1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Work queues. 4 //! 5 //! This file has two components: The raw work item API, and the safe work item API. 6 //! 7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single 8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field, 9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as 10 //! long as you use different values for different fields of the same struct.) Since these IDs are 11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary. 12 //! 13 //! # The raw API 14 //! 15 //! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an 16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used 17 //! directly, but if you want to, you can use it without using the pieces from the safe API. 18 //! 19 //! # The safe API 20 //! 21 //! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also 22 //! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user. 23 //! 24 //! * The [`Work`] struct is the Rust wrapper for the C `work_struct` type. 25 //! * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue. 26 //! * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something 27 //! that implements [`WorkItem`]. 28 //! 29 //! ## Example 30 //! 31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When 32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field, 33 //! we do not need to specify ids for the fields. 34 //! 35 //! ``` 36 //! use kernel::prelude::*; 37 //! use kernel::sync::Arc; 38 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem}; 39 //! 40 //! #[pin_data] 41 //! struct MyStruct { 42 //! value: i32, 43 //! #[pin] 44 //! work: Work<MyStruct>, 45 //! } 46 //! 47 //! impl_has_work! { 48 //! impl HasWork<Self> for MyStruct { self.work } 49 //! } 50 //! 51 //! impl MyStruct { 52 //! fn new(value: i32) -> Result<Arc<Self>> { 53 //! Arc::pin_init(pin_init!(MyStruct { 54 //! value, 55 //! work <- new_work!("MyStruct::work"), 56 //! })) 57 //! } 58 //! } 59 //! 60 //! impl WorkItem for MyStruct { 61 //! type Pointer = Arc<MyStruct>; 62 //! 63 //! fn run(this: Arc<MyStruct>) { 64 //! pr_info!("The value is: {}", this.value); 65 //! } 66 //! } 67 //! 68 //! /// This method will enqueue the struct for execution on the system workqueue, where its value 69 //! /// will be printed. 70 //! fn print_later(val: Arc<MyStruct>) { 71 //! let _ = workqueue::system().enqueue(val); 72 //! } 73 //! ``` 74 //! 75 //! The following example shows how multiple `work_struct` fields can be used: 76 //! 77 //! ``` 78 //! use kernel::prelude::*; 79 //! use kernel::sync::Arc; 80 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem}; 81 //! 82 //! #[pin_data] 83 //! struct MyStruct { 84 //! value_1: i32, 85 //! value_2: i32, 86 //! #[pin] 87 //! work_1: Work<MyStruct, 1>, 88 //! #[pin] 89 //! work_2: Work<MyStruct, 2>, 90 //! } 91 //! 92 //! impl_has_work! { 93 //! impl HasWork<Self, 1> for MyStruct { self.work_1 } 94 //! impl HasWork<Self, 2> for MyStruct { self.work_2 } 95 //! } 96 //! 97 //! impl MyStruct { 98 //! fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> { 99 //! Arc::pin_init(pin_init!(MyStruct { 100 //! value_1, 101 //! value_2, 102 //! work_1 <- new_work!("MyStruct::work_1"), 103 //! work_2 <- new_work!("MyStruct::work_2"), 104 //! })) 105 //! } 106 //! } 107 //! 108 //! impl WorkItem<1> for MyStruct { 109 //! type Pointer = Arc<MyStruct>; 110 //! 111 //! fn run(this: Arc<MyStruct>) { 112 //! pr_info!("The value is: {}", this.value_1); 113 //! } 114 //! } 115 //! 116 //! impl WorkItem<2> for MyStruct { 117 //! type Pointer = Arc<MyStruct>; 118 //! 119 //! fn run(this: Arc<MyStruct>) { 120 //! pr_info!("The second value is: {}", this.value_2); 121 //! } 122 //! } 123 //! 124 //! fn print_1_later(val: Arc<MyStruct>) { 125 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val); 126 //! } 127 //! 128 //! fn print_2_later(val: Arc<MyStruct>) { 129 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val); 130 //! } 131 //! ``` 132 //! 133 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h) 134 135 use crate::{bindings, prelude::*, sync::Arc, sync::LockClassKey, types::Opaque}; 136 use alloc::alloc::AllocError; 137 use alloc::boxed::Box; 138 use core::marker::PhantomData; 139 use core::pin::Pin; 140 141 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class. 142 #[macro_export] 143 macro_rules! new_work { 144 ($($name:literal)?) => { 145 $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!()) 146 }; 147 } 148 pub use new_work; 149 150 /// A kernel work queue. 151 /// 152 /// Wraps the kernel's C `struct workqueue_struct`. 