1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Work queues. 4 //! 5 //! This file has two components: The raw work item API, and the safe work item API. 6 //! 7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single 8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field, 9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as 10 //! long as you use different values for different fields of the same struct.) Since these IDs are 11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary. 12 //! 13 //! # The raw API 14 //! 15 //! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an 16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used 17 //! directly, but if you want to, you can use it without using the pieces from the safe API. 18 //! 19 //! # The safe API 20 //! 21 //! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also 22 //! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user. 23 //! 24 //! * The [`Work`] struct is the Rust wrapper for the C `work_struct` type. 25 //! * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue. 26 //! * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something 27 //! that implements [`WorkItem`]. 28 //! 29 //! ## Example 30 //! 31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When 32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field, 33 //! we do not need to specify ids for the fields. 34 //! 35 //! ``` 36 //! use kernel::sync::Arc; 37 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem}; 38 //! 39 //! #[pin_data] 40 //! struct MyStruct { 41 //! value: i32, 42 //! #[pin] 43 //! work: Work<MyStruct>, 44 //! } 45 //! 46 //! impl_has_work! { 47 //! impl HasWork<Self> for MyStruct { self.work } 48 //! } 49 //! 50 //! impl MyStruct { 51 //! fn new(value: i32) -> Result<Arc<Self>> { 52 //! Arc::pin_init(pin_init!(MyStruct { 53 //! value, 54 //! work <- new_work!("MyStruct::work"), 55 //! }), GFP_KERNEL) 56 //! } 57 //! } 58 //! 59 //! impl WorkItem for MyStruct { 60 //! type Pointer = Arc<MyStruct>; 61 //! 62 //! fn run(this: Arc<MyStruct>) { 63 //! pr_info!("The value is: {}", this.value); 64 //! } 65 //! } 66 //! 67 //! /// This method will enqueue the struct for execution on the system workqueue, where its value 68 //! /// will be printed. 69 //! fn print_later(val: Arc<MyStruct>) { 70 //! let _ = workqueue::system().enqueue(val); 71 //! } 72 //! # print_later(MyStruct::new(42).unwrap()); 73 //! ``` 74 //! 75 //! The following example shows how multiple `work_struct` fields can be used: 76 //! 77 //! ``` 78 //! use kernel::sync::Arc; 79 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem}; 80 //! 81 //! #[pin_data] 82 //! struct MyStruct { 83 //! value_1: i32, 84 //! value_2: i32, 85 //! #[pin] 86 //! work_1: Work<MyStruct, 1>, 87 //! #[pin] 88 //! work_2: Work<MyStruct, 2>, 89 //! } 90 //! 91 //! impl_has_work! { 92 //! impl HasWork<Self, 1> for MyStruct { self.work_1 } 93 //! impl HasWork<Self, 2> for MyStruct { self.work_2 } 94 //! } 95 //! 96 //! impl MyStruct { 97 //! fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> { 98 //! Arc::pin_init(pin_init!(MyStruct { 99 //! value_1, 100 //! value_2, 101 //! work_1 <- new_work!("MyStruct::work_1"), 102 //! work_2 <- new_work!("MyStruct::work_2"), 103 //! }), GFP_KERNEL) 104 //! } 105 //! } 106 //! 107 //! impl WorkItem<1> for MyStruct { 108 //! type Pointer = Arc<MyStruct>; 109 //! 110 //! fn run(this: Arc<MyStruct>) { 111 //! pr_info!("The value is: {}", this.value_1); 112 //! } 113 //! } 114 //! 115 //! impl WorkItem<2> for MyStruct { 116 //! type Pointer = Arc<MyStruct>; 117 //! 118 //! fn run(this: Arc<MyStruct>) { 119 //! pr_info!("The second value is: {}", this.value_2); 120 //! } 121 //! } 122 //! 123 //! fn print_1_later(val: Arc<MyStruct>) { 124 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val); 125 //! } 126 //! 127 //! fn print_2_later(val: Arc<MyStruct>) { 128 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val); 129 //! } 130 //! # print_1_later(MyStruct::new(24, 25).unwrap()); 131 //! # print_2_later(MyStruct::new(41, 42).unwrap()); 132 //! ``` 133 //! 