xref: /linux/rust/kernel/workqueue.rs (revision c435bce6af9b2a277662698875a689c389358f17)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Work queues.
4 //!
5 //! This file has two components: The raw work item API, and the safe work item API.
6 //!
7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single
8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field,
9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as
10 //! long as you use different values for different fields of the same struct.) Since these IDs are
11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary.
12 //!
13 //! # The raw API
14 //!
15 //! The raw API consists of the `RawWorkItem` trait, where the work item needs to provide an
16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used
17 //! directly, but if you want to, you can use it without using the pieces from the safe API.
18 //!
19 //! # The safe API
20 //!
21 //! The safe API is used via the `Work` struct and `WorkItem` traits. Furthermore, it also includes
22 //! a trait called `WorkItemPointer`, which is usually not used directly by the user.
23 //!
24 //!  * The `Work` struct is the Rust wrapper for the C `work_struct` type.
25 //!  * The `WorkItem` trait is implemented for structs that can be enqueued to a workqueue.
26 //!  * The `WorkItemPointer` trait is implemented for the pointer type that points at a something
27 //!    that implements `WorkItem`.
28 //!
29 //! ## Example
30 //!
31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When
32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field,
33 //! we do not need to specify ids for the fields.
34 //!
35 //! ```
36 //! use kernel::prelude::*;
37 //! use kernel::sync::Arc;
38 //! use kernel::workqueue::{self, Work, WorkItem};
39 //! use kernel::{impl_has_work, new_work};
40 //!
41 //! #[pin_data]
42 //! struct MyStruct {
43 //!     value: i32,
44 //!     #[pin]
45 //!     work: Work<MyStruct>,
46 //! }
47 //!
48 //! impl_has_work! {
49 //!     impl HasWork<Self> for MyStruct { self.work }
50 //! }
51 //!
52 //! impl MyStruct {
53 //!     fn new(value: i32) -> Result<Arc<Self>> {
54 //!         Arc::pin_init(pin_init!(MyStruct {
55 //!             value,
56 //!             work <- new_work!("MyStruct::work"),
57 //!         }))
58 //!     }
59 //! }
60 //!
61 //! impl WorkItem for MyStruct {
62 //!     type Pointer = Arc<MyStruct>;
63 //!
64 //!     fn run(this: Arc<MyStruct>) {
65 //!         pr_info!("The value is: {}", this.value);
66 //!     }
67 //! }
68 //!
69 //! /// This method will enqueue the struct for execution on the system workqueue, where its value
70 //! /// will be printed.
71 //! fn print_later(val: Arc<MyStruct>) {
72 //!     let _ = workqueue::system().enqueue(val);
73 //! }
74 //! ```
75 //!
76 //! The following example shows how multiple `work_struct` fields can be used:
77 //!
78 //! ```
79 //! use kernel::prelude::*;
80 //! use kernel::sync::Arc;
81 //! use kernel::workqueue::{self, Work, WorkItem};
82 //! use kernel::{impl_has_work, new_work};
83 //!
84 //! #[pin_data]
85 //! struct MyStruct {
86 //!     value_1: i32,
87 //!     value_2: i32,
88 //!     #[pin]
89 //!     work_1: Work<MyStruct, 1>,
90 //!     #[pin]
91 //!     work_2: Work<MyStruct, 2>,
92 //! }
93 //!
94 //! impl_has_work! {
95 //!     impl HasWork<Self, 1> for MyStruct { self.work_1 }
96 //!     impl HasWork<Self, 2> for MyStruct { self.work_2 }
97 //! }
98 //!
99 //! impl MyStruct {
100 //!     fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> {
101 //!         Arc::pin_init(pin_init!(MyStruct {
102 //!             value_1,
103 //!             value_2,
104 //!             work_1 <- new_work!("MyStruct::work_1"),
105 //!             work_2 <- new_work!("MyStruct::work_2"),
106 //!         }))
107 //!     }
108 //! }
109 //!