153 /// 154 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are 155 /// always available, for example, `system`, `system_highpri`, `system_long`, etc. 156 #[repr(transparent)] 157 pub struct Queue(Opaque<bindings::workqueue_struct>); 158 159 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 160 unsafe impl Send for Queue {} 161 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 162 unsafe impl Sync for Queue {} 163 164 impl Queue { 165 /// Use the provided `struct workqueue_struct` with Rust. 166 /// 167 /// # Safety 168 /// 169 /// The caller must ensure that the provided raw pointer is not dangling, that it points at a 170 /// valid workqueue, and that it remains valid until the end of `'a`. 171 pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue { 172 // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The 173 // caller promises that the pointer is not dangling. 174 unsafe { &*(ptr as *const Queue) } 175 } 176 177 /// Enqueues a work item. 178 /// 179 /// This may fail if the work item is already enqueued in a workqueue. 180 /// 181 /// The work item will be submitted using `WORK_CPU_UNBOUND`. 182 pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput 183 where 184 W: RawWorkItem<ID> + Send + 'static, 185 { 186 let queue_ptr = self.0.get(); 187 188 // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other 189 // `__enqueue` requirements are not relevant since `W` is `Send` and static. 190 // 191 // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which 192 // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this 193 // closure. 194 // 195 // Furthermore, if the C workqueue code accesses the pointer after this call to 196 // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on` 197 // will have returned true. In this case, `__enqueue` promises that the raw pointer will 198 // stay valid until we call the function pointer in the `work_struct`, so the access is ok. 199 unsafe { 200 w.__enqueue(move |work_ptr| { 201 bindings::queue_work_on(bindings::WORK_CPU_UNBOUND as _, queue_ptr, work_ptr) 202 }) 203 } 204 } 205 206 /// Tries to spawn the given function or closure as a work item. 207 /// 208 /// This method can fail because it allocates memory to store the work item. 209 pub fn try_spawn<T: 'static + Send + FnOnce()>(&self, func: T) -> Result<(), AllocError> { 210 let init = pin_init!(ClosureWork { 211 work <- new_work!("Queue::try_spawn"), 212 func: Some(func), 213 }); 214 215 self.enqueue(Box::pin_init(init).map_err(|_| AllocError)?); 216 Ok(()) 217 } 218 } 219 220 /// A helper type used in [`try_spawn`]. 221 /// 222 /// [`try_spawn`]: Queue::try_spawn 223 #[pin_data] 224 struct ClosureWork<T> { 225 #[pin] 226 work: Work<ClosureWork<T>>, 227 func: Option<T>, 228 } 229 230 impl<T> ClosureWork<T> { 231 fn project(self: Pin<&mut Self>) -> &mut Option<T> { 232 // SAFETY: The `func` field is not structurally pinned. 233 unsafe { &mut self.get_unchecked_mut().func } 234 } 235 } 236 237 impl<T: FnOnce()> WorkItem for ClosureWork<T> { 238 type Pointer = Pin<Box<Self>>; 239 240 fn run(mut this: Pin<Box<Self>>) { 241 if let Some(func) = this.as_mut().project().take() { 242 (func)() 243 } 244 } 245 } 246 247 /// A raw work item. 248 /// 249 /// This is the low-level trait that is designed for being as general as possible. 250 /// 251 /// The `ID` parameter to this trait exists so that a single type can provide multiple 252 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then 253 /// you will implement this trait once for each field, using a different id for each field. The 254 /// actual value of the id is not important as long as you use different ids for different fields 255 /// of the same struct. (Fields of different structs need not use different ids.) 256 /// 257 /// Note that the id is used only to select the right method to call during compilation. It won't be 258 /// part of the final executable. 259 /// 260 /// # Safety 261 /// 262 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`] 263 /// remain valid for the duration specified in the guarantees section of the documentation for 264 /// [`__enqueue`]. 265 /// 266 /// [`__enqueue`]: RawWorkItem::__enqueue 267 pub unsafe trait RawWorkItem<const ID: u64> { 268 /// The return type of [`Queue::enqueue`]. 269 type EnqueueOutput; 270 271 /// Enqueues this work item on a queue using the provided `queue_work_on` method. 272 /// 273 /// # Guarantees 274 /// 275 /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a 276 /// valid `work_struct` for the duration of the call to the closure. If the closure returns 277 /// true, then it is further guaranteed that the pointer remains valid until someone calls the 278 /// function pointer stored in the `work_struct`. 