134 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h) 135 136 use crate::alloc::{AllocError, Flags}; 137 use crate::{prelude::*, sync::Arc, sync::LockClassKey, types::Opaque}; 138 use core::marker::PhantomData; 139 140 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class. 141 #[macro_export] 142 macro_rules! new_work { 143 ($($name:literal)?) => { 144 $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!()) 145 }; 146 } 147 pub use new_work; 148 149 /// A kernel work queue. 150 /// 151 /// Wraps the kernel's C `struct workqueue_struct`. 152 /// 153 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are 154 /// always available, for example, `system`, `system_highpri`, `system_long`, etc. 155 #[repr(transparent)] 156 pub struct Queue(Opaque<bindings::workqueue_struct>); 157 158 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 159 unsafe impl Send for Queue {} 160 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 161 unsafe impl Sync for Queue {} 162 163 impl Queue { 164 /// Use the provided `struct workqueue_struct` with Rust. 165 /// 166 /// # Safety 167 /// 168 /// The caller must ensure that the provided raw pointer is not dangling, that it points at a 169 /// valid workqueue, and that it remains valid until the end of `'a`. 170 pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue { 171 // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The 172 // caller promises that the pointer is not dangling. 173 unsafe { &*(ptr as *const Queue) } 174 } 175 176 /// Enqueues a work item. 177 /// 178 /// This may fail if the work item is already enqueued in a workqueue. 179 /// 180 /// The work item will be submitted using `WORK_CPU_UNBOUND`. 181 pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput 182 where 183 W: RawWorkItem<ID> + Send + 'static, 184 { 185 let queue_ptr = self.0.get(); 186 187 // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other 188 // `__enqueue` requirements are not relevant since `W` is `Send` and static. 189 // 190 // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which 191 // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this 192 // closure. 193 // 194 // Furthermore, if the C workqueue code accesses the pointer after this call to 195 // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on` 196 // will have returned true. In this case, `__enqueue` promises that the raw pointer will 197 // stay valid until we call the function pointer in the `work_struct`, so the access is ok. 198 unsafe { 199 w.__enqueue(move |work_ptr| { 200 bindings::queue_work_on( 201 bindings::wq_misc_consts_WORK_CPU_UNBOUND as _, 202 queue_ptr, 203 work_ptr, 204 ) 205 }) 206 } 207 } 208 209 /// Tries to spawn the given function or closure as a work item. 210 /// 211 /// This method can fail because it allocates memory to store the work item. 212 pub fn try_spawn<T: 'static + Send + FnOnce()>( 213 &self, 214 flags: Flags, 215 func: T, 216 ) -> Result<(), AllocError> { 217 let init = pin_init!(ClosureWork { 218 work <- new_work!("Queue::try_spawn"), 219 func: Some(func), 220 }); 221 222 self.enqueue(KBox::pin_init(init, flags).map_err(|_| AllocError)?); 223 Ok(()) 224 } 225 } 226 227 /// A helper type used in [`try_spawn`]. 228 /// 229 /// [`try_spawn`]: Queue::try_spawn 230 #[pin_data] 231 struct ClosureWork<T> { 232 #[pin] 233 work: Work<ClosureWork<T>>, 234 func: Option<T>, 235 } 236 237 impl<T> ClosureWork<T> { 238 fn project(self: Pin<&mut Self>) -> &mut Option<T> { 239 // SAFETY: The `func` field is not structurally pinned. 240 unsafe { &mut self.get_unchecked_mut().func } 241 } 242 } 243 244 impl<T: FnOnce()> WorkItem for ClosureWork<T> { 245 type Pointer = Pin<KBox<Self>>; 246 247 fn run(mut this: Pin<KBox<Self>>) { 248 if let Some(func) = this.as_mut().project().take() { 249 (func)() 250 } 251 } 252 } 253 254 /// A raw work item. 255 /// 256 /// This is the low-level trait that is designed for being as general as possible. 