1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Work queues. 4 //! 5 //! This file has two components: The raw work item API, and the safe work item API. 6 //! 7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single 8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field, 9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as 10 //! long as you use different values for different fields of the same struct.) Since these IDs are 11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary. 12 //! 13 //! # The raw API 14 //! 15 //! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an 16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used 17 //! directly, but if you want to, you can use it without using the pieces from the safe API. 18 //! 19 //! # The safe API 20 //! 21 //! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also 22 //! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user. 23 //! 24 //! * The [`Work`] struct is the Rust wrapper for the C `work_struct` type. 25 //! * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue. 26 //! * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something 27 //! that implements [`WorkItem`]. 28 //! 29 //! ## Example 30 //! 31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When 32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field, 33 //! we do not need to specify ids for the fields. 34 //! 35 //! ``` 36 //! use kernel::prelude::*; 37 //! use kernel::sync::Arc; 38 //! use kernel::workqueue::{self, Work, WorkItem}; 39 //! use kernel::{impl_has_work, new_work}; 40 //! 41 //! #[pin_data] 42 //! struct MyStruct { 43 //! value: i32, 44 //! #[pin] 45 //! work: Work<MyStruct>, 46 //! } 47 //! 48 //! impl_has_work! { 49 //! impl HasWork<Self> for MyStruct { self.work } 50 //! } 51 //! 52 //! impl MyStruct { 53 //! fn new(value: i32) -> Result<Arc<Self>> { 54 //! Arc::pin_init(pin_init!(MyStruct { 55 //! value, 56 //! work <- new_work!("MyStruct::work"), 57 //! })) 58 //! } 59 //! } 60 //! 61 //! impl WorkItem for MyStruct { 62 //! type Pointer = Arc<MyStruct>; 63 //! 64 //! fn run(this: Arc<MyStruct>) { 65 //! pr_info!("The value is: {}", this.value); 66 //! } 67 //! } 68 //! 69 //! /// This method will enqueue the struct for execution on the system workqueue, where its value 70 //! /// will be printed. 71 //! fn print_later(val: Arc<MyStruct>) { 72 //! let _ = workqueue::system().enqueue(val); 73 //! } 74 //! ``` 75 //! 76 //! The following example shows how multiple `work_struct` fields can be used: 77 //! 78 //! ``` 79 //! use kernel::prelude::*; 80 //! use kernel::sync::Arc; 81 //! use kernel::workqueue::{self, Work, WorkItem}; 82 //! use kernel::{impl_has_work, new_work}; 83 //! 84 //! #[pin_data] 85 //! struct MyStruct { 86 //! value_1: i32, 87 //! value_2: i32, 88 //! #[pin] 89 //! work_1: Work<MyStruct, 1>, 90 //! #[pin] 91 //! work_2: Work<MyStruct, 2>, 92 //! } 93 //! 94 //! impl_has_work! { 95 //! impl HasWork<Self, 1> for MyStruct { self.work_1 } 96 //! impl HasWork<Self, 2> for MyStruct { self.work_2 } 97 //! } 98 //! 99 //! impl MyStruct { 100 //! fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> { 101 //! Arc::pin_init(pin_init!(MyStruct { 102 //! value_1, 103 //! value_2, 104 //! work_1 <- new_work!("MyStruct::work_1"), 105 //! work_2 <- new_work!("MyStruct::work_2"), 106 //! })) 107 //! } 108 //! } 109 //! 110 //! impl WorkItem<1> for MyStruct { 111 //! type Pointer = Arc<MyStruct>; 112 //! 113 //! fn run(this: Arc<MyStruct>) { 114 //! pr_info!("The value is: {}", this.value_1); 115 //! } 116 //! } 117 //! 118 //! impl WorkItem<2> for MyStruct { 119 //! type Pointer = Arc<MyStruct>; 120 //! 121 //! fn run(this: Arc<MyStruct>) { 122 //! pr_info!("The second value is: {}", this.value_2); 123 //! } 124 //! } 125 //! 126 //! fn print_1_later(val: Arc<MyStruct>) { 127 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val); 128 //! } 129 //! 130 //! fn print_2_later(val: Arc<MyStruct>) { 131 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val); 132 //! } 133 //! ``` 134 //! 135 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h) 136 137 use crate::{bindings, prelude::*, sync::Arc, sync::LockClassKey, types::Opaque}; 138 use alloc::alloc::AllocError; 139 use alloc::boxed::Box; 140 use core::marker::PhantomData; 141 use core::pin::Pin; 142 143 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class. 144 #[macro_export] 145 macro_rules! new_work { 146 ($($name:literal)?) => { 147 $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!()) 148 }; 149 } 150 151 /// A kernel work queue. 152 /// 153 /// Wraps the kernel's C `struct workqueue_struct`. 