xref: /linux/rust/macros/lib.rs (revision 67f9c312b0a7f4bc869376d2a68308e673235954)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Crate for all kernel procedural macros.
4 
5 #[macro_use]
6 mod quote;
7 mod concat_idents;
8 mod helpers;
9 mod module;
10 mod paste;
11 mod pin_data;
12 mod pinned_drop;
13 mod vtable;
14 mod zeroable;
15 
16 use proc_macro::TokenStream;
17 
18 /// Declares a kernel module.
19 ///
20 /// The `type` argument should be a type which implements the [`Module`]
21 /// trait. Also accepts various forms of kernel metadata.
22 ///
23 /// C header: [`include/linux/moduleparam.h`](srctree/include/linux/moduleparam.h)
24 ///
25 /// [`Module`]: ../kernel/trait.Module.html
26 ///
27 /// # Examples
28 ///
29 /// ```ignore
30 /// use kernel::prelude::*;
31 ///
32 /// module!{
33 ///     type: MyModule,
34 ///     name: "my_kernel_module",
35 ///     author: "Rust for Linux Contributors",
36 ///     description: "My very own kernel module!",
37 ///     license: "GPL",
38 ///     alias: ["alternate_module_name"],
39 /// }
40 ///
41 /// struct MyModule;
42 ///
43 /// impl kernel::Module for MyModule {
44 ///     fn init() -> Result<Self> {
45 ///         // If the parameter is writeable, then the kparam lock must be
46 ///         // taken to read the parameter:
47 ///         {
48 ///             let lock = THIS_MODULE.kernel_param_lock();
49 ///             pr_info!("i32 param is:  {}\n", writeable_i32.read(&lock));
50 ///         }
51 ///         // If the parameter is read only, it can be read without locking
52 ///         // the kernel parameters:
53 ///         pr_info!("i32 param is:  {}\n", my_i32.read());
54 ///         Ok(Self)
55 ///     }
56 /// }
57 /// ```
58 ///
59 /// # Supported argument types
60 ///   - `type`: type which implements the [`Module`] trait (required).
61 ///   - `name`: byte array of the name of the kernel module (required).
62 ///   - `author`: byte array of the author of the kernel module.
63 ///   - `description`: byte array of the description of the kernel module.
64 ///   - `license`: byte array of the license of the kernel module (required).
65 ///   - `alias`: byte array of alias name of the kernel module.
66 #[proc_macro]
67 pub fn module(ts: TokenStream) -> TokenStream {
68     module::module(ts)
69 }
70 
71 /// Declares or implements a vtable trait.
72 ///
73 /// Linux's use of pure vtables is very close to Rust traits, but they differ
74 /// in how unimplemented functions are represented. In Rust, traits can provide
75 /// default implementation for all non-required methods (and the default
76 /// implementation could just return `Error::EINVAL`); Linux typically use C
77 /// `NULL` pointers to represent these functions.
78 ///
79 /// This attribute closes that gap. A trait can be annotated with the
80 /// `#[vtable]` attribute. Implementers of the trait will then also have to
81 /// annotate the trait with `#[vtable]`. This attribute generates a `HAS_*`
82 /// associated constant bool for each method in the trait that is set to true if
83 /// the implementer has overridden the associated method.
84 ///
85 /// For a trait method to be optional, it must have a default implementation.
86 /// This is also the case for traits annotated with `#[vtable]`, but in this
87 /// case the default implementation will never be executed. The reason for this
88 /// is that the functions will be called through function pointers installed in
89 /// C side vtables. When an optional method is not implemented on a `#[vtable]`
90 /// trait, a NULL entry is installed in the vtable. Thus the default
91 /// implementation is never called. Since these traits are not designed to be
92 /// used on the Rust side, it should not be possible to call the default
93 /// implementation. This is done to ensure that we call the vtable methods
94 /// through the C vtable, and not through the Rust vtable. Therefore, the
95 /// default implementation should call `kernel::build_error`, which prevents
96 /// calls to this function at compile time:
97 ///
98 /// ```compile_fail
99 /// # use kernel::error::VTABLE_DEFAULT_ERROR;
100 /// kernel::build_error(VTABLE_DEFAULT_ERROR)
101 /// ```
102 ///
103 /// Note that you might need to import [`kernel::error::VTABLE_DEFAULT_ERROR`].
104 ///
105 /// This macro should not be used when all functions are required.
106 ///
107 /// # Examples
108 ///
109 /// ```ignore
110 /// use kernel::error::VTABLE_DEFAULT_ERROR;
111 /// use kernel::prelude::*;
112 ///
113 /// // Declares a `#[vtable]` trait
114 /// #[vtable]
115 /// pub trait Operations: Send + Sync + Sized {
116 ///     fn foo(&self) -> Result<()> {
117 ///         kernel::build_error(VTABLE_DEFAULT_ERROR)
118 ///     }
119 ///
120 ///     fn bar(&self) -> Result<()> {
121 ///         kernel::build_error(VTABLE_DEFAULT_ERROR)
122 ///     }
123 /// }
124 ///
125 /// struct Foo;
126 ///
127 /// // Implements the `#[vtable]` trait
128 /// #[vtable]
129 /// impl Operations for Foo {
130 ///     fn foo(&self) -> Result<()> {
131 /// #        Err(EINVAL)
132 ///         // ...