279 /// 280 /// # Safety 281 /// 282 /// The provided closure may only return `false` if the `work_struct` is already in a workqueue. 283 /// 284 /// If the work item type is annotated with any lifetimes, then you must not call the function 285 /// pointer after any such lifetime expires. (Never calling the function pointer is okay.) 286 /// 287 /// If the work item type is not [`Send`], then the function pointer must be called on the same 288 /// thread as the call to `__enqueue`. 289 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 290 where 291 F: FnOnce(*mut bindings::work_struct) -> bool; 292 } 293 294 /// Defines the method that should be called directly when a work item is executed. 295 /// 296 /// This trait is implemented by `Pin<Box<T>>` and [`Arc<T>`], and is mainly intended to be 297 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`] 298 /// instead. The [`run`] method on this trait will usually just perform the appropriate 299 /// `container_of` translation and then call into the [`run`][WorkItem::run] method from the 300 /// [`WorkItem`] trait. 301 /// 302 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 303 /// 304 /// # Safety 305 /// 306 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`] 307 /// method of this trait as the function pointer. 308 /// 309 /// [`__enqueue`]: RawWorkItem::__enqueue 310 /// [`run`]: WorkItemPointer::run 311 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> { 312 /// Run this work item. 313 /// 314 /// # Safety 315 /// 316 /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`] 317 /// where the `queue_work_on` closure returned true, and the pointer must still be valid. 318 /// 319 /// [`__enqueue`]: RawWorkItem::__enqueue 320 unsafe extern "C" fn run(ptr: *mut bindings::work_struct); 321 } 322 323 /// Defines the method that should be called when this work item is executed. 324 /// 325 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 326 pub trait WorkItem<const ID: u64 = 0> { 327 /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or 328 /// `Pin<Box<Self>>`. 329 type Pointer: WorkItemPointer<ID>; 330 331 /// The method that should be called when this work item is executed. 332 fn run(this: Self::Pointer); 333 } 334 335 /// Links for a work item. 336 /// 337 /// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`] 338 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue. 339 /// 340 /// Wraps the kernel's C `struct work_struct`. 341 /// 342 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it. 343 /// 344 /// [`run`]: WorkItemPointer::run 345 #[repr(transparent)] 346 pub struct Work<T: ?Sized, const ID: u64 = 0> { 347 work: Opaque<bindings::work_struct>, 348 _inner: PhantomData<T>, 349 } 350 351 // SAFETY: Kernel work items are usable from any thread. 352 // 353 // We do not need to constrain `T` since the work item does not actually contain a `T`. 354 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {} 355 // SAFETY: Kernel work items are usable from any thread. 356 // 357 // We do not need to constrain `T` since the work item does not actually contain a `T`. 358 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {} 359 360 impl<T: ?Sized, const ID: u64> Work<T, ID> { 361 /// Creates a new instance of [`Work`]. 362 #[inline] 363 #[allow(clippy::new_ret_no_self)] 364 pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> 365 where 366 T: WorkItem<ID>, 367 { 368 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as the work 369 // item function. 370 unsafe { 371 kernel::init::pin_init_from_closure(move |slot| { 372 let slot = Self::raw_get(slot); 373 bindings::init_work_with_key( 374 slot, 375 Some(T::Pointer::run), 376 false, 377 name.as_char_ptr(), 378 key.as_ptr(), 379 ); 380 Ok(()) 381 }) 382 } 383 } 384 385 /// Get a pointer to the inner `work_struct`. 386 /// 387 /// # Safety 388 /// 389 /// The provided pointer must not be dangling and must be properly aligned. (But the memory 390 /// need not be initialized.) 391 #[inline] 392 pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct { 393 // SAFETY: The caller promises that the pointer is aligned and not dangling. 394 // 395 // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that 396 // the compiler does not complain that the `work` field is unused. 397 unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) } 398 } 399 } 400 401 /// Declares that a type has a [`Work<T, ID>`] field. 