154 /// 155 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are 156 /// always available, for example, `system`, `system_highpri`, `system_long`, etc. 157 #[repr(transparent)] 158 pub struct Queue(Opaque<bindings::workqueue_struct>); 159 160 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 161 unsafe impl Send for Queue {} 162 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 163 unsafe impl Sync for Queue {} 164 165 impl Queue { 166 /// Use the provided `struct workqueue_struct` with Rust. 167 /// 168 /// # Safety 169 /// 170 /// The caller must ensure that the provided raw pointer is not dangling, that it points at a 171 /// valid workqueue, and that it remains valid until the end of `'a`. 172 pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue { 173 // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The 174 // caller promises that the pointer is not dangling. 175 unsafe { &*(ptr as *const Queue) } 176 } 177 178 /// Enqueues a work item. 179 /// 180 /// This may fail if the work item is already enqueued in a workqueue. 181 /// 182 /// The work item will be submitted using `WORK_CPU_UNBOUND`. 183 pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput 184 where 185 W: RawWorkItem<ID> + Send + 'static, 186 { 187 let queue_ptr = self.0.get(); 188 189 // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other 190 // `__enqueue` requirements are not relevant since `W` is `Send` and static. 191 // 192 // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which 193 // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this 194 // closure. 195 // 196 // Furthermore, if the C workqueue code accesses the pointer after this call to 197 // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on` 198 // will have returned true. In this case, `__enqueue` promises that the raw pointer will 199 // stay valid until we call the function pointer in the `work_struct`, so the access is ok. 200 unsafe { 201 w.__enqueue(move |work_ptr| { 202 bindings::queue_work_on(bindings::WORK_CPU_UNBOUND as _, queue_ptr, work_ptr) 203 }) 204 } 205 } 206 207 /// Tries to spawn the given function or closure as a work item. 208 /// 209 /// This method can fail because it allocates memory to store the work item. 210 pub fn try_spawn<T: 'static + Send + FnOnce()>(&self, func: T) -> Result<(), AllocError> { 211 let init = pin_init!(ClosureWork { 212 work <- new_work!("Queue::try_spawn"), 213 func: Some(func), 214 }); 215 216 self.enqueue(Box::pin_init(init).map_err(|_| AllocError)?); 217 Ok(()) 218 } 219 } 220 221 /// A helper type used in [`try_spawn`]. 222 /// 223 /// [`try_spawn`]: Queue::try_spawn 224 #[pin_data] 225 struct ClosureWork<T> { 226 #[pin] 227 work: Work<ClosureWork<T>>, 228 func: Option<T>, 229 } 230 231 impl<T> ClosureWork<T> { 232 fn project(self: Pin<&mut Self>) -> &mut Option<T> { 233 // SAFETY: The `func` field is not structurally pinned. 234 unsafe { &mut self.get_unchecked_mut().func } 235 } 236 } 237 238 impl<T: FnOnce()> WorkItem for ClosureWork<T> { 239 type Pointer = Pin<Box<Self>>; 240 241 fn run(mut this: Pin<Box<Self>>) { 242 if let Some(func) = this.as_mut().project().take() { 243 (func)() 244 } 245 } 246 } 247 248 /// A raw work item. 249 /// 250 /// This is the low-level trait that is designed for being as general as possible. 251 /// 252 /// The `ID` parameter to this trait exists so that a single type can provide multiple 253 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then 254 /// you will implement this trait once for each field, using a different id for each field. The 255 /// actual value of the id is not important as long as you use different ids for different fields 256 /// of the same struct. (Fields of different structs need not use different ids.) 257 /// 258 /// Note that the id is used only to select the right method to call during compilation. It won't be 259 /// part of the final executable. 260 /// 261 /// # Safety 262 /// 263 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`] 264 /// remain valid for the duration specified in the guarantees section of the documentation for 265 /// [`__enqueue`]. 266 /// 267 /// [`__enqueue`]: RawWorkItem::__enqueue 268 pub unsafe trait RawWorkItem<const ID: u64> { 269 /// The return type of [`Queue::enqueue`]. 270 type EnqueueOutput; 271 272 /// Enqueues this work item on a queue using the provided `queue_work_on` method. 273 /// 274 /// # Guarantees 275 /// 276 /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a 277 /// valid `work_struct` for the duration of the call to the closure. If the closure returns 278 /// true, then it is further guaranteed that the pointer remains valid until someone calls the 279 /// function pointer stored in the `work_struct`. 280 /// 281 /// # Safety 282 /// 283 /// The provided closure may only return `false` if the `work_struct` is already in a workqueue. 