257 /// 258 /// The `ID` parameter to this trait exists so that a single type can provide multiple 259 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then 260 /// you will implement this trait once for each field, using a different id for each field. The 261 /// actual value of the id is not important as long as you use different ids for different fields 262 /// of the same struct. (Fields of different structs need not use different ids.) 263 /// 264 /// Note that the id is used only to select the right method to call during compilation. It won't be 265 /// part of the final executable. 266 /// 267 /// # Safety 268 /// 269 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`] 270 /// remain valid for the duration specified in the guarantees section of the documentation for 271 /// [`__enqueue`]. 272 /// 273 /// [`__enqueue`]: RawWorkItem::__enqueue 274 pub unsafe trait RawWorkItem<const ID: u64> { 275 /// The return type of [`Queue::enqueue`]. 276 type EnqueueOutput; 277 278 /// Enqueues this work item on a queue using the provided `queue_work_on` method. 279 /// 280 /// # Guarantees 281 /// 282 /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a 283 /// valid `work_struct` for the duration of the call to the closure. If the closure returns 284 /// true, then it is further guaranteed that the pointer remains valid until someone calls the 285 /// function pointer stored in the `work_struct`. 286 /// 287 /// # Safety 288 /// 289 /// The provided closure may only return `false` if the `work_struct` is already in a workqueue. 290 /// 291 /// If the work item type is annotated with any lifetimes, then you must not call the function 292 /// pointer after any such lifetime expires. (Never calling the function pointer is okay.) 293 /// 294 /// If the work item type is not [`Send`], then the function pointer must be called on the same 295 /// thread as the call to `__enqueue`. 296 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 297 where 298 F: FnOnce(*mut bindings::work_struct) -> bool; 299 } 300 301 /// Defines the method that should be called directly when a work item is executed. 302 /// 303 /// This trait is implemented by `Pin<KBox<T>>` and [`Arc<T>`], and is mainly intended to be 304 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`] 305 /// instead. The [`run`] method on this trait will usually just perform the appropriate 306 /// `container_of` translation and then call into the [`run`][WorkItem::run] method from the 307 /// [`WorkItem`] trait. 308 /// 309 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 310 /// 311 /// # Safety 312 /// 313 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`] 314 /// method of this trait as the function pointer. 315 /// 316 /// [`__enqueue`]: RawWorkItem::__enqueue 317 /// [`run`]: WorkItemPointer::run 318 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> { 319 /// Run this work item. 320 /// 321 /// # Safety 322 /// 323 /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`] 324 /// where the `queue_work_on` closure returned true, and the pointer must still be valid. 325 /// 326 /// [`__enqueue`]: RawWorkItem::__enqueue 327 unsafe extern "C" fn run(ptr: *mut bindings::work_struct); 328 } 329 330 /// Defines the method that should be called when this work item is executed. 331 /// 332 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 333 pub trait WorkItem<const ID: u64 = 0> { 334 /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or 335 /// `Pin<KBox<Self>>`. 336 type Pointer: WorkItemPointer<ID>; 337 338 /// The method that should be called when this work item is executed. 339 fn run(this: Self::Pointer); 340 } 341 342 /// Links for a work item. 343 /// 344 /// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`] 345 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue. 346 /// 347 /// Wraps the kernel's C `struct work_struct`. 348 /// 349 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it. 350 /// 351 /// [`run`]: WorkItemPointer::run 352 #[pin_data] 353 #[repr(transparent)] 354 pub struct Work<T: ?Sized, const ID: u64 = 0> { 355 #[pin] 356 work: Opaque<bindings::work_struct>, 357 _inner: PhantomData<T>, 358 } 359 360 // SAFETY: Kernel work items are usable from any thread. 361 // 362 // We do not need to constrain `T` since the work item does not actually contain a `T`. 363 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {} 364 // SAFETY: Kernel work items are usable from any thread. 