110 //! impl WorkItem<1> for MyStruct {
111 //!     type Pointer = Arc<MyStruct>;
112 //!
113 //!     fn run(this: Arc<MyStruct>) {
114 //!         pr_info!("The value is: {}", this.value_1);
115 //!     }
116 //! }
117 //!
118 //! impl WorkItem<2> for MyStruct {
119 //!     type Pointer = Arc<MyStruct>;
120 //!
121 //!     fn run(this: Arc<MyStruct>) {
122 //!         pr_info!("The second value is: {}", this.value_2);
123 //!     }
124 //! }
125 //!
126 //! fn print_1_later(val: Arc<MyStruct>) {
127 //!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val);
128 //! }
129 //!
130 //! fn print_2_later(val: Arc<MyStruct>) {
131 //!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val);
132 //! }
133 //! ```
134 //!
135 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h)
136 
137 use crate::{bindings, prelude::*, sync::Arc, sync::LockClassKey, types::Opaque};
138 use alloc::alloc::AllocError;
139 use alloc::boxed::Box;
140 use core::marker::PhantomData;
141 use core::pin::Pin;
142 
143 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class.
144 #[macro_export]
145 macro_rules! new_work {
146     ($($name:literal)?) => {
147         $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
148     };
149 }
150 
151 /// A kernel work queue.
152 ///
153 /// Wraps the kernel's C `struct workqueue_struct`.
154 ///
155 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are
156 /// always available, for example, `system`, `system_highpri`, `system_long`, etc.
157 #[repr(transparent)]
158 pub struct Queue(Opaque<bindings::workqueue_struct>);
159 
160 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
161 unsafe impl Send for Queue {}
162 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
163 unsafe impl Sync for Queue {}
164 
165 impl Queue {
166     /// Use the provided `struct workqueue_struct` with Rust.
167     ///
168     /// # Safety
169     ///
170     /// The caller must ensure that the provided raw pointer is not dangling, that it points at a
171     /// valid workqueue, and that it remains valid until the end of 'a.
172     pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue {
173         // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The
174         // caller promises that the pointer is not dangling.
175         unsafe { &*(ptr as *const Queue) }
176     }
177 
178     /// Enqueues a work item.
179     ///
180     /// This may fail if the work item is already enqueued in a workqueue.
181     ///
182     /// The work item will be submitted using `WORK_CPU_UNBOUND`.
183     pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput
184     where
185         W: RawWorkItem<ID> + Send + 'static,
186     {
187         let queue_ptr = self.0.get();
188 
189         // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other
190         // `__enqueue` requirements are not relevant since `W` is `Send` and static.
191         //
192         // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which
193         // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this
194         // closure.
195         //
196         // Furthermore, if the C workqueue code accesses the pointer after this call to
197         // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on`
198         // will have returned true. In this case, `__enqueue` promises that the raw pointer will
199         // stay valid until we call the function pointer in the `work_struct`, so the access is ok.
200         unsafe {
201             w.__enqueue(move |work_ptr| {
202                 bindings::queue_work_on(bindings::WORK_CPU_UNBOUND as _, queue_ptr, work_ptr)
203             })
204         }
205     }
206 
207     /// Tries to spawn the given function or closure as a work item.
208     ///
209     /// This method can fail because it allocates memory to store the work item.
210     pub fn try_spawn<T: 'static + Send + FnOnce()>(&self, func: T) -> Result<(), AllocError> {
211         let init = pin_init!(ClosureWork {
212             work <- new_work!("Queue::try_spawn"),
213             func: Some(func),
214         });
215 
216         self.enqueue(Box::pin_init(init).map_err(|_| AllocError)?);
217         Ok(())
218     }
219 }
220 
221 /// A helper type used in `try_spawn`.