402 /// 403 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro 404 /// like this: 405 /// 406 /// ```no_run 407 /// use kernel::prelude::*; 408 /// use kernel::workqueue::{impl_has_work, Work}; 409 /// 410 /// struct MyWorkItem { 411 /// work_field: Work<MyWorkItem, 1>, 412 /// } 413 /// 414 /// impl_has_work! { 415 /// impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field } 416 /// } 417 /// ``` 418 /// 419 /// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct` 420 /// fields by using a different id for each one. 421 /// 422 /// # Safety 423 /// 424 /// The [`OFFSET`] constant must be the offset of a field in `Self` of type [`Work<T, ID>`]. The 425 /// methods on this trait must have exactly the behavior that the definitions given below have. 426 /// 427 /// [`impl_has_work!`]: crate::impl_has_work 428 /// [`OFFSET`]: HasWork::OFFSET 429 pub unsafe trait HasWork<T, const ID: u64 = 0> { 430 /// The offset of the [`Work<T, ID>`] field. 431 const OFFSET: usize; 432 433 /// Returns the offset of the [`Work<T, ID>`] field. 434 /// 435 /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not 436 /// [`Sized`]. 437 /// 438 /// [`OFFSET`]: HasWork::OFFSET 439 #[inline] 440 fn get_work_offset(&self) -> usize { 441 Self::OFFSET 442 } 443 444 /// Returns a pointer to the [`Work<T, ID>`] field. 445 /// 446 /// # Safety 447 /// 448 /// The provided pointer must point at a valid struct of type `Self`. 449 #[inline] 450 unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> { 451 // SAFETY: The caller promises that the pointer is valid. 452 unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> } 453 } 454 455 /// Returns a pointer to the struct containing the [`Work<T, ID>`] field. 456 /// 457 /// # Safety 458 /// 459 /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`. 460 #[inline] 461 unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self 462 where 463 Self: Sized, 464 { 465 // SAFETY: The caller promises that the pointer points at a field of the right type in the 466 // right kind of struct. 467 unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self } 468 } 469 } 470 471 /// Used to safely implement the [`HasWork<T, ID>`] trait. 472 /// 473 /// # Examples 474 /// 475 /// ``` 476 /// use kernel::sync::Arc; 477 /// use kernel::workqueue::{self, impl_has_work, Work}; 478 /// 479 /// struct MyStruct { 480 /// work_field: Work<MyStruct, 17>, 481 /// } 482 /// 483 /// impl_has_work! { 484 /// impl HasWork<MyStruct, 17> for MyStruct { self.work_field } 485 /// } 486 /// ``` 487 #[macro_export] 488 macro_rules! impl_has_work { 489 ($(impl$(<$($implarg:ident),*>)? 490 HasWork<$work_type:ty $(, $id:tt)?> 491 for $self:ident $(<$($selfarg:ident),*>)? 492 { self.$field:ident } 493 )*) => {$( 494 // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right 495 // type. 496 unsafe impl$(<$($implarg),*>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self $(<$($selfarg),*>)? { 497 const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize; 498 499 #[inline] 500 unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> { 501 // SAFETY: The caller promises that the pointer is not dangling. 502 unsafe { 503 ::core::ptr::addr_of_mut!((*ptr).$field) 504 } 505 } 506 } 507 )*}; 508 } 509 pub use impl_has_work; 510 511 impl_has_work! { 512 impl<T> HasWork<Self> for ClosureWork<T> { self.work } 513 } 514 515 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T> 516 where 517 T: WorkItem<ID, Pointer = Self>, 518 T: HasWork<T, ID>, 519 { 520 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 521 // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 522 let ptr = ptr as *mut Work<T, ID>; 523 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 524 let ptr = unsafe { T::work_container_of(ptr) }; 525 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 526 let arc = unsafe { Arc::from_raw(ptr) }; 527 528 T::run(arc) 529 } 530 } 531 532 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T> 533 where 534 T: WorkItem<ID, Pointer = Self>, 535 T: HasWork<T, ID>, 536 { 537 type EnqueueOutput = Result<(), Self>; 538 539 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 540 where 541 F: FnOnce(*mut bindings::work_struct) -> bool, 542 { 543 // Casting between const and mut is not a problem as long as the pointer is a raw pointer. 544 let ptr = Arc::into_raw(self).cast_mut(); 545 546 // SAFETY: Pointers into an `Arc` point at a valid value. 547 let work_ptr = unsafe { T::raw_get_work(ptr) }; 548 // SAFETY: `raw_get_work` returns a pointer to a valid value. 549 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 550 551 if queue_work_on(work_ptr) { 552 Ok(()) 553 } else { 554 // SAFETY: The work queue has not taken ownership of the pointer. 