1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Work queues. 4 //! 5 //! This file has two components: The raw work item API, and the safe work item API. 6 //! 7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single 8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field, 9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as 10 //! long as you use different values for different fields of the same struct.) Since these IDs are 11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary. 12 //! 13 //! # The raw API 14 //! 15 //! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an 16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used 17 //! directly, but if you want to, you can use it without using the pieces from the safe API. 18 //! 19 //! # The safe API 20 //! 21 //! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also 22 //! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user. 23 //! 24 //! * The [`Work`] struct is the Rust wrapper for the C `work_struct` type. 25 //! * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue. 26 //! * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something 27 //! that implements [`WorkItem`]. 28 //! 29 //! ## Example 30 //! 31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When 32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field, 33 //! we do not need to specify ids for the fields. 34 //! 35 //! ``` 36 //! use kernel::prelude::*; 37 //! use kernel::sync::Arc; 38 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem}; 39 //! 40 //! #[pin_data] 41 //! struct MyStruct { 42 //! value: i32, 43 //! #[pin] 44 //! work: Work<MyStruct>, 45 //! } 46 //! 47 //! impl_has_work! { 48 //! impl HasWork<Self> for MyStruct { self.work } 49 //! } 50 //! 51 //! impl MyStruct { 52 //! fn new(value: i32) -> Result<Arc<Self>> { 53 //! Arc::pin_init(pin_init!(MyStruct { 54 //! value, 55 //! work <- new_work!("MyStruct::work"), 56 //! }), GFP_KERNEL) 57 //! } 58 //! } 59 //! 60 //! impl WorkItem for MyStruct { 61 //! type Pointer = Arc<MyStruct>; 62 //! 63 //! fn run(this: Arc<MyStruct>) { 64 //! pr_info!("The value is: {}", this.value); 65 //! } 66 //! } 67 //! 68 //! /// This method will enqueue the struct for execution on the system workqueue, where its value 69 //! /// will be printed. 70 //! fn print_later(val: Arc<MyStruct>) { 71 //! let _ = workqueue::system().enqueue(val); 72 //! } 73 //! ``` 74 //! 75 //! The following example shows how multiple `work_struct` fields can be used: 76 //! 77 //! ``` 78 //! use kernel::prelude::*; 79 //! use kernel::sync::Arc; 80 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem}; 81 //! 82 //! #[pin_data] 83 //! struct MyStruct { 84 //! value_1: i32, 85 //! value_2: i32, 86 //! #[pin] 87 //! work_1: Work<MyStruct, 1>, 88 //! #[pin] 89 //! work_2: Work<MyStruct, 2>, 90 //! } 91 //! 92 //! impl_has_work! { 93 //! impl HasWork<Self, 1> for MyStruct { self.work_1 } 94 //! impl HasWork<Self, 2> for MyStruct { self.work_2 } 95 //! } 96 //! 97 //! impl MyStruct { 98 //! fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> { 99 //! Arc::pin_init(pin_init!(MyStruct { 100 //! value_1, 101 //! value_2, 102 //! work_1 <- new_work!("MyStruct::work_1"), 103 //! work_2 <- new_work!("MyStruct::work_2"), 104 //! }), GFP_KERNEL) 105 //! } 106 //! } 107 //! 108 //! impl WorkItem<1> for MyStruct { 109 //! type Pointer = Arc<MyStruct>; 110 //! 111 //! fn run(this: Arc<MyStruct>) { 112 //! pr_info!("The value is: {}", this.value_1); 113 //! } 114 //! } 115 //! 116 //! impl WorkItem<2> for MyStruct { 117 //! type Pointer = Arc<MyStruct>; 118 //! 119 //! fn run(this: Arc<MyStruct>) { 120 //! pr_info!("The second value is: {}", this.value_2); 121 //! } 122 //! } 123 //! 124 //! fn print_1_later(val: Arc<MyStruct>) { 125 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val); 126 //! } 127 //! 128 //! fn print_2_later(val: Arc<MyStruct>) { 129 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val); 130 //! } 131 //! ``` 132 //! 133 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h) 134 135 use crate::alloc::{AllocError, Flags}; 136 use crate::{bindings, prelude::*, sync::Arc, sync::LockClassKey, types::Opaque}; 137 use alloc::boxed::Box; 138 use core::marker::PhantomData; 139 use core::pin::Pin; 140 141 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class. 142 #[macro_export] 143 macro_rules! new_work { 144 ($($name:literal)?) => { 145 $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!()) 146 }; 147 } 148 pub use new_work; 149 150 /// A kernel work queue. 151 /// 152 /// Wraps the kernel's C `struct workqueue_struct`. 