284 /// 285 /// If the work item type is annotated with any lifetimes, then you must not call the function 286 /// pointer after any such lifetime expires. (Never calling the function pointer is okay.) 287 /// 288 /// If the work item type is not [`Send`], then the function pointer must be called on the same 289 /// thread as the call to `__enqueue`. 290 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 291 where 292 F: FnOnce(*mut bindings::work_struct) -> bool; 293 } 294 295 /// Defines the method that should be called directly when a work item is executed. 296 /// 297 /// This trait is implemented by `Pin<Box<T>>` and [`Arc<T>`], and is mainly intended to be 298 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`] 299 /// instead. The [`run`] method on this trait will usually just perform the appropriate 300 /// `container_of` translation and then call into the [`run`][WorkItem::run] method from the 301 /// [`WorkItem`] trait. 302 /// 303 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 304 /// 305 /// # Safety 306 /// 307 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`] 308 /// method of this trait as the function pointer. 309 /// 310 /// [`__enqueue`]: RawWorkItem::__enqueue 311 /// [`run`]: WorkItemPointer::run 312 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> { 313 /// Run this work item. 314 /// 315 /// # Safety 316 /// 317 /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`] 318 /// where the `queue_work_on` closure returned true, and the pointer must still be valid. 319 /// 320 /// [`__enqueue`]: RawWorkItem::__enqueue 321 unsafe extern "C" fn run(ptr: *mut bindings::work_struct); 322 } 323 324 /// Defines the method that should be called when this work item is executed. 325 /// 326 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 327 pub trait WorkItem<const ID: u64 = 0> { 328 /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or 329 /// `Pin<Box<Self>>`. 330 type Pointer: WorkItemPointer<ID>; 331 332 /// The method that should be called when this work item is executed. 333 fn run(this: Self::Pointer); 334 } 335 336 /// Links for a work item. 337 /// 338 /// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`] 339 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue. 340 /// 341 /// Wraps the kernel's C `struct work_struct`. 342 /// 343 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it. 344 /// 345 /// [`run`]: WorkItemPointer::run 346 #[repr(transparent)] 347 pub struct Work<T: ?Sized, const ID: u64 = 0> { 348 work: Opaque<bindings::work_struct>, 349 _inner: PhantomData<T>, 350 } 351 352 // SAFETY: Kernel work items are usable from any thread. 353 // 354 // We do not need to constrain `T` since the work item does not actually contain a `T`. 355 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {} 356 // SAFETY: Kernel work items are usable from any thread. 357 // 358 // We do not need to constrain `T` since the work item does not actually contain a `T`. 359 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {} 360 361 impl<T: ?Sized, const ID: u64> Work<T, ID> { 362 /// Creates a new instance of [`Work`]. 363 #[inline] 364 #[allow(clippy::new_ret_no_self)] 365 pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> 366 where 367 T: WorkItem<ID>, 368 { 369 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as the work 370 // item function. 371 unsafe { 372 kernel::init::pin_init_from_closure(move |slot| { 373 let slot = Self::raw_get(slot); 374 bindings::init_work_with_key( 375 slot, 376 Some(T::Pointer::run), 377 false, 378 name.as_char_ptr(), 379 key.as_ptr(), 380 ); 381 Ok(()) 382 }) 383 } 384 } 385 386 /// Get a pointer to the inner `work_struct`. 387 /// 388 /// # Safety 389 /// 390 /// The provided pointer must not be dangling and must be properly aligned. (But the memory 391 /// need not be initialized.) 392 #[inline] 393 pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct { 394 // SAFETY: The caller promises that the pointer is aligned and not dangling. 395 // 396 // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that 397 // the compiler does not complain that the `work` field is unused. 398 unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) } 399 } 400 } 401 402 /// Declares that a type has a [`Work<T, ID>`] field. 