133 ///     }
134 /// }
135 ///
136 /// assert_eq!(<Foo as Operations>::HAS_FOO, true);
137 /// assert_eq!(<Foo as Operations>::HAS_BAR, false);
138 /// ```
139 ///
140 /// [`kernel::error::VTABLE_DEFAULT_ERROR`]: ../kernel/error/constant.VTABLE_DEFAULT_ERROR.html
141 #[proc_macro_attribute]
142 pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream {
143     vtable::vtable(attr, ts)
144 }
145 
146 /// Concatenate two identifiers.
147 ///
148 /// This is useful in macros that need to declare or reference items with names
149 /// starting with a fixed prefix and ending in a user specified name. The resulting
150 /// identifier has the span of the second argument.
151 ///
152 /// # Examples
153 ///
154 /// ```ignore
155 /// use kernel::macro::concat_idents;
156 ///
157 /// macro_rules! pub_no_prefix {
158 ///     ($prefix:ident, $($newname:ident),+) => {
159 ///         $(pub(crate) const $newname: u32 = kernel::macros::concat_idents!($prefix, $newname);)+
160 ///     };
161 /// }
162 ///
163 /// pub_no_prefix!(
164 ///     binder_driver_return_protocol_,
165 ///     BR_OK,
166 ///     BR_ERROR,
167 ///     BR_TRANSACTION,
168 ///     BR_REPLY,
169 ///     BR_DEAD_REPLY,
170 ///     BR_TRANSACTION_COMPLETE,
171 ///     BR_INCREFS,
172 ///     BR_ACQUIRE,
173 ///     BR_RELEASE,
174 ///     BR_DECREFS,
175 ///     BR_NOOP,
176 ///     BR_SPAWN_LOOPER,
177 ///     BR_DEAD_BINDER,
178 ///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
179 ///     BR_FAILED_REPLY
180 /// );
181 ///
182 /// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
183 /// ```
184 #[proc_macro]
185 pub fn concat_idents(ts: TokenStream) -> TokenStream {
186     concat_idents::concat_idents(ts)
187 }
188 
189 /// Used to specify the pinning information of the fields of a struct.
190 ///
191 /// This is somewhat similar in purpose as
192 /// [pin-project-lite](https://crates.io/crates/pin-project-lite).
193 /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
194 /// field you want to structurally pin.
195 ///
196 /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
197 /// then `#[pin]` directs the type of initializer that is required.
198 ///
199 /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
200 /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
201 /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
202 ///
203 /// # Examples
204 ///
205 /// ```rust,ignore
206 /// #[pin_data]
207 /// struct DriverData {
208 ///     #[pin]
209 ///     queue: Mutex<Vec<Command>>,
210 ///     buf: Box<[u8; 1024 * 1024]>,
211 /// }
212 /// ```
213 ///
214 /// ```rust,ignore
215 /// #[pin_data(PinnedDrop)]
216 /// struct DriverData {
217 ///     #[pin]
218 ///     queue: Mutex<Vec<Command>>,
219 ///     buf: Box<[u8; 1024 * 1024]>,
220 ///     raw_info: *mut Info,
221 /// }
222 ///
223 /// #[pinned_drop]
224 /// impl PinnedDrop for DriverData {
225 ///     fn drop(self: Pin<&mut Self>) {
226 ///         unsafe { bindings::destroy_info(self.raw_info) };
227 ///     }
228 /// }
229 /// ```
230 ///
231 /// [`pin_init!`]: ../kernel/macro.pin_init.html
232 //  ^ cannot use direct link, since `kernel` is not a dependency of `macros`.
233 #[proc_macro_attribute]
234 pub fn pin_data(inner: TokenStream, item: TokenStream) -> TokenStream {
235     pin_data::pin_data(inner, item)
236 }
237 
238 /// Used to implement `PinnedDrop` safely.
239 ///
240 /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
241 ///
242 /// # Examples
243 ///
244 /// ```rust,ignore
245 /// #[pin_data(PinnedDrop)]
246 /// struct DriverData {
247 ///     #[pin]
248 ///     queue: Mutex<Vec<Command>>,
249 ///     buf: Box<[u8; 1024 * 1024]>,
250 ///     raw_info: *mut Info,
251 /// }
252 ///
253 /// #[pinned_drop]
254 /// impl PinnedDrop for DriverData {
255 ///     fn drop(self: Pin<&mut Self>) {
256 ///         unsafe { bindings::destroy_info(self.raw_info) };
257 ///     }
258 /// }
259 /// ```
260 #[proc_macro_attribute]
261 pub fn pinned_drop(args: TokenStream, input: TokenStream) -> TokenStream {
262     pinned_drop::pinned_drop(args, input)
263 }
264 
265 /// Paste identifiers together.
