xref: /linux/rust/macros/lib.rs (revision ea04ef19ebdcd22e8a21054a19c2c8fefae011ce)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Crate for all kernel procedural macros.
4 
5 #[macro_use]
6 mod quote;
7 mod concat_idents;
8 mod helpers;
9 mod module;
10 mod paste;
11 mod pin_data;
12 mod pinned_drop;
13 mod vtable;
14 mod zeroable;
15 
16 use proc_macro::TokenStream;
17 
18 /// Declares a kernel module.
19 ///
20 /// The `type` argument should be a type which implements the [`Module`]
21 /// trait. Also accepts various forms of kernel metadata.
22 ///
23 /// C header: [`include/linux/moduleparam.h`](srctree/include/linux/moduleparam.h)
24 ///
25 /// [`Module`]: ../kernel/trait.Module.html
26 ///
27 /// # Examples
28 ///
29 /// ```ignore
30 /// use kernel::prelude::*;
31 ///
32 /// module!{
33 ///     type: MyModule,
34 ///     name: "my_kernel_module",
35 ///     author: "Rust for Linux Contributors",
36 ///     description: "My very own kernel module!",
37 ///     license: "GPL",
38 /// }
39 ///
40 /// struct MyModule;
41 ///
42 /// impl kernel::Module for MyModule {
43 ///     fn init() -> Result<Self> {
44 ///         // If the parameter is writeable, then the kparam lock must be
45 ///         // taken to read the parameter:
46 ///         {
47 ///             let lock = THIS_MODULE.kernel_param_lock();
48 ///             pr_info!("i32 param is:  {}\n", writeable_i32.read(&lock));
49 ///         }
50 ///         // If the parameter is read only, it can be read without locking
51 ///         // the kernel parameters:
52 ///         pr_info!("i32 param is:  {}\n", my_i32.read());
53 ///         Ok(Self)
54 ///     }
55 /// }
56 /// ```
57 ///
58 /// # Supported argument types
59 ///   - `type`: type which implements the [`Module`] trait (required).
60 ///   - `name`: byte array of the name of the kernel module (required).
61 ///   - `author`: byte array of the author of the kernel module.
62 ///   - `description`: byte array of the description of the kernel module.
63 ///   - `license`: byte array of the license of the kernel module (required).
64 ///   - `alias`: byte array of alias name of the kernel module.
65 #[proc_macro]
66 pub fn module(ts: TokenStream) -> TokenStream {
67     module::module(ts)
68 }
69 
70 /// Declares or implements a vtable trait.
71 ///
72 /// Linux's use of pure vtables is very close to Rust traits, but they differ
73 /// in how unimplemented functions are represented. In Rust, traits can provide
74 /// default implementation for all non-required methods (and the default
75 /// implementation could just return `Error::EINVAL`); Linux typically use C
76 /// `NULL` pointers to represent these functions.
77 ///
78 /// This attribute closes that gap. A trait can be annotated with the
79 /// `#[vtable]` attribute. Implementers of the trait will then also have to
80 /// annotate the trait with `#[vtable]`. This attribute generates a `HAS_*`
81 /// associated constant bool for each method in the trait that is set to true if
82 /// the implementer has overridden the associated method.
83 ///
84 /// For a trait method to be optional, it must have a default implementation.
85 /// This is also the case for traits annotated with `#[vtable]`, but in this
86 /// case the default implementation will never be executed. The reason for this
87 /// is that the functions will be called through function pointers installed in
88 /// C side vtables. When an optional method is not implemented on a `#[vtable]`
89 /// trait, a NULL entry is installed in the vtable. Thus the default
90 /// implementation is never called. Since these traits are not designed to be
91 /// used on the Rust side, it should not be possible to call the default
92 /// implementation. This is done to ensure that we call the vtable methods
93 /// through the C vtable, and not through the Rust vtable. Therefore, the
94 /// default implementation should call `kernel::build_error`, which prevents
95 /// calls to this function at compile time:
96 ///
97 /// ```compile_fail
98 /// # use kernel::error::VTABLE_DEFAULT_ERROR;
99 /// kernel::build_error(VTABLE_DEFAULT_ERROR)
100 /// ```
101 ///
102 /// Note that you might need to import [`kernel::error::VTABLE_DEFAULT_ERROR`].
103 ///
104 /// This macro should not be used when all functions are required.
105 ///
106 /// # Examples
107 ///
108 /// ```ignore
109 /// use kernel::error::VTABLE_DEFAULT_ERROR;
110 /// use kernel::prelude::*;
111 ///
112 /// // Declares a `#[vtable]` trait
113 /// #[vtable]
114 /// pub trait Operations: Send + Sync + Sized {
115 ///     fn foo(&self) -> Result<()> {
116 ///         kernel::build_error(VTABLE_DEFAULT_ERROR)
117 ///     }
118 ///
119 ///     fn bar(&self) -> Result<()> {
120 ///         kernel::build_error(VTABLE_DEFAULT_ERROR)
121 ///     }
122 /// }
123 ///
124 /// struct Foo;
125 ///
126 /// // Implements the `#[vtable]` trait
127 /// #[vtable]
128 /// impl Operations for Foo {
129 ///     fn foo(&self) -> Result<()> {
130 /// #        Err(EINVAL)
131 ///         // ...