403 /// 404 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro 405 /// like this: 406 /// 407 /// ```no_run 408 /// use kernel::impl_has_work; 409 /// use kernel::prelude::*; 410 /// use kernel::workqueue::Work; 411 /// 412 /// struct MyWorkItem { 413 /// work_field: Work<MyWorkItem, 1>, 414 /// } 415 /// 416 /// impl_has_work! { 417 /// impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field } 418 /// } 419 /// ``` 420 /// 421 /// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct` 422 /// fields by using a different id for each one. 423 /// 424 /// # Safety 425 /// 426 /// The [`OFFSET`] constant must be the offset of a field in `Self` of type [`Work<T, ID>`]. The 427 /// methods on this trait must have exactly the behavior that the definitions given below have. 428 /// 429 /// [`Work<T, ID>`]: Work 430 /// [`impl_has_work!`]: crate::impl_has_work 431 /// [`OFFSET`]: HasWork::OFFSET 432 pub unsafe trait HasWork<T, const ID: u64 = 0> { 433 /// The offset of the [`Work<T, ID>`] field. 434 /// 435 /// [`Work<T, ID>`]: Work 436 const OFFSET: usize; 437 438 /// Returns the offset of the [`Work<T, ID>`] field. 439 /// 440 /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not 441 /// [`Sized`]. 442 /// 443 /// [`Work<T, ID>`]: Work 444 /// [`OFFSET`]: HasWork::OFFSET 445 #[inline] 446 fn get_work_offset(&self) -> usize { 447 Self::OFFSET 448 } 449 450 /// Returns a pointer to the [`Work<T, ID>`] field. 451 /// 452 /// # Safety 453 /// 454 /// The provided pointer must point at a valid struct of type `Self`. 455 /// 456 /// [`Work<T, ID>`]: Work 457 #[inline] 458 unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> { 459 // SAFETY: The caller promises that the pointer is valid. 460 unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> } 461 } 462 463 /// Returns a pointer to the struct containing the [`Work<T, ID>`] field. 464 /// 465 /// # Safety 466 /// 467 /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`. 468 /// 469 /// [`Work<T, ID>`]: Work 470 #[inline] 471 unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self 472 where 473 Self: Sized, 474 { 475 // SAFETY: The caller promises that the pointer points at a field of the right type in the 476 // right kind of struct. 477 unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self } 478 } 479 } 480 481 /// Used to safely implement the [`HasWork<T, ID>`] trait. 482 /// 483 /// # Examples 484 /// 485 /// ``` 486 /// use kernel::impl_has_work; 487 /// use kernel::sync::Arc; 488 /// use kernel::workqueue::{self, Work}; 489 /// 490 /// struct MyStruct { 491 /// work_field: Work<MyStruct, 17>, 492 /// } 493 /// 494 /// impl_has_work! { 495 /// impl HasWork<MyStruct, 17> for MyStruct { self.work_field } 496 /// } 497 /// ``` 498 /// 499 /// [`HasWork<T, ID>`]: HasWork 500 #[macro_export] 501 macro_rules! impl_has_work { 502 ($(impl$(<$($implarg:ident),*>)? 503 HasWork<$work_type:ty $(, $id:tt)?> 504 for $self:ident $(<$($selfarg:ident),*>)? 505 { self.$field:ident } 506 )*) => {$( 507 // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right 508 // type. 509 unsafe impl$(<$($implarg),*>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self $(<$($selfarg),*>)? { 510 const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize; 511 512 #[inline] 513 unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> { 514 // SAFETY: The caller promises that the pointer is not dangling. 515 unsafe { 516 ::core::ptr::addr_of_mut!((*ptr).$field) 517 } 518 } 519 } 520 )*}; 521 } 522 523 impl_has_work! { 524 impl<T> HasWork<Self> for ClosureWork<T> { self.work } 525 } 526 527 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T> 528 where 529 T: WorkItem<ID, Pointer = Self>, 530 T: HasWork<T, ID>, 531 { 532 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 533 // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 534 let ptr = ptr as *mut Work<T, ID>; 535 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 536 let ptr = unsafe { T::work_container_of(ptr) }; 537 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 538 let arc = unsafe { Arc::from_raw(ptr) }; 539 540 T::run(arc) 541 } 542 } 543 544 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T> 545 where 546 T: WorkItem<ID, Pointer = Self>, 547 T: HasWork<T, ID>, 548 { 549 type EnqueueOutput = Result<(), Self>; 550 551 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 552 where 553 F: FnOnce(*mut bindings::work_struct) -> bool, 554 { 555 // Casting between const and mut is not a problem as long as the pointer is a raw pointer. 556 let ptr = Arc::into_raw(self).cast_mut(); 557 558 // SAFETY: Pointers into an `Arc` point at a valid value. 559 let work_ptr = unsafe { T::raw_get_work(ptr) }; 560 // SAFETY: `raw_get_work` returns a pointer to a valid value. 561 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 562 563 if queue_work_on(work_ptr) { 564 Ok(()) 565 } else { 566 // SAFETY: The work queue has not taken ownership of the pointer. 