222 #[pin_data]
223 struct ClosureWork<T> {
224     #[pin]
225     work: Work<ClosureWork<T>>,
226     func: Option<T>,
227 }
228 
229 impl<T> ClosureWork<T> {
230     fn project(self: Pin<&mut Self>) -> &mut Option<T> {
231         // SAFETY: The `func` field is not structurally pinned.
232         unsafe { &mut self.get_unchecked_mut().func }
233     }
234 }
235 
236 impl<T: FnOnce()> WorkItem for ClosureWork<T> {
237     type Pointer = Pin<Box<Self>>;
238 
239     fn run(mut this: Pin<Box<Self>>) {
240         if let Some(func) = this.as_mut().project().take() {
241             (func)()
242         }
243     }
244 }
245 
246 /// A raw work item.
247 ///
248 /// This is the low-level trait that is designed for being as general as possible.
249 ///
250 /// The `ID` parameter to this trait exists so that a single type can provide multiple
251 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then
252 /// you will implement this trait once for each field, using a different id for each field. The
253 /// actual value of the id is not important as long as you use different ids for different fields
254 /// of the same struct. (Fields of different structs need not use different ids.)
255 ///
256 /// Note that the id is used only to select the right method to call during compilation. It wont be
257 /// part of the final executable.
258 ///
259 /// # Safety
260 ///
261 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by `__enqueue`
262 /// remain valid for the duration specified in the guarantees section of the documentation for
263 /// `__enqueue`.
264 pub unsafe trait RawWorkItem<const ID: u64> {
265     /// The return type of [`Queue::enqueue`].
266     type EnqueueOutput;
267 
268     /// Enqueues this work item on a queue using the provided `queue_work_on` method.
269     ///
270     /// # Guarantees
271     ///
272     /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a
273     /// valid `work_struct` for the duration of the call to the closure. If the closure returns
274     /// true, then it is further guaranteed that the pointer remains valid until someone calls the
275     /// function pointer stored in the `work_struct`.
276     ///
277     /// # Safety
278     ///
279     /// The provided closure may only return `false` if the `work_struct` is already in a workqueue.
280     ///
281     /// If the work item type is annotated with any lifetimes, then you must not call the function
282     /// pointer after any such lifetime expires. (Never calling the function pointer is okay.)
283     ///
284     /// If the work item type is not [`Send`], then the function pointer must be called on the same
285     /// thread as the call to `__enqueue`.
286     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
287     where
288         F: FnOnce(*mut bindings::work_struct) -> bool;
289 }
290 
291 /// Defines the method that should be called directly when a work item is executed.
292 ///
293 /// This trait is implemented by `Pin<Box<T>>` and `Arc<T>`, and is mainly intended to be
294 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`]
295 /// instead. The `run` method on this trait will usually just perform the appropriate
296 /// `container_of` translation and then call into the `run` method from the [`WorkItem`] trait.
297 ///
298 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
299 ///
300 /// # Safety
301 ///
302 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`]
303 /// method of this trait as the function pointer.
304 ///
305 /// [`__enqueue`]: RawWorkItem::__enqueue
306 /// [`run`]: WorkItemPointer::run
307 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> {
308     /// Run this work item.
309     ///
310     /// # Safety
311     ///
312     /// The provided `work_struct` pointer must originate from a previous call to `__enqueue` where
313     /// the `queue_work_on` closure returned true, and the pointer must still be valid.
314     unsafe extern "C" fn run(ptr: *mut bindings::work_struct);
315 }
316 
317 /// Defines the method that should be called when this work item is executed.
318 ///
319 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
320 pub trait WorkItem<const ID: u64 = 0> {
321     /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or
322     /// `Pin<Box<Self>>`.
323     type Pointer: WorkItemPointer<ID>;
324 
325     /// The method that should be called when this work item is executed.
326     fn run(this: Self::Pointer);
327 }
328 
329 /// Links for a work item.