153 /// 154 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are 155 /// always available, for example, `system`, `system_highpri`, `system_long`, etc. 156 #[repr(transparent)] 157 pub struct Queue(Opaque<bindings::workqueue_struct>); 158 159 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 160 unsafe impl Send for Queue {} 161 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 162 unsafe impl Sync for Queue {} 163 164 impl Queue { 165 /// Use the provided `struct workqueue_struct` with Rust. 166 /// 167 /// # Safety 168 /// 169 /// The caller must ensure that the provided raw pointer is not dangling, that it points at a 170 /// valid workqueue, and that it remains valid until the end of `'a`. 171 pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue { 172 // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The 173 // caller promises that the pointer is not dangling. 174 unsafe { &*(ptr as *const Queue) } 175 } 176 177 /// Enqueues a work item. 178 /// 179 /// This may fail if the work item is already enqueued in a workqueue. 180 /// 181 /// The work item will be submitted using `WORK_CPU_UNBOUND`. 182 pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput 183 where 184 W: RawWorkItem<ID> + Send + 'static, 185 { 186 let queue_ptr = self.0.get(); 187 188 // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other 189 // `__enqueue` requirements are not relevant since `W` is `Send` and static. 190 // 191 // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which 192 // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this 193 // closure. 194 // 195 // Furthermore, if the C workqueue code accesses the pointer after this call to 196 // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on` 197 // will have returned true. In this case, `__enqueue` promises that the raw pointer will 198 // stay valid until we call the function pointer in the `work_struct`, so the access is ok. 199 unsafe { 200 w.__enqueue(move |work_ptr| { 201 bindings::queue_work_on( 202 bindings::wq_misc_consts_WORK_CPU_UNBOUND as _, 203 queue_ptr, 204 work_ptr, 205 ) 206 }) 207 } 208 } 209 210 /// Tries to spawn the given function or closure as a work item. 211 /// 212 /// This method can fail because it allocates memory to store the work item. 213 pub fn try_spawn<T: 'static + Send + FnOnce()>( 214 &self, 215 flags: Flags, 216 func: T, 217 ) -> Result<(), AllocError> { 218 let init = pin_init!(ClosureWork { 219 work <- new_work!("Queue::try_spawn"), 220 func: Some(func), 221 }); 222 223 self.enqueue(Box::pin_init(init, flags).map_err(|_| AllocError)?); 224 Ok(()) 225 } 226 } 227 228 /// A helper type used in [`try_spawn`]. 229 /// 230 /// [`try_spawn`]: Queue::try_spawn 231 #[pin_data] 232 struct ClosureWork<T> { 233 #[pin] 234 work: Work<ClosureWork<T>>, 235 func: Option<T>, 236 } 237 238 impl<T> ClosureWork<T> { 239 fn project(self: Pin<&mut Self>) -> &mut Option<T> { 240 // SAFETY: The `func` field is not structurally pinned. 241 unsafe { &mut self.get_unchecked_mut().func } 242 } 243 } 244 245 impl<T: FnOnce()> WorkItem for ClosureWork<T> { 246 type Pointer = Pin<Box<Self>>; 247 248 fn run(mut this: Pin<Box<Self>>) { 249 if let Some(func) = this.as_mut().project().take() { 250 (func)() 251 } 252 } 253 } 254 255 /// A raw work item. 256 /// 257 /// This is the low-level trait that is designed for being as general as possible. 258 /// 259 /// The `ID` parameter to this trait exists so that a single type can provide multiple 260 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then 261 /// you will implement this trait once for each field, using a different id for each field. The 262 /// actual value of the id is not important as long as you use different ids for different fields 263 /// of the same struct. (Fields of different structs need not use different ids.) 264 /// 265 /// Note that the id is used only to select the right method to call during compilation. It won't be 266 /// part of the final executable. 267 /// 268 /// # Safety 269 /// 270 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`] 271 /// remain valid for the duration specified in the guarantees section of the documentation for 272 /// [`__enqueue`]. 273 /// 274 /// [`__enqueue`]: RawWorkItem::__enqueue 275 pub unsafe trait RawWorkItem<const ID: u64> { 276 /// The return type of [`Queue::enqueue`]. 277 type EnqueueOutput; 278 279 /// Enqueues this work item on a queue using the provided `queue_work_on` method. 280 /// 281 /// # Guarantees 282 /// 283 /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a 284 /// valid `work_struct` for the duration of the call to the closure. If the closure returns 285 /// true, then it is further guaranteed that the pointer remains valid until someone calls the 286 /// function pointer stored in the `work_struct`. 