xref: /linux/rust/kernel/workqueue.rs (revision 2c1092853f163762ef0aabc551a630ef233e1be3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Work queues.
4 //!
5 //! This file has two components: The raw work item API, and the safe work item API.
6 //!
7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single
8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field,
9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as
10 //! long as you use different values for different fields of the same struct.) Since these IDs are
11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary.
12 //!
13 //! # The raw API
14 //!
15 //! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an
16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used
17 //! directly, but if you want to, you can use it without using the pieces from the safe API.
18 //!
19 //! # The safe API
20 //!
21 //! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also
22 //! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user.
23 //!
24 //!  * The [`Work`] struct is the Rust wrapper for the C `work_struct` type.
25 //!  * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue.
26 //!  * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something
27 //!    that implements [`WorkItem`].
28 //!
29 //! ## Example
30 //!
31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When
32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field,
33 //! we do not need to specify ids for the fields.
34 //!
35 //! ```
36 //! use kernel::prelude::*;
37 //! use kernel::sync::Arc;
38 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
39 //!
40 //! #[pin_data]
41 //! struct MyStruct {
42 //!     value: i32,
43 //!     #[pin]
44 //!     work: Work<MyStruct>,
45 //! }
46 //!
47 //! impl_has_work! {
48 //!     impl HasWork<Self> for MyStruct { self.work }
49 //! }
50 //!
51 //! impl MyStruct {
52 //!     fn new(value: i32) -> Result<Arc<Self>> {
53 //!         Arc::pin_init(pin_init!(MyStruct {
54 //!             value,
55 //!             work <- new_work!("MyStruct::work"),
56 //!         }), GFP_KERNEL)
57 //!     }
58 //! }
59 //!
60 //! impl WorkItem for MyStruct {
61 //!     type Pointer = Arc<MyStruct>;
62 //!
63 //!     fn run(this: Arc<MyStruct>) {
64 //!         pr_info!("The value is: {}", this.value);
65 //!     }
66 //! }
67 //!
68 //! /// This method will enqueue the struct for execution on the system workqueue, where its value
69 //! /// will be printed.
70 //! fn print_later(val: Arc<MyStruct>) {
71 //!     let _ = workqueue::system().enqueue(val);
72 //! }
73 //! ```
74 //!
75 //! The following example shows how multiple `work_struct` fields can be used:
76 //!
77 //! ```
78 //! use kernel::prelude::*;
79 //! use kernel::sync::Arc;
80 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
81 //!
82 //! #[pin_data]
83 //! struct MyStruct {
84 //!     value_1: i32,
85 //!     value_2: i32,
86 //!     #[pin]
87 //!     work_1: Work<MyStruct, 1>,
88 //!     #[pin]
89 //!     work_2: Work<MyStruct, 2>,
90 //! }
91 //!
92 //! impl_has_work! {
93 //!     impl HasWork<Self, 1> for MyStruct { self.work_1 }
94 //!     impl HasWork<Self, 2> for MyStruct { self.work_2 }
95 //! }
96 //!
97 //! impl MyStruct {
98 //!     fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> {
99 //!         Arc::pin_init(pin_init!(MyStruct {
100 //!             value_1,
101 //!             value_2,
102 //!             work_1 <- new_work!("MyStruct::work_1"),
103 //!             work_2 <- new_work!("MyStruct::work_2"),
104 //!         }), GFP_KERNEL)
105 //!     }
106 //! }
107 //!
108 //! impl WorkItem<1> for MyStruct {
109 //!     type Pointer = Arc<MyStruct>;
110 //!
111 //!     fn run(this: Arc<MyStruct>) {
112 //!         pr_info!("The value is: {}", this.value_1);
113 //!     }
114 //! }
115 //!
116 //! impl WorkItem<2> for MyStruct {
117 //!     type Pointer = Arc<MyStruct>;
118 //!
119 //!     fn run(this: Arc<MyStruct>) {
120 //!         pr_info!("The second value is: {}", this.value_2);
121 //!     }
122 //! }
123 //!
124 //! fn print_1_later(val: Arc<MyStruct>) {
125 //!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val);
126 //! }
127 //!