330 ///
331 /// This struct contains a function pointer to the `run` function from the [`WorkItemPointer`]
332 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue.
333 ///
334 /// Wraps the kernel's C `struct work_struct`.
335 ///
336 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it.
337 #[repr(transparent)]
338 pub struct Work<T: ?Sized, const ID: u64 = 0> {
339     work: Opaque<bindings::work_struct>,
340     _inner: PhantomData<T>,
341 }
342 
343 // SAFETY: Kernel work items are usable from any thread.
344 //
345 // We do not need to constrain `T` since the work item does not actually contain a `T`.
346 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {}
347 // SAFETY: Kernel work items are usable from any thread.
348 //
349 // We do not need to constrain `T` since the work item does not actually contain a `T`.
350 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {}
351 
352 impl<T: ?Sized, const ID: u64> Work<T, ID> {
353     /// Creates a new instance of [`Work`].
354     #[inline]
355     #[allow(clippy::new_ret_no_self)]
356     pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self>
357     where
358         T: WorkItem<ID>,
359     {
360         // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as the work
361         // item function.
362         unsafe {
363             kernel::init::pin_init_from_closure(move |slot| {
364                 let slot = Self::raw_get(slot);
365                 bindings::init_work_with_key(
366                     slot,
367                     Some(T::Pointer::run),
368                     false,
369                     name.as_char_ptr(),
370                     key.as_ptr(),
371                 );
372                 Ok(())
373             })
374         }
375     }
376 
377     /// Get a pointer to the inner `work_struct`.
378     ///
379     /// # Safety
380     ///
381     /// The provided pointer must not be dangling and must be properly aligned. (But the memory
382     /// need not be initialized.)
383     #[inline]
384     pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct {
385         // SAFETY: The caller promises that the pointer is aligned and not dangling.
386         //
387         // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that
388         // the compiler does not complain that the `work` field is unused.
389         unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) }
390     }
391 }
392 
393 /// Declares that a type has a [`Work<T, ID>`] field.
394 ///
395 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro
396 /// like this:
397 ///
398 /// ```no_run
399 /// use kernel::impl_has_work;
400 /// use kernel::prelude::*;
401 /// use kernel::workqueue::Work;
402 ///
403 /// struct MyWorkItem {
404 ///     work_field: Work<MyWorkItem, 1>,
405 /// }
406 ///
407 /// impl_has_work! {
408 ///     impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field }
409 /// }
410 /// ```
411 ///
412 /// Note that since the `Work` type is annotated with an id, you can have several `work_struct`
413 /// fields by using a different id for each one.
414 ///
415 /// # Safety
416 ///
417 /// The [`OFFSET`] constant must be the offset of a field in Self of type [`Work<T, ID>`]. The methods on
418 /// this trait must have exactly the behavior that the definitions given below have.
419 ///
420 /// [`Work<T, ID>`]: Work
421 /// [`impl_has_work!`]: crate::impl_has_work
422 /// [`OFFSET`]: HasWork::OFFSET
423 pub unsafe trait HasWork<T, const ID: u64 = 0> {
424     /// The offset of the [`Work<T, ID>`] field.
425     ///
426     /// [`Work<T, ID>`]: Work
427     const OFFSET: usize;
428 
429     /// Returns the offset of the [`Work<T, ID>`] field.
430     ///
431     /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not Sized.
432     ///
433     /// [`Work<T, ID>`]: Work
434     /// [`OFFSET`]: HasWork::OFFSET
435     #[inline]
436     fn get_work_offset(&self) -> usize {
437         Self::OFFSET
438     }
439 
440     /// Returns a pointer to the [`Work<T, ID>`] field.
441     ///
442     /// # Safety
443     ///
444     /// The provided pointer must point at a valid struct of type `Self`.
445     ///
446     /// [`Work<T, ID>`]: Work
447     #[inline]
448     unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> {
449         // SAFETY: The caller promises that the pointer is valid.