287 /// 288 /// # Safety 289 /// 290 /// The provided closure may only return `false` if the `work_struct` is already in a workqueue. 291 /// 292 /// If the work item type is annotated with any lifetimes, then you must not call the function 293 /// pointer after any such lifetime expires. (Never calling the function pointer is okay.) 294 /// 295 /// If the work item type is not [`Send`], then the function pointer must be called on the same 296 /// thread as the call to `__enqueue`. 297 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 298 where 299 F: FnOnce(*mut bindings::work_struct) -> bool; 300 } 301 302 /// Defines the method that should be called directly when a work item is executed. 303 /// 304 /// This trait is implemented by `Pin<Box<T>>` and [`Arc<T>`], and is mainly intended to be 305 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`] 306 /// instead. The [`run`] method on this trait will usually just perform the appropriate 307 /// `container_of` translation and then call into the [`run`][WorkItem::run] method from the 308 /// [`WorkItem`] trait. 309 /// 310 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 311 /// 312 /// # Safety 313 /// 314 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`] 315 /// method of this trait as the function pointer. 316 /// 317 /// [`__enqueue`]: RawWorkItem::__enqueue 318 /// [`run`]: WorkItemPointer::run 319 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> { 320 /// Run this work item. 321 /// 322 /// # Safety 323 /// 324 /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`] 325 /// where the `queue_work_on` closure returned true, and the pointer must still be valid. 326 /// 327 /// [`__enqueue`]: RawWorkItem::__enqueue 328 unsafe extern "C" fn run(ptr: *mut bindings::work_struct); 329 } 330 331 /// Defines the method that should be called when this work item is executed. 332 /// 333 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 334 pub trait WorkItem<const ID: u64 = 0> { 335 /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or 336 /// `Pin<Box<Self>>`. 337 type Pointer: WorkItemPointer<ID>; 338 339 /// The method that should be called when this work item is executed. 340 fn run(this: Self::Pointer); 341 } 342 343 /// Links for a work item. 344 /// 345 /// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`] 346 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue. 347 /// 348 /// Wraps the kernel's C `struct work_struct`. 349 /// 350 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it. 351 /// 352 /// [`run`]: WorkItemPointer::run 353 #[pin_data] 354 #[repr(transparent)] 355 pub struct Work<T: ?Sized, const ID: u64 = 0> { 356 #[pin] 357 work: Opaque<bindings::work_struct>, 358 _inner: PhantomData<T>, 359 } 360 361 // SAFETY: Kernel work items are usable from any thread. 362 // 363 // We do not need to constrain `T` since the work item does not actually contain a `T`. 364 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {} 365 // SAFETY: Kernel work items are usable from any thread. 366 // 367 // We do not need to constrain `T` since the work item does not actually contain a `T`. 368 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {} 369 370 impl<T: ?Sized, const ID: u64> Work<T, ID> { 371 /// Creates a new instance of [`Work`]. 372 #[inline] 373 #[allow(clippy::new_ret_no_self)] 374 pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> 375 where 376 T: WorkItem<ID>, 377 { 378 pin_init!(Self { 379 work <- Opaque::ffi_init(|slot| { 380 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as 381 // the work item function. 382 unsafe { 383 bindings::init_work_with_key( 384 slot, 385 Some(T::Pointer::run), 386 false, 387 name.as_char_ptr(), 388 key.as_ptr(), 389 ) 390 } 391 }), 392 _inner: PhantomData, 393 }) 394 } 395 396 /// Get a pointer to the inner `work_struct`. 397 /// 398 /// # Safety 399 /// 400 /// The provided pointer must not be dangling and must be properly aligned. (But the memory 401 /// need not be initialized.) 402 #[inline] 403 pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct { 404 // SAFETY: The caller promises that the pointer is aligned and not dangling. 405 // 406 // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that 407 // the compiler does not complain that the `work` field is unused. 408 unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) } 409 } 410 } 411 412 /// Declares that a type has a [`Work<T, ID>`] field. 