all zeros. 1608 {<T>} MaybeUninit<T>, 1609 1610 // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`. 1611 {<T: ?Sized + Zeroable>} UnsafeCell<T>, 1612 1613 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee: 1614 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>). 1615 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1616 Option<NonZeroU128>, Option<NonZeroUsize>, 1617 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1618 Option<NonZeroI128>, Option<NonZeroIsize>, 1619 1620 // SAFETY: `null` pointer is valid. 1621 // 1622 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1623 // null. 1624 // 1625 // When `Pointee` gets stabilized, we could use 1626 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1627 {<T>} *mut T, {<T>} *const T, 1628 1629 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1630 // zero. 1631 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1632 1633 // SAFETY: `T` is `Zeroable`. 1634 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1635 } 1636 1637 macro_rules! impl_tuple_zeroable { 1638 ($(,)?) => {}; 1639 ($first:ident, $($t:ident),* $(,)?) => { 1640 // SAFETY: All elements are zeroable and padding can be zero. 1641 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1642 impl_tuple_zeroable!($($t),* ,); 1643 } 1644 } 1645 1646 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1647 1648 macro_rules! impl_fn_zeroable_option { 1649 ([$($abi:literal),* $(,)?] $args:tt) => { 1650 $(impl_fn_zeroable_option!({extern $abi} $args);)* 1651 $(impl_fn_zeroable_option!({unsafe extern $abi} $args);)* 1652 }; 1653 ({$($prefix:tt)*} {$(,)?}) => {}; 1654 ({$($prefix:tt)*} {$ret:ident, $($rest:ident),* $(,)?}) => { 1655 // SAFETY: function pointers are part of the option layout optimization: 1656 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>. 1657 unsafe impl<$ret, $($rest),*> ZeroableOption for $($prefix)* fn($($rest),*) -> $ret {} 1658 impl_fn_zeroable_option!({$($prefix)*} {$($rest),*,}); 1659 }; 1660 } 1661 1662 impl_fn_zeroable_option!(["Rust", "C"] { A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U }); 1663 1664 /// This trait allows creating an instance of `Self` which contains exactly one 1665 /// [structurally pinned value](https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning). 1666 /// 1667 /// This is useful when using wrapper `struct`s like [`UnsafeCell`] or with new-type `struct`s. 1668 /// 1669 /// # Examples 1670 /// 1671 /// ``` 1672 /// # use core::cell::UnsafeCell; 1673 /// # use pin_init::{pin_data, pin_init, Wrapper}; 1674 /// 1675 /// #[pin_data] 1676 /// struct Foo {} 1677 /// 1678 /// #[pin_data] 1679 /// struct Bar { 1680 /// #[pin] 1681 /// content: UnsafeCell<Foo> 1682 /// }; 1683 /// 1684 /// let foo_initializer = pin_init!(Foo{}); 1685 /// let initializer = pin_init!(Bar { 1686 /// content <- UnsafeCell::pin_init(foo_initializer) 1687 /// }); 1688 /// ``` 1689 pub trait Wrapper<T> { 1690 /// Creates an pin-initializer for a [`Self`] containing `T` from the `value_init` initializer. 1691 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E>; 1692 } 1693 1694 impl<T> Wrapper<T> for UnsafeCell<T> { 1695 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> { 1696 // SAFETY: `UnsafeCell<T>` has a compatible layout to `T`. 1697 unsafe { cast_pin_init(value_init) } 1698 } 1699 } 1700 1701 impl<T> Wrapper<T> for MaybeUninit<T> { 1702 fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> { 1703 // SAFETY: `MaybeUninit<T>` has a compatible layout to `T`. 1704 unsafe { cast_pin_init(value_init) } 1705 } 1706 } 1707 1708 #[cfg(all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED))] 1709 impl<T> Wrapper<T> for core::pin::UnsafePinned<T> { 1710 fn pin_init<E>(init: impl PinInit<T, E>) -> impl PinInit<Self, E> { 1711 // SAFETY: `UnsafePinned<T>` has a compatible layout to `T`. 1712 unsafe { cast_pin_init(init) } 1713 } 1714 } 1715