450         unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> }
451     }
452 
453     /// Returns a pointer to the struct containing the [`Work<T, ID>`] field.
454     ///
455     /// # Safety
456     ///
457     /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`.
458     ///
459     /// [`Work<T, ID>`]: Work
460     #[inline]
461     unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self
462     where
463         Self: Sized,
464     {
465         // SAFETY: The caller promises that the pointer points at a field of the right type in the
466         // right kind of struct.
467         unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self }
468     }
469 }
470 
471 /// Used to safely implement the [`HasWork<T, ID>`] trait.
472 ///
473 /// # Examples
474 ///
475 /// ```
476 /// use kernel::impl_has_work;
477 /// use kernel::sync::Arc;
478 /// use kernel::workqueue::{self, Work};
479 ///
480 /// struct MyStruct {
481 ///     work_field: Work<MyStruct, 17>,
482 /// }
483 ///
484 /// impl_has_work! {
485 ///     impl HasWork<MyStruct, 17> for MyStruct { self.work_field }
486 /// }
487 /// ```
488 ///
489 /// [`HasWork<T, ID>`]: HasWork
490 #[macro_export]
491 macro_rules! impl_has_work {
492     ($(impl$(<$($implarg:ident),*>)?
493        HasWork<$work_type:ty $(, $id:tt)?>
494        for $self:ident $(<$($selfarg:ident),*>)?
495        { self.$field:ident }
496     )*) => {$(
497         // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right
498         // type.
499         unsafe impl$(<$($implarg),*>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self $(<$($selfarg),*>)? {
500             const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize;
501 
502             #[inline]
503             unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> {
504                 // SAFETY: The caller promises that the pointer is not dangling.
505                 unsafe {
506                     ::core::ptr::addr_of_mut!((*ptr).$field)
507                 }
508             }
509         }
510     )*};
511 }
512 
513 impl_has_work! {
514     impl<T> HasWork<Self> for ClosureWork<T> { self.work }
515 }
516 
517 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T>
518 where
519     T: WorkItem<ID, Pointer = Self>,
520     T: HasWork<T, ID>,
521 {
522     unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
523         // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
524         let ptr = ptr as *mut Work<T, ID>;
525         // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
526         let ptr = unsafe { T::work_container_of(ptr) };
527         // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
528         let arc = unsafe { Arc::from_raw(ptr) };
529 
530         T::run(arc)
531     }
532 }
533 
534 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T>
535 where
536     T: WorkItem<ID, Pointer = Self>,
537     T: HasWork<T, ID>,
538 {
539     type EnqueueOutput = Result<(), Self>;
540 
541     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
542     where
543         F: FnOnce(*mut bindings::work_struct) -> bool,
544     {
545         // Casting between const and mut is not a problem as long as the pointer is a raw pointer.
546         let ptr = Arc::into_raw(self).cast_mut();
547 
548         // SAFETY: Pointers into an `Arc` point at a valid value.
549         let work_ptr = unsafe { T::raw_get_work(ptr) };
550         // SAFETY: `raw_get_work` returns a pointer to a valid value.
551         let work_ptr = unsafe { Work::raw_get(work_ptr) };
552 
553         if queue_work_on(work_ptr) {
554             Ok(())
555         } else {
556             // SAFETY: The work queue has not taken ownership of the pointer.
557             Err(unsafe { Arc::from_raw(ptr) })
558         }
559     }
560 }
561 
562 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<Box<T>>
563 where
564     T: WorkItem<ID, Pointer = Self>,
565     T: HasWork<T, ID>,
566 {
567     unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
568         // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
569         let ptr = ptr as *mut Work<T, ID>;
570         // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
571         let ptr = unsafe { T::work_container_of(ptr) };
572         // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
573         let boxed = unsafe { Box::from_raw(ptr) };
574         // SAFETY: The box was already pinned when it was enqueued.