365 // 366 // We do not need to constrain `T` since the work item does not actually contain a `T`. 367 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {} 368 369 impl<T: ?Sized, const ID: u64> Work<T, ID> { 370 /// Creates a new instance of [`Work`]. 371 #[inline] 372 pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> 373 where 374 T: WorkItem<ID>, 375 { 376 pin_init!(Self { 377 work <- Opaque::ffi_init(|slot| { 378 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as 379 // the work item function. 380 unsafe { 381 bindings::init_work_with_key( 382 slot, 383 Some(T::Pointer::run), 384 false, 385 name.as_char_ptr(), 386 key.as_ptr(), 387 ) 388 } 389 }), 390 _inner: PhantomData, 391 }) 392 } 393 394 /// Get a pointer to the inner `work_struct`. 395 /// 396 /// # Safety 397 /// 398 /// The provided pointer must not be dangling and must be properly aligned. (But the memory 399 /// need not be initialized.) 400 #[inline] 401 pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct { 402 // SAFETY: The caller promises that the pointer is aligned and not dangling. 403 // 404 // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that 405 // the compiler does not complain that the `work` field is unused. 406 unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) } 407 } 408 } 409 410 /// Declares that a type has a [`Work<T, ID>`] field. 411 /// 412 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro 413 /// like this: 414 /// 415 /// ```no_run 416 /// use kernel::workqueue::{impl_has_work, Work}; 417 /// 418 /// struct MyWorkItem { 419 /// work_field: Work<MyWorkItem, 1>, 420 /// } 421 /// 422 /// impl_has_work! { 423 /// impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field } 424 /// } 425 /// ``` 426 /// 427 /// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct` 428 /// fields by using a different id for each one. 429 /// 430 /// # Safety 431 /// 432 /// The [`OFFSET`] constant must be the offset of a field in `Self` of type [`Work<T, ID>`]. The 433 /// methods on this trait must have exactly the behavior that the definitions given below have. 434 /// 435 /// [`impl_has_work!`]: crate::impl_has_work 436 /// [`OFFSET`]: HasWork::OFFSET 437 pub unsafe trait HasWork<T, const ID: u64 = 0> { 438 /// The offset of the [`Work<T, ID>`] field. 439 const OFFSET: usize; 440 441 /// Returns the offset of the [`Work<T, ID>`] field. 442 /// 443 /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not 444 /// [`Sized`]. 445 /// 446 /// [`OFFSET`]: HasWork::OFFSET 447 #[inline] 448 fn get_work_offset(&self) -> usize { 449 Self::OFFSET 450 } 451 452 /// Returns a pointer to the [`Work<T, ID>`] field. 453 /// 454 /// # Safety 455 /// 456 /// The provided pointer must point at a valid struct of type `Self`. 457 #[inline] 458 unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> { 459 // SAFETY: The caller promises that the pointer is valid. 460 unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> } 461 } 462 463 /// Returns a pointer to the struct containing the [`Work<T, ID>`] field. 464 /// 465 /// # Safety 466 /// 467 /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`. 468 #[inline] 469 unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self 470 where 471 Self: Sized, 472 { 473 // SAFETY: The caller promises that the pointer points at a field of the right type in the 474 // right kind of struct. 475 unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self } 476 } 477 } 478 479 /// Used to safely implement the [`HasWork<T, ID>`] trait. 480 /// 481 /// # Examples 482 /// 483 /// ``` 484 /// use kernel::sync::Arc; 485 /// use kernel::workqueue::{self, impl_has_work, Work}; 486 /// 487 /// struct MyStruct<'a, T, const N: usize> { 488 /// work_field: Work<MyStruct<'a, T, N>, 17>, 489 /// f: fn(&'a [T; N]), 490 /// } 491 /// 492 /// impl_has_work! { 493 /// impl{'a, T, const N: usize} HasWork<MyStruct<'a, T, N>, 17> 494 /// for MyStruct<'a, T, N> { self.work_field } 495 /// } 496 /// ``` 497 #[macro_export] 498 macro_rules! impl_has_work { 499 ($(impl$({$($generics:tt)*})? 500 HasWork<$work_type:ty $(, $id:tt)?> 501 for $self:ty 502 { self.