Name Date Size #Lines LOC

..--

examples/H--679580

internal/src/H--209162

src/H--3,2821,264

CONTRIBUTING.mdH A D02-Jun-20253.4 KiB

README.mdH A D05-Jun-20259.2 KiB237191

README.md

1[![Crates.io](https://img.shields.io/crates/v/pin-init.svg)](https://crates.io/crates/pin-init)
2[![Documentation](https://docs.rs/pin-init/badge.svg)](https://docs.rs/pin-init/)
3[![Dependency status](https://deps.rs/repo/github/Rust-for-Linux/pin-init/status.svg)](https://deps.rs/repo/github/Rust-for-Linux/pin-init)
4![License](https://img.shields.io/crates/l/pin-init)
5[![Toolchain](https://img.shields.io/badge/toolchain-nightly-red)](#nightly-only)
6![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/Rust-for-Linux/pin-init/test.yml)
7# `pin-init`
8
9<!-- cargo-rdme start -->
10
11Library to safely and fallibly initialize pinned `struct`s using in-place constructors.
12
13[Pinning][pinning] is Rust's way of ensuring data does not move.
14
15It also allows in-place initialization of big `struct`s that would otherwise produce a stack
16overflow.
17
18This library's main use-case is in [Rust-for-Linux]. Although this version can be used
19standalone.
20
21There are cases when you want to in-place initialize a struct. For example when it is very big
22and moving it from the stack is not an option, because it is bigger than the stack itself.
23Another reason would be that you need the address of the object to initialize it. This stands
24in direct conflict with Rust's normal process of first initializing an object and then moving
25it into it's final memory location. For more information, see
26<https://rust-for-linux.com/the-safe-pinned-initialization-problem>.
27
28This library allows you to do in-place initialization safely.
29
30### Nightly Needed for `alloc` feature
31
32This library requires the [`allocator_api` unstable feature] when the `alloc` feature is
33enabled and thus this feature can only be used with a nightly compiler. When enabling the
34`alloc` feature, the user will be required to activate `allocator_api` as well.
35
36[`allocator_api` unstable feature]: https://doc.rust-lang.org/nightly/unstable-book/library-features/allocator-api.html
37
38The feature is enabled by default, thus by default `pin-init` will require a nightly compiler.
39However, using the crate on stable compilers is possible by disabling `alloc`. In practice this
40will require the `std` feature, because stable compilers have neither `Box` nor `Arc` in no-std
41mode.
42
43### Nightly needed for `unsafe-pinned` feature
44
45This feature enables the `Wrapper` implementation on the unstable `core::pin::UnsafePinned` type.
46This requires the [`unsafe_pinned` unstable feature](https://github.com/rust-lang/rust/issues/125735)
47and therefore a nightly compiler. Note that this feature is not enabled by default.
48
49## Overview
50
51To initialize a `struct` with an in-place constructor you will need two things:
52- an in-place constructor,
53- a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
54  [`Box<T>`] or any other smart pointer that supports this library).
55
56To get an in-place constructor there are generally three options:
57- directly creating an in-place constructor using the [`pin_init!`] macro,
58- a custom function/macro returning an in-place constructor provided by someone else,
59- using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
60
61Aside from pinned initialization, this library also supports in-place construction without
62pinning, the macros/types/functions are generally named like the pinned variants without the
63`pin_` prefix.
64
65## Examples
66
67Throughout the examples we will often make use of the `CMutex` type which can be found in
68`../examples/mutex.rs`. It is essentially a userland rebuild of the `struct mutex` type from
69the Linux kernel. It also uses a wait list and a basic spinlock. Importantly the wait list
70requires it to be pinned to be locked and thus is a prime candidate for using this library.
71
72### Using the [`pin_init!`] macro
73
74If you want to use [`PinInit`], then you will have to annotate your `struct` with
75`#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
76[structurally pinned fields]. After doing this, you can then create an in-place constructor via
77[`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
78that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
79
80```rust
81use pin_init::{pin_data, pin_init, InPlaceInit};
82
83#[pin_data]
84struct Foo {
85    #[pin]
86    a: CMutex<usize>,
87    b: u32,
88}
89
90let foo = pin_init!(Foo {
91    a <- CMutex::new(42),
92    b: 24,
93});
94```
95
96`foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
97(or just the stack) to actually initialize a `Foo`:
98
99```rust
100let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo);
101```
102
103For more information see the [`pin_init!`] macro.
104