567 Err(unsafe { Arc::from_raw(ptr) }) 568 } 569 } 570 } 571 572 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<Box<T>> 573 where 574 T: WorkItem<ID, Pointer = Self>, 575 T: HasWork<T, ID>, 576 { 577 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 578 // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 579 let ptr = ptr as *mut Work<T, ID>; 580 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 581 let ptr = unsafe { T::work_container_of(ptr) }; 582 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 583 let boxed = unsafe { Box::from_raw(ptr) }; 584 // SAFETY: The box was already pinned when it was enqueued. 585 let pinned = unsafe { Pin::new_unchecked(boxed) }; 586 587 T::run(pinned) 588 } 589 } 590 591 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<Box<T>> 592 where 593 T: WorkItem<ID, Pointer = Self>, 594 T: HasWork<T, ID>, 595 { 596 type EnqueueOutput = (); 597 598 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 599 where 600 F: FnOnce(*mut bindings::work_struct) -> bool, 601 { 602 // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily 603 // remove the `Pin` wrapper. 604 let boxed = unsafe { Pin::into_inner_unchecked(self) }; 605 let ptr = Box::into_raw(boxed); 606 607 // SAFETY: Pointers into a `Box` point at a valid value. 608 let work_ptr = unsafe { T::raw_get_work(ptr) }; 609 // SAFETY: `raw_get_work` returns a pointer to a valid value. 610 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 611 612 if !queue_work_on(work_ptr) { 613 // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a 614 // workqueue. 615 unsafe { ::core::hint::unreachable_unchecked() } 616 } 617 } 618 } 619 620 /// Returns the system work queue (`system_wq`). 621 /// 622 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are 623 /// users which expect relatively short queue flush time. 624 /// 625 /// Callers shouldn't queue work items which can run for too long. 626 pub fn system() -> &'static Queue { 627 // SAFETY: `system_wq` is a C global, always available. 628 unsafe { Queue::from_raw(bindings::system_wq) } 629 } 630 631 /// Returns the system high-priority work queue (`system_highpri_wq`). 632 /// 633 /// It is similar to the one returned by [`system`] but for work items which require higher 634 /// scheduling priority. 635 pub fn system_highpri() -> &'static Queue { 636 // SAFETY: `system_highpri_wq` is a C global, always available. 637 unsafe { Queue::from_raw(bindings::system_highpri_wq) } 638 } 639 640 /// Returns the system work queue for potentially long-running work items (`system_long_wq`). 641 /// 642 /// It is similar to the one returned by [`system`] but may host long running work items. Queue 643 /// flushing might take relatively long. 644 pub fn system_long() -> &'static Queue { 645 // SAFETY: `system_long_wq` is a C global, always available. 646 unsafe { Queue::from_raw(bindings::system_long_wq) } 647 } 648 649 /// Returns the system unbound work queue (`system_unbound_wq`). 650 /// 651 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items 652 /// are executed immediately as long as `max_active` limit is not reached and resources are 653 /// available. 654 pub fn system_unbound() -> &'static Queue { 655 // SAFETY: `system_unbound_wq` is a C global, always available. 656 unsafe { Queue::from_raw(bindings::system_unbound_wq) } 657 } 658 659 /// Returns the system freezable work queue (`system_freezable_wq`). 660 /// 661 /// It is equivalent to the one returned by [`system`] except that it's freezable. 662 /// 663 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 664 /// items on the workqueue are drained and no new work item starts execution until thawed. 665 pub fn system_freezable() -> &'static Queue { 666 // SAFETY: `system_freezable_wq` is a C global, always available. 667 unsafe { Queue::from_raw(bindings::system_freezable_wq) } 668 } 669 670 /// Returns the system power-efficient work queue (`system_power_efficient_wq`). 671 /// 672 /// It is inclined towards saving power and is converted to "unbound" variants if the 673 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one 674 /// returned by [`system`]. 675 pub fn system_power_efficient() -> &'static Queue { 676 // SAFETY: `system_power_efficient_wq` is a C global, always available. 677 unsafe { Queue::from_raw(bindings::system_power_efficient_wq) } 678 } 679 680 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`). 681 /// 682 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable. 683 /// 684 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 685 /// items on the workqueue are drained and no new work item starts execution until thawed. 686 pub fn system_freezable_power_efficient() -> &'static Queue { 687 // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available. 688 unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) } 689 } 690