$field:ident } 503 )*) => {$( 504 // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right 505 // type. 506 unsafe impl$(<$($generics)+>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self { 507 const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize; 508 509 #[inline] 510 unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> { 511 // SAFETY: The caller promises that the pointer is not dangling. 512 unsafe { 513 ::core::ptr::addr_of_mut!((*ptr).$field) 514 } 515 } 516 } 517 )*}; 518 } 519 pub use impl_has_work; 520 521 impl_has_work! { 522 impl{T} HasWork<Self> for ClosureWork<T> { self.work } 523 } 524 525 // SAFETY: The `__enqueue` implementation in RawWorkItem uses a `work_struct` initialized with the 526 // `run` method of this trait as the function pointer because: 527 // - `__enqueue` gets the `work_struct` from the `Work` field, using `T::raw_get_work`. 528 // - The only safe way to create a `Work` object is through `Work::new`. 529 // - `Work::new` makes sure that `T::Pointer::run` is passed to `init_work_with_key`. 530 // - Finally `Work` and `RawWorkItem` guarantee that the correct `Work` field 531 // will be used because of the ID const generic bound. This makes sure that `T::raw_get_work` 532 // uses the correct offset for the `Work` field, and `Work::new` picks the correct 533 // implementation of `WorkItemPointer` for `Arc<T>`. 534 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T> 535 where 536 T: WorkItem<ID, Pointer = Self>, 537 T: HasWork<T, ID>, 538 { 539 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 540 // The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 541 let ptr = ptr as *mut Work<T, ID>; 542 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 543 let ptr = unsafe { T::work_container_of(ptr) }; 544 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 545 let arc = unsafe { Arc::from_raw(ptr) }; 546 547 T::run(arc) 548 } 549 } 550 551 // SAFETY: The `work_struct` raw pointer is guaranteed to be valid for the duration of the call to 552 // the closure because we get it from an `Arc`, which means that the ref count will be at least 1, 553 // and we don't drop the `Arc` ourselves. If `queue_work_on` returns true, it is further guaranteed 554 // to be valid until a call to the function pointer in `work_struct` because we leak the memory it 555 // points to, and only reclaim it if the closure returns false, or in `WorkItemPointer::run`, which 556 // is what the function pointer in the `work_struct` must be pointing to, according to the safety 557 // requirements of `WorkItemPointer`. 558 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T> 559 where 560 T: WorkItem<ID, Pointer = Self>, 561 T: HasWork<T, ID>, 562 { 563 type EnqueueOutput = Result<(), Self>; 564 565 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 566 where 567 F: FnOnce(*mut bindings::work_struct) -> bool, 568 { 569 // Casting between const and mut is not a problem as long as the pointer is a raw pointer. 570 let ptr = Arc::into_raw(self).cast_mut(); 571 572 // SAFETY: Pointers into an `Arc` point at a valid value. 573 let work_ptr = unsafe { T::raw_get_work(ptr) }; 574 // SAFETY: `raw_get_work` returns a pointer to a valid value. 575 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 576 577 if queue_work_on(work_ptr) { 578 Ok(()) 579 } else { 580 // SAFETY: The work queue has not taken ownership of the pointer. 581 Err(unsafe { Arc::from_raw(ptr) }) 582 } 583 } 584 } 585 586 // SAFETY: TODO. 587 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<KBox<T>> 588 where 589 T: WorkItem<ID, Pointer = Self>, 590 T: HasWork<T, ID>, 591 { 592 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 593 // The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 594 let ptr = ptr as *mut Work<T, ID>; 595 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 596 let ptr = unsafe { T::work_container_of(ptr) }; 597 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 598 let boxed = unsafe { KBox::from_raw(ptr) }; 599 // SAFETY: The box was already pinned when it was enqueued. 