413 /// 414 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro 415 /// like this: 416 /// 417 /// ```no_run 418 /// use kernel::prelude::*; 419 /// use kernel::workqueue::{impl_has_work, Work}; 420 /// 421 /// struct MyWorkItem { 422 /// work_field: Work<MyWorkItem, 1>, 423 /// } 424 /// 425 /// impl_has_work! { 426 /// impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field } 427 /// } 428 /// ``` 429 /// 430 /// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct` 431 /// fields by using a different id for each one. 432 /// 433 /// # Safety 434 /// 435 /// The [`OFFSET`] constant must be the offset of a field in `Self` of type [`Work<T, ID>`]. The 436 /// methods on this trait must have exactly the behavior that the definitions given below have. 437 /// 438 /// [`impl_has_work!`]: crate::impl_has_work 439 /// [`OFFSET`]: HasWork::OFFSET 440 pub unsafe trait HasWork<T, const ID: u64 = 0> { 441 /// The offset of the [`Work<T, ID>`] field. 442 const OFFSET: usize; 443 444 /// Returns the offset of the [`Work<T, ID>`] field. 445 /// 446 /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not 447 /// [`Sized`]. 448 /// 449 /// [`OFFSET`]: HasWork::OFFSET 450 #[inline] 451 fn get_work_offset(&self) -> usize { 452 Self::OFFSET 453 } 454 455 /// Returns a pointer to the [`Work<T, ID>`] field. 456 /// 457 /// # Safety 458 /// 459 /// The provided pointer must point at a valid struct of type `Self`. 460 #[inline] 461 unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> { 462 // SAFETY: The caller promises that the pointer is valid. 463 unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> } 464 } 465 466 /// Returns a pointer to the struct containing the [`Work<T, ID>`] field. 467 /// 468 /// # Safety 469 /// 470 /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`. 471 #[inline] 472 unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self 473 where 474 Self: Sized, 475 { 476 // SAFETY: The caller promises that the pointer points at a field of the right type in the 477 // right kind of struct. 478 unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self } 479 } 480 } 481 482 /// Used to safely implement the [`HasWork<T, ID>`] trait. 483 /// 484 /// # Examples 485 /// 486 /// ``` 487 /// use kernel::sync::Arc; 488 /// use kernel::workqueue::{self, impl_has_work, Work}; 489 /// 490 /// struct MyStruct { 491 /// work_field: Work<MyStruct, 17>, 492 /// } 493 /// 494 /// impl_has_work! { 495 /// impl HasWork<MyStruct, 17> for MyStruct { self.work_field } 496 /// } 497 /// ``` 498 #[macro_export] 499 macro_rules! impl_has_work { 500 ($(impl$(<$($implarg:ident),*>)? 501 HasWork<$work_type:ty $(, $id:tt)?> 502 for $self:ident $(<$($selfarg:ident),*>)? 503 { self.$field:ident } 504 )*) => {$( 505 // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right 506 // type. 507 unsafe impl$(<$($implarg),*>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self $(<$($selfarg),*>)? { 508 const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize; 509 510 #[inline] 511 unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> { 512 // SAFETY: The caller promises that the pointer is not dangling. 513 unsafe { 514 ::core::ptr::addr_of_mut!((*ptr).$field) 515 } 516 } 517 } 518 )*}; 519 } 520 pub use impl_has_work; 521 522 impl_has_work! { 523 impl<T> HasWork<Self> for ClosureWork<T> { self.work } 524 } 525 526 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T> 527 where 528 T: WorkItem<ID, Pointer = Self>, 529 T: HasWork<T, ID>, 530 { 531 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 532 // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 533 let ptr = ptr as *mut Work<T, ID>; 534 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 535 let ptr = unsafe { T::work_container_of(ptr) }; 536 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 537 let arc = unsafe { Arc::from_raw(ptr) }; 538 539 T::run(arc) 540 } 541 } 542 543 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T> 544 where 545 T: WorkItem<ID, Pointer = Self>, 546 T: HasWork<T, ID>, 547 { 548 type EnqueueOutput = Result<(), Self>; 549 550 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 551 where 552 F: FnOnce(*mut bindings::work_struct) -> bool, 553 { 554 // Casting between const and mut is not a problem as long as the pointer is a raw pointer. 555 let ptr = Arc::into_raw(self).cast_mut(); 556 557 // SAFETY: Pointers into an `Arc` point at a valid value. 558 let work_ptr = unsafe { T::raw_get_work(ptr) }; 559 // SAFETY: `raw_get_work` returns a pointer to a valid value. 560 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 561 562 if queue_work_on(work_ptr) { 563 Ok(()) 564 } else { 565 // SAFETY: The work queue has not taken ownership of the pointer. 