266 ///
267 /// Within the `paste!` macro, identifiers inside `[<` and `>]` are concatenated together to form a
268 /// single identifier.
269 ///
270 /// This is similar to the [`paste`] crate, but with pasting feature limited to identifiers and
271 /// literals (lifetimes and documentation strings are not supported). There is a difference in
272 /// supported modifiers as well.
273 ///
274 /// # Example
275 ///
276 /// ```ignore
277 /// use kernel::macro::paste;
278 ///
279 /// macro_rules! pub_no_prefix {
280 ///     ($prefix:ident, $($newname:ident),+) => {
281 ///         paste! {
282 ///             $(pub(crate) const $newname: u32 = [<$prefix $newname>];)+
283 ///         }
284 ///     };
285 /// }
286 ///
287 /// pub_no_prefix!(
288 ///     binder_driver_return_protocol_,
289 ///     BR_OK,
290 ///     BR_ERROR,
291 ///     BR_TRANSACTION,
292 ///     BR_REPLY,
293 ///     BR_DEAD_REPLY,
294 ///     BR_TRANSACTION_COMPLETE,
295 ///     BR_INCREFS,
296 ///     BR_ACQUIRE,
297 ///     BR_RELEASE,
298 ///     BR_DECREFS,
299 ///     BR_NOOP,
300 ///     BR_SPAWN_LOOPER,
301 ///     BR_DEAD_BINDER,
302 ///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
303 ///     BR_FAILED_REPLY
304 /// );
305 ///
306 /// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
307 /// ```
308 ///
309 /// # Modifiers
310 ///
311 /// For each identifier, it is possible to attach one or multiple modifiers to
312 /// it.
313 ///
314 /// Currently supported modifiers are:
315 /// * `span`: change the span of concatenated identifier to the span of the specified token. By
316 /// default the span of the `[< >]` group is used.
317 /// * `lower`: change the identifier to lower case.
318 /// * `upper`: change the identifier to upper case.
319 ///
320 /// ```ignore
321 /// use kernel::macro::paste;
322 ///
323 /// macro_rules! pub_no_prefix {
324 ///     ($prefix:ident, $($newname:ident),+) => {
325 ///         kernel::macros::paste! {
326 ///             $(pub(crate) const fn [<$newname:lower:span>]: u32 = [<$prefix $newname:span>];)+
327 ///         }
328 ///     };
329 /// }
330 ///
331 /// pub_no_prefix!(
332 ///     binder_driver_return_protocol_,
333 ///     BR_OK,
334 ///     BR_ERROR,
335 ///     BR_TRANSACTION,
336 ///     BR_REPLY,
337 ///     BR_DEAD_REPLY,
338 ///     BR_TRANSACTION_COMPLETE,
339 ///     BR_INCREFS,
340 ///     BR_ACQUIRE,
341 ///     BR_RELEASE,
342 ///     BR_DECREFS,
343 ///     BR_NOOP,
344 ///     BR_SPAWN_LOOPER,
345 ///     BR_DEAD_BINDER,
346 ///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
347 ///     BR_FAILED_REPLY
348 /// );
349 ///
350 /// assert_eq!(br_ok(), binder_driver_return_protocol_BR_OK);
351 /// ```
352 ///
353 /// # Literals
354 ///
355 /// Literals can also be concatenated with other identifiers:
356 ///
357 /// ```ignore
358 /// macro_rules! create_numbered_fn {
359 ///     ($name:literal, $val:literal) => {
360 ///         kernel::macros::paste! {
361 ///             fn [<some_ $name _fn $val>]() -> u32 { $val }
362 ///         }
363 ///     };
364 /// }
365 ///
366 /// create_numbered_fn!("foo", 100);
367 ///
368 /// assert_eq!(some_foo_fn100(), 100)
369 /// ```
370 ///
371 /// [`paste`]: https://docs.rs/paste/
372 #[proc_macro]
373 pub fn paste(input: TokenStream) -> TokenStream {
374     let mut tokens = input.into_iter().collect();
375     paste::expand(&mut tokens);
376     tokens.into_iter().collect()
377 }
378 
379 /// Derives the [`Zeroable`] trait for the given struct.
380 ///
381 /// This can only be used for structs where every field implements the [`Zeroable`] trait.
382 ///
383 /// # Examples
384 ///
385 /// ```rust,ignore
386 /// #[derive(Zeroable)]
387 /// pub struct DriverData {
388 ///     id: i64,
389 ///     buf_ptr: *mut u8,
390 ///     len: usize,
391 /// }
392 /// ```
393 #[proc_macro_derive(Zeroable)]
394 pub fn derive_zeroable(input: TokenStream) -> TokenStream {
395     zeroable::derive(input)
396 }
397