132 ///     }
133 /// }
134 ///
135 /// assert_eq!(<Foo as Operations>::HAS_FOO, true);
136 /// assert_eq!(<Foo as Operations>::HAS_BAR, false);
137 /// ```
138 ///
139 /// [`kernel::error::VTABLE_DEFAULT_ERROR`]: ../kernel/error/constant.VTABLE_DEFAULT_ERROR.html
140 #[proc_macro_attribute]
141 pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream {
142     vtable::vtable(attr, ts)
143 }
144 
145 /// Concatenate two identifiers.
146 ///
147 /// This is useful in macros that need to declare or reference items with names
148 /// starting with a fixed prefix and ending in a user specified name. The resulting
149 /// identifier has the span of the second argument.
150 ///
151 /// # Examples
152 ///
153 /// ```ignore
154 /// use kernel::macro::concat_idents;
155 ///
156 /// macro_rules! pub_no_prefix {
157 ///     ($prefix:ident, $($newname:ident),+) => {
158 ///         $(pub(crate) const $newname: u32 = kernel::macros::concat_idents!($prefix, $newname);)+
159 ///     };
160 /// }
161 ///
162 /// pub_no_prefix!(
163 ///     binder_driver_return_protocol_,
164 ///     BR_OK,
165 ///     BR_ERROR,
166 ///     BR_TRANSACTION,
167 ///     BR_REPLY,
168 ///     BR_DEAD_REPLY,
169 ///     BR_TRANSACTION_COMPLETE,
170 ///     BR_INCREFS,
171 ///     BR_ACQUIRE,
172 ///     BR_RELEASE,
173 ///     BR_DECREFS,
174 ///     BR_NOOP,
175 ///     BR_SPAWN_LOOPER,
176 ///     BR_DEAD_BINDER,
177 ///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
178 ///     BR_FAILED_REPLY
179 /// );
180 ///
181 /// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
182 /// ```
183 #[proc_macro]
184 pub fn concat_idents(ts: TokenStream) -> TokenStream {
185     concat_idents::concat_idents(ts)
186 }
187 
188 /// Used to specify the pinning information of the fields of a struct.
189 ///
190 /// This is somewhat similar in purpose as
191 /// [pin-project-lite](https://crates.io/crates/pin-project-lite).
192 /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
193 /// field you want to structurally pin.
194 ///
195 /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
196 /// then `#[pin]` directs the type of initializer that is required.
197 ///
198 /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
199 /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
200 /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
201 ///
202 /// # Examples
203 ///
204 /// ```rust,ignore
205 /// #[pin_data]
206 /// struct DriverData {
207 ///     #[pin]
208 ///     queue: Mutex<Vec<Command>>,
209 ///     buf: Box<[u8; 1024 * 1024]>,
210 /// }
211 /// ```
212 ///
213 /// ```rust,ignore
214 /// #[pin_data(PinnedDrop)]
215 /// struct DriverData {
216 ///     #[pin]
217 ///     queue: Mutex<Vec<Command>>,
218 ///     buf: Box<[u8; 1024 * 1024]>,
219 ///     raw_info: *mut Info,
220 /// }
221 ///
222 /// #[pinned_drop]
223 /// impl PinnedDrop for DriverData {
224 ///     fn drop(self: Pin<&mut Self>) {
225 ///         unsafe { bindings::destroy_info(self.raw_info) };
226 ///     }
227 /// }
228 /// ```
229 ///
230 /// [`pin_init!`]: ../kernel/macro.pin_init.html
231 //  ^ cannot use direct link, since `kernel` is not a dependency of `macros`.
232 #[proc_macro_attribute]
233 pub fn pin_data(inner: TokenStream, item: TokenStream) -> TokenStream {
234     pin_data::pin_data(inner, item)
235 }
236 
237 /// Used to implement `PinnedDrop` safely.
238 ///
239 /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
240 ///
241 /// # Examples
242 ///
243 /// ```rust,ignore
244 /// #[pin_data(PinnedDrop)]
245 /// struct DriverData {
246 ///     #[pin]
247 ///     queue: Mutex<Vec<Command>>,
248 ///     buf: Box<[u8; 1024 * 1024]>,
249 ///     raw_info: *mut Info,
250 /// }
251 ///
252 /// #[pinned_drop]
253 /// impl PinnedDrop for DriverData {
254 ///     fn drop(self: Pin<&mut Self>) {
255 ///         unsafe { bindings::destroy_info(self.raw_info) };
256 ///     }
257 /// }
258 /// ```
259 #[proc_macro_attribute]
260 pub fn pinned_drop(args: TokenStream, input: TokenStream) -> TokenStream {
261     pinned_drop::pinned_drop(args, input)
262 }
263 
264 /// Paste identifiers together.