575         let pinned = unsafe { Pin::new_unchecked(boxed) };
576 
577         T::run(pinned)
578     }
579 }
580 
581 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<Box<T>>
582 where
583     T: WorkItem<ID, Pointer = Self>,
584     T: HasWork<T, ID>,
585 {
586     type EnqueueOutput = ();
587 
588     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
589     where
590         F: FnOnce(*mut bindings::work_struct) -> bool,
591     {
592         // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily
593         // remove the `Pin` wrapper.
594         let boxed = unsafe { Pin::into_inner_unchecked(self) };
595         let ptr = Box::into_raw(boxed);
596 
597         // SAFETY: Pointers into a `Box` point at a valid value.
598         let work_ptr = unsafe { T::raw_get_work(ptr) };
599         // SAFETY: `raw_get_work` returns a pointer to a valid value.
600         let work_ptr = unsafe { Work::raw_get(work_ptr) };
601 
602         if !queue_work_on(work_ptr) {
603             // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a
604             // workqueue.
605             unsafe { ::core::hint::unreachable_unchecked() }
606         }
607     }
608 }
609 
610 /// Returns the system work queue (`system_wq`).
611 ///
612 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are
613 /// users which expect relatively short queue flush time.
614 ///
615 /// Callers shouldn't queue work items which can run for too long.
616 pub fn system() -> &'static Queue {
617     // SAFETY: `system_wq` is a C global, always available.
618     unsafe { Queue::from_raw(bindings::system_wq) }
619 }
620 
621 /// Returns the system high-priority work queue (`system_highpri_wq`).
622 ///
623 /// It is similar to the one returned by [`system`] but for work items which require higher
624 /// scheduling priority.
625 pub fn system_highpri() -> &'static Queue {
626     // SAFETY: `system_highpri_wq` is a C global, always available.
627     unsafe { Queue::from_raw(bindings::system_highpri_wq) }
628 }
629 
630 /// Returns the system work queue for potentially long-running work items (`system_long_wq`).
631 ///
632 /// It is similar to the one returned by [`system`] but may host long running work items. Queue
633 /// flushing might take relatively long.
634 pub fn system_long() -> &'static Queue {
635     // SAFETY: `system_long_wq` is a C global, always available.
636     unsafe { Queue::from_raw(bindings::system_long_wq) }
637 }
638 
639 /// Returns the system unbound work queue (`system_unbound_wq`).
640 ///
641 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items
642 /// are executed immediately as long as `max_active` limit is not reached and resources are
643 /// available.
644 pub fn system_unbound() -> &'static Queue {
645     // SAFETY: `system_unbound_wq` is a C global, always available.
646     unsafe { Queue::from_raw(bindings::system_unbound_wq) }
647 }
648 
649 /// Returns the system freezable work queue (`system_freezable_wq`).
650 ///
651 /// It is equivalent to the one returned by [`system`] except that it's freezable.
652 ///
653 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
654 /// items on the workqueue are drained and no new work item starts execution until thawed.
655 pub fn system_freezable() -> &'static Queue {
656     // SAFETY: `system_freezable_wq` is a C global, always available.
657     unsafe { Queue::from_raw(bindings::system_freezable_wq) }
658 }
659 
660 /// Returns the system power-efficient work queue (`system_power_efficient_wq`).
661 ///
662 /// It is inclined towards saving power and is converted to "unbound" variants if the
663 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one
664 /// returned by [`system`].
665 pub fn system_power_efficient() -> &'static Queue {
666     // SAFETY: `system_power_efficient_wq` is a C global, always available.
667     unsafe { Queue::from_raw(bindings::system_power_efficient_wq) }
668 }
669 
670 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`).
671 ///
672 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable.
673 ///
674 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
675 /// items on the workqueue are drained and no new work item starts execution until thawed.
676 pub fn system_freezable_power_efficient() -> &'static Queue {
677     // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available.
678     unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) }
679 }
680