600 let pinned = unsafe { Pin::new_unchecked(boxed) }; 601 602 T::run(pinned) 603 } 604 } 605 606 // SAFETY: TODO. 607 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<KBox<T>> 608 where 609 T: WorkItem<ID, Pointer = Self>, 610 T: HasWork<T, ID>, 611 { 612 type EnqueueOutput = (); 613 614 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 615 where 616 F: FnOnce(*mut bindings::work_struct) -> bool, 617 { 618 // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily 619 // remove the `Pin` wrapper. 620 let boxed = unsafe { Pin::into_inner_unchecked(self) }; 621 let ptr = KBox::into_raw(boxed); 622 623 // SAFETY: Pointers into a `KBox` point at a valid value. 624 let work_ptr = unsafe { T::raw_get_work(ptr) }; 625 // SAFETY: `raw_get_work` returns a pointer to a valid value. 626 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 627 628 if !queue_work_on(work_ptr) { 629 // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a 630 // workqueue. 631 unsafe { ::core::hint::unreachable_unchecked() } 632 } 633 } 634 } 635 636 /// Returns the system work queue (`system_wq`). 637 /// 638 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are 639 /// users which expect relatively short queue flush time. 640 /// 641 /// Callers shouldn't queue work items which can run for too long. 642 pub fn system() -> &'static Queue { 643 // SAFETY: `system_wq` is a C global, always available. 644 unsafe { Queue::from_raw(bindings::system_wq) } 645 } 646 647 /// Returns the system high-priority work queue (`system_highpri_wq`). 648 /// 649 /// It is similar to the one returned by [`system`] but for work items which require higher 650 /// scheduling priority. 651 pub fn system_highpri() -> &'static Queue { 652 // SAFETY: `system_highpri_wq` is a C global, always available. 653 unsafe { Queue::from_raw(bindings::system_highpri_wq) } 654 } 655 656 /// Returns the system work queue for potentially long-running work items (`system_long_wq`). 657 /// 658 /// It is similar to the one returned by [`system`] but may host long running work items. Queue 659 /// flushing might take relatively long. 660 pub fn system_long() -> &'static Queue { 661 // SAFETY: `system_long_wq` is a C global, always available. 662 unsafe { Queue::from_raw(bindings::system_long_wq) } 663 } 664 665 /// Returns the system unbound work queue (`system_unbound_wq`). 666 /// 667 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items 668 /// are executed immediately as long as `max_active` limit is not reached and resources are 669 /// available. 670 pub fn system_unbound() -> &'static Queue { 671 // SAFETY: `system_unbound_wq` is a C global, always available. 672 unsafe { Queue::from_raw(bindings::system_unbound_wq) } 673 } 674 675 /// Returns the system freezable work queue (`system_freezable_wq`). 676 /// 677 /// It is equivalent to the one returned by [`system`] except that it's freezable. 678 /// 679 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 680 /// items on the workqueue are drained and no new work item starts execution until thawed. 681 pub fn system_freezable() -> &'static Queue { 682 // SAFETY: `system_freezable_wq` is a C global, always available. 683 unsafe { Queue::from_raw(bindings::system_freezable_wq) } 684 } 685 686 /// Returns the system power-efficient work queue (`system_power_efficient_wq`). 687 /// 688 /// It is inclined towards saving power and is converted to "unbound" variants if the 689 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one 690 /// returned by [`system`]. 691 pub fn system_power_efficient() -> &'static Queue { 692 // SAFETY: `system_power_efficient_wq` is a C global, always available. 693 unsafe { Queue::from_raw(bindings::system_power_efficient_wq) } 694 } 695 696 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`). 697 /// 698 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable. 699 /// 700 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 701 /// items on the workqueue are drained and no new work item starts execution until thawed. 702 pub fn system_freezable_power_efficient() -> &'static Queue { 703 // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available. 704 unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) } 705 } 706