265 ///
266 /// Within the `paste!` macro, identifiers inside `[<` and `>]` are concatenated together to form a
267 /// single identifier.
268 ///
269 /// This is similar to the [`paste`] crate, but with pasting feature limited to identifiers and
270 /// literals (lifetimes and documentation strings are not supported). There is a difference in
271 /// supported modifiers as well.
272 ///
273 /// # Example
274 ///
275 /// ```ignore
276 /// use kernel::macro::paste;
277 ///
278 /// macro_rules! pub_no_prefix {
279 ///     ($prefix:ident, $($newname:ident),+) => {
280 ///         paste! {
281 ///             $(pub(crate) const $newname: u32 = [<$prefix $newname>];)+
282 ///         }
283 ///     };
284 /// }
285 ///
286 /// pub_no_prefix!(
287 ///     binder_driver_return_protocol_,
288 ///     BR_OK,
289 ///     BR_ERROR,
290 ///     BR_TRANSACTION,
291 ///     BR_REPLY,
292 ///     BR_DEAD_REPLY,
293 ///     BR_TRANSACTION_COMPLETE,
294 ///     BR_INCREFS,
295 ///     BR_ACQUIRE,
296 ///     BR_RELEASE,
297 ///     BR_DECREFS,
298 ///     BR_NOOP,
299 ///     BR_SPAWN_LOOPER,
300 ///     BR_DEAD_BINDER,
301 ///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
302 ///     BR_FAILED_REPLY
303 /// );
304 ///
305 /// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
306 /// ```
307 ///
308 /// # Modifiers
309 ///
310 /// For each identifier, it is possible to attach one or multiple modifiers to
311 /// it.
312 ///
313 /// Currently supported modifiers are:
314 /// * `span`: change the span of concatenated identifier to the span of the specified token. By
315 /// default the span of the `[< >]` group is used.
316 /// * `lower`: change the identifier to lower case.
317 /// * `upper`: change the identifier to upper case.
318 ///
319 /// ```ignore
320 /// use kernel::macro::paste;
321 ///
322 /// macro_rules! pub_no_prefix {
323 ///     ($prefix:ident, $($newname:ident),+) => {
324 ///         kernel::macros::paste! {
325 ///             $(pub(crate) const fn [<$newname:lower:span>]: u32 = [<$prefix $newname:span>];)+
326 ///         }
327 ///     };
328 /// }
329 ///
330 /// pub_no_prefix!(
331 ///     binder_driver_return_protocol_,
332 ///     BR_OK,
333 ///     BR_ERROR,
334 ///     BR_TRANSACTION,
335 ///     BR_REPLY,
336 ///     BR_DEAD_REPLY,
337 ///     BR_TRANSACTION_COMPLETE,
338 ///     BR_INCREFS,
339 ///     BR_ACQUIRE,
340 ///     BR_RELEASE,
341 ///     BR_DECREFS,
342 ///     BR_NOOP,
343 ///     BR_SPAWN_LOOPER,
344 ///     BR_DEAD_BINDER,
345 ///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
346 ///     BR_FAILED_REPLY
347 /// );
348 ///
349 /// assert_eq!(br_ok(), binder_driver_return_protocol_BR_OK);
350 /// ```
351 ///
352 /// # Literals
353 ///
354 /// Literals can also be concatenated with other identifiers:
355 ///
356 /// ```ignore
357 /// macro_rules! create_numbered_fn {
358 ///     ($name:literal, $val:literal) => {
359 ///         kernel::macros::paste! {
360 ///             fn [<some_ $name _fn $val>]() -> u32 { $val }
361 ///         }
362 ///     };
363 /// }
364 ///
365 /// create_numbered_fn!("foo", 100);
366 ///
367 /// assert_eq!(some_foo_fn100(), 100)
368 /// ```
369 ///
370 /// [`paste`]: https://docs.rs/paste/
371 #[proc_macro]
372 pub fn paste(input: TokenStream) -> TokenStream {
373     let mut tokens = input.into_iter().collect();
374     paste::expand(&mut tokens);
375     tokens.into_iter().collect()
376 }
377 
378 /// Derives the [`Zeroable`] trait for the given struct.
379 ///
380 /// This can only be used for structs where every field implements the [`Zeroable`] trait.
381 ///
382 /// # Examples
383 ///
384 /// ```rust,ignore
385 /// #[derive(Zeroable)]
386 /// pub struct DriverData {
387 ///     id: i64,
388 ///     buf_ptr: *mut u8,
389 ///     len: usize,
390 /// }
391 /// ```
392 #[proc_macro_derive(Zeroable)]
393 pub fn derive_zeroable(input: TokenStream) -> TokenStream {
394     zeroable::derive(input)
395 }
396