105### Using a custom function/macro that returns an initializer
106
107Many types that use this library supply a function/macro that returns an initializer, because
108the above method only works for types where you can access the fields.
109
110```rust
111let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42));
112```
113
114To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
115
116```rust
117#[pin_data]
118struct DriverData {
119    #[pin]
120    status: CMutex<i32>,
121    buffer: Box<[u8; 1_000_000]>,
122}
123
124impl DriverData {
125    fn new() -> impl PinInit<Self, Error> {
126        try_pin_init!(Self {
127            status <- CMutex::new(0),
128            buffer: Box::init(pin_init::zeroed())?,
129        }? Error)
130    }
131}
132```
133
134### Manual creation of an initializer
135
136Often when working with primitives the previous approaches are not sufficient. That is where
137[`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
138[`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
139actually does the initialization in the correct way. Here are the things to look out for
140(we are calling the parameter to the closure `slot`):
141- when the closure returns `Ok(())`, then it has completed the initialization successfully, so
142  `slot` now contains a valid bit pattern for the type `T`,
143- when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
144  you need to take care to clean up anything if your initialization fails mid-way,
145- you may assume that `slot` will stay pinned even after the closure returns until `drop` of
146  `slot` gets called.
147
148```rust
149use pin_init::{pin_data, pinned_drop, PinInit, PinnedDrop, pin_init_from_closure};
150use core::{
151    ptr::addr_of_mut,
152    marker::PhantomPinned,
153    cell::UnsafeCell,
154    pin::Pin,
155    mem::MaybeUninit,
156};
157mod bindings {
158    #[repr(C)]
159    pub struct foo {
160        /* fields from C ... */
161    }
162    extern "C" {
163        pub fn init_foo(ptr: *mut foo);
164        pub fn destroy_foo(ptr: *mut foo);
165        #[must_use = "you must check the error return code"]
166        pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32;
167    }
168}
169
170/// # Invariants
171///
172/// `foo` is always initialized
173#[pin_data(PinnedDrop)]
174pub struct RawFoo {
175    #[pin]
176    _p: PhantomPinned,
177    #[pin]
178    foo: UnsafeCell<MaybeUninit<bindings::foo>>,
179}
180
181impl RawFoo {
182    pub fn new(flags: u32) -> impl PinInit<Self, i32> {
183        // SAFETY:
184        // - when the closure returns `Ok(())`, then it has successfully initialized and
185        //   enabled `foo`,
186        // - when it returns `Err(e)`, then it has cleaned up before
187        unsafe {
188            pin_init_from_closure(move |slot: *mut Self| {
189                // `slot` contains uninit memory, avoid creating a reference.
190                let foo = addr_of_mut!((*slot).foo);
191                let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>();
192
193                // Initialize the `foo`
194                bindings::init_foo(foo);
195
196                // Try to enable it.
197                let err = bindings::enable_foo(foo, flags);
198                if err != 0 {
199                    // Enabling has failed, first clean up the foo and then return the error.
200                    bindings::destroy_foo(foo);
201                    Err(err)
202                } else {
203                    // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
204                    Ok(())
205                }
206            })
207        }
208    }
209}
210
211#[pinned_drop]
212impl PinnedDrop for RawFoo {
213    fn drop(self: Pin<&mut Self>) {
214        // SAFETY: Since `foo` is initialized, destroying is safe.
215        unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) };
216    }
217}
218```
219
220For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
221the `kernel` crate. The [`sync`] module is a good starting point.
222
223[`sync`]: https://rust.docs.kernel.org/kernel/sync/index.html
224[pinning]: https://doc.rust-lang.org/std/pin/index.html
225[structurally pinned fields]: https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning
226[stack]: https://docs.rs/pin-init/latest/pin_init/macro.stack_pin_init.html
227[`impl PinInit<Foo>`]: https://docs.rs/pin-init/latest/pin_init/trait.PinInit.html
228[`impl PinInit<T, E>`]: https://docs.rs/pin-init/latest/pin_init/trait.PinInit.html
229[`impl Init<T, E>`]: https://docs.rs/pin-init/latest/pin_init/trait.Init.html
230[Rust-for-Linux]: https://rust-for-linux.com/
231
232<!-- cargo-rdme end -->
233
234<!-- These links are not picked up by cargo-rdme, since they are behind cfgs... -->
235[`Arc<T>`]: https://doc.rust-lang.org/stable/alloc/sync/struct.Arc.html
236[`Box<T>`]: https://doc.rust-lang.org/stable/alloc/boxed/struct.Box.html
237