566 Err(unsafe { Arc::from_raw(ptr) }) 567 } 568 } 569 } 570 571 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<Box<T>> 572 where 573 T: WorkItem<ID, Pointer = Self>, 574 T: HasWork<T, ID>, 575 { 576 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 577 // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 578 let ptr = ptr as *mut Work<T, ID>; 579 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 580 let ptr = unsafe { T::work_container_of(ptr) }; 581 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 582 let boxed = unsafe { Box::from_raw(ptr) }; 583 // SAFETY: The box was already pinned when it was enqueued. 584 let pinned = unsafe { Pin::new_unchecked(boxed) }; 585 586 T::run(pinned) 587 } 588 } 589 590 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<Box<T>> 591 where 592 T: WorkItem<ID, Pointer = Self>, 593 T: HasWork<T, ID>, 594 { 595 type EnqueueOutput = (); 596 597 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 598 where 599 F: FnOnce(*mut bindings::work_struct) -> bool, 600 { 601 // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily 602 // remove the `Pin` wrapper. 603 let boxed = unsafe { Pin::into_inner_unchecked(self) }; 604 let ptr = Box::into_raw(boxed); 605 606 // SAFETY: Pointers into a `Box` point at a valid value. 607 let work_ptr = unsafe { T::raw_get_work(ptr) }; 608 // SAFETY: `raw_get_work` returns a pointer to a valid value. 609 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 610 611 if !queue_work_on(work_ptr) { 612 // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a 613 // workqueue. 614 unsafe { ::core::hint::unreachable_unchecked() } 615 } 616 } 617 } 618 619 /// Returns the system work queue (`system_wq`). 620 /// 621 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are 622 /// users which expect relatively short queue flush time. 623 /// 624 /// Callers shouldn't queue work items which can run for too long. 625 pub fn system() -> &'static Queue { 626 // SAFETY: `system_wq` is a C global, always available. 627 unsafe { Queue::from_raw(bindings::system_wq) } 628 } 629 630 /// Returns the system high-priority work queue (`system_highpri_wq`). 631 /// 632 /// It is similar to the one returned by [`system`] but for work items which require higher 633 /// scheduling priority. 634 pub fn system_highpri() -> &'static Queue { 635 // SAFETY: `system_highpri_wq` is a C global, always available. 636 unsafe { Queue::from_raw(bindings::system_highpri_wq) } 637 } 638 639 /// Returns the system work queue for potentially long-running work items (`system_long_wq`). 640 /// 641 /// It is similar to the one returned by [`system`] but may host long running work items. Queue 642 /// flushing might take relatively long. 643 pub fn system_long() -> &'static Queue { 644 // SAFETY: `system_long_wq` is a C global, always available. 645 unsafe { Queue::from_raw(bindings::system_long_wq) } 646 } 647 648 /// Returns the system unbound work queue (`system_unbound_wq`). 649 /// 650 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items 651 /// are executed immediately as long as `max_active` limit is not reached and resources are 652 /// available. 653 pub fn system_unbound() -> &'static Queue { 654 // SAFETY: `system_unbound_wq` is a C global, always available. 655 unsafe { Queue::from_raw(bindings::system_unbound_wq) } 656 } 657 658 /// Returns the system freezable work queue (`system_freezable_wq`). 659 /// 660 /// It is equivalent to the one returned by [`system`] except that it's freezable. 661 /// 662 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 663 /// items on the workqueue are drained and no new work item starts execution until thawed. 664 pub fn system_freezable() -> &'static Queue { 665 // SAFETY: `system_freezable_wq` is a C global, always available. 666 unsafe { Queue::from_raw(bindings::system_freezable_wq) } 667 } 668 669 /// Returns the system power-efficient work queue (`system_power_efficient_wq`). 670 /// 671 /// It is inclined towards saving power and is converted to "unbound" variants if the 672 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one 673 /// returned by [`system`]. 674 pub fn system_power_efficient() -> &'static Queue { 675 // SAFETY: `system_power_efficient_wq` is a C global, always available. 676 unsafe { Queue::from_raw(bindings::system_power_efficient_wq) } 677 } 678 679 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`). 680 /// 681 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable. 682 /// 683 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 684 /// items on the workqueue are drained and no new work item starts execution until thawed. 685 pub fn system_freezable_power_efficient() -> &'static Queue { 686 // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available. 687 unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) } 688 } 689