555 Err(unsafe { Arc::from_raw(ptr) }) 556 } 557 } 558 } 559 560 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<Box<T>> 561 where 562 T: WorkItem<ID, Pointer = Self>, 563 T: HasWork<T, ID>, 564 { 565 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 566 // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 567 let ptr = ptr as *mut Work<T, ID>; 568 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 569 let ptr = unsafe { T::work_container_of(ptr) }; 570 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 571 let boxed = unsafe { Box::from_raw(ptr) }; 572 // SAFETY: The box was already pinned when it was enqueued. 573 let pinned = unsafe { Pin::new_unchecked(boxed) }; 574 575 T::run(pinned) 576 } 577 } 578 579 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<Box<T>> 580 where 581 T: WorkItem<ID, Pointer = Self>, 582 T: HasWork<T, ID>, 583 { 584 type EnqueueOutput = (); 585 586 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 587 where 588 F: FnOnce(*mut bindings::work_struct) -> bool, 589 { 590 // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily 591 // remove the `Pin` wrapper. 592 let boxed = unsafe { Pin::into_inner_unchecked(self) }; 593 let ptr = Box::into_raw(boxed); 594 595 // SAFETY: Pointers into a `Box` point at a valid value. 596 let work_ptr = unsafe { T::raw_get_work(ptr) }; 597 // SAFETY: `raw_get_work` returns a pointer to a valid value. 598 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 599 600 if !queue_work_on(work_ptr) { 601 // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a 602 // workqueue. 603 unsafe { ::core::hint::unreachable_unchecked() } 604 } 605 } 606 } 607 608 /// Returns the system work queue (`system_wq`). 609 /// 610 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are 611 /// users which expect relatively short queue flush time. 612 /// 613 /// Callers shouldn't queue work items which can run for too long. 614 pub fn system() -> &'static Queue { 615 // SAFETY: `system_wq` is a C global, always available. 616 unsafe { Queue::from_raw(bindings::system_wq) } 617 } 618 619 /// Returns the system high-priority work queue (`system_highpri_wq`). 620 /// 621 /// It is similar to the one returned by [`system`] but for work items which require higher 622 /// scheduling priority. 623 pub fn system_highpri() -> &'static Queue { 624 // SAFETY: `system_highpri_wq` is a C global, always available. 625 unsafe { Queue::from_raw(bindings::system_highpri_wq) } 626 } 627 628 /// Returns the system work queue for potentially long-running work items (`system_long_wq`). 629 /// 630 /// It is similar to the one returned by [`system`] but may host long running work items. Queue 631 /// flushing might take relatively long. 632 pub fn system_long() -> &'static Queue { 633 // SAFETY: `system_long_wq` is a C global, always available. 634 unsafe { Queue::from_raw(bindings::system_long_wq) } 635 } 636 637 /// Returns the system unbound work queue (`system_unbound_wq`). 638 /// 639 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items 640 /// are executed immediately as long as `max_active` limit is not reached and resources are 641 /// available. 642 pub fn system_unbound() -> &'static Queue { 643 // SAFETY: `system_unbound_wq` is a C global, always available. 644 unsafe { Queue::from_raw(bindings::system_unbound_wq) } 645 } 646 647 /// Returns the system freezable work queue (`system_freezable_wq`). 648 /// 649 /// It is equivalent to the one returned by [`system`] except that it's freezable. 650 /// 651 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 652 /// items on the workqueue are drained and no new work item starts execution until thawed. 653 pub fn system_freezable() -> &'static Queue { 654 // SAFETY: `system_freezable_wq` is a C global, always available. 655 unsafe { Queue::from_raw(bindings::system_freezable_wq) } 656 } 657 658 /// Returns the system power-efficient work queue (`system_power_efficient_wq`). 659 /// 660 /// It is inclined towards saving power and is converted to "unbound" variants if the 661 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one 662 /// returned by [`system`]. 663 pub fn system_power_efficient() -> &'static Queue { 664 // SAFETY: `system_power_efficient_wq` is a C global, always available. 665 unsafe { Queue::from_raw(bindings::system_power_efficient_wq) } 666 } 667 668 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`). 669 /// 670 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable. 671 /// 672 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 673 /// items on the workqueue are drained and no new work item starts execution until thawed. 674 pub fn system_freezable_power_efficient() -> &'static Queue { 675 // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available. 676 unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) } 677 } 678