128 //! fn print_2_later(val: Arc<MyStruct>) {
129 //!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val);
130 //! }
131 //! ```
132 //!
133 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h)
134 
135 use crate::alloc::{AllocError, Flags};
136 use crate::{bindings, prelude::*, sync::Arc, sync::LockClassKey, types::Opaque};
137 use alloc::boxed::Box;
138 use core::marker::PhantomData;
139 use core::pin::Pin;
140 
141 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class.
142 #[macro_export]
143 macro_rules! new_work {
144     ($($name:literal)?) => {
145         $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
146     };
147 }
148 pub use new_work;
149 
150 /// A kernel work queue.
151 ///
152 /// Wraps the kernel's C `struct workqueue_struct`.
153 ///
154 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are
155 /// always available, for example, `system`, `system_highpri`, `system_long`, etc.
156 #[repr(transparent)]
157 pub struct Queue(Opaque<bindings::workqueue_struct>);
158 
159 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
160 unsafe impl Send for Queue {}
161 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
162 unsafe impl Sync for Queue {}
163 
164 impl Queue {
165     /// Use the provided `struct workqueue_struct` with Rust.
166     ///
167     /// # Safety
168     ///
169     /// The caller must ensure that the provided raw pointer is not dangling, that it points at a
170     /// valid workqueue, and that it remains valid until the end of `'a`.
171     pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue {
172         // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The
173         // caller promises that the pointer is not dangling.
174         unsafe { &*(ptr as *const Queue) }
175     }
176 
177     /// Enqueues a work item.
178     ///
179     /// This may fail if the work item is already enqueued in a workqueue.
180     ///
181     /// The work item will be submitted using `WORK_CPU_UNBOUND`.
182     pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput
183     where
184         W: RawWorkItem<ID> + Send + 'static,
185     {
186         let queue_ptr = self.0.get();
187 
188         // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other
189         // `__enqueue` requirements are not relevant since `W` is `Send` and static.
190         //
191         // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which
192         // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this
193         // closure.
194         //
195         // Furthermore, if the C workqueue code accesses the pointer after this call to
196         // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on`
197         // will have returned true. In this case, `__enqueue` promises that the raw pointer will
198         // stay valid until we call the function pointer in the `work_struct`, so the access is ok.
199         unsafe {
200             w.__enqueue(move |work_ptr| {
201                 bindings::queue_work_on(
202                     bindings::wq_misc_consts_WORK_CPU_UNBOUND as _,
203                     queue_ptr,
204                     work_ptr,
205                 )
206             })
207         }
208     }
209 
210     /// Tries to spawn the given function or closure as a work item.
211     ///
212     /// This method can fail because it allocates memory to store the work item.
213     pub fn try_spawn<T: 'static + Send + FnOnce()>(
214         &self,
215         flags: Flags,
216         func: T,
217     ) -> Result<(), AllocError> {
218         let init = pin_init!(ClosureWork {
219             work <- new_work!("Queue::try_spawn"),
220             func: Some(func),
221         });
222 
223         self.enqueue(Box::pin_init(init, flags).map_err(|_| AllocError)?);
224         Ok(())
225     }
226 }
227 
228 /// A helper type used in [`try_spawn`].
229 ///
230 /// [`try_spawn`]: Queue::try_spawn
231 #[pin_data]
232 struct ClosureWork<T> {
233     #[pin]
234     work: Work<ClosureWork<T>>,
235     func: Option<T>,
236 }
237 
238 impl<T> ClosureWork<T> {
239     fn project(self: Pin<&mut Self>) -> &mut Option<T> {
240         // SAFETY: The `func` field is not structurally pinned.
241         unsafe { &mut self.get_unchecked_mut().func }
242     }
243 }
244 
245 impl<T: FnOnce()> WorkItem for ClosureWork<T> {
246     type Pointer = Pin<Box<Self>>;
247 
248     fn run(mut this: Pin<Box<Self>>) {
249         if let Some(func) = this.as_mut().project().take() {
250             (func)()
251         }
252     }
253 }
254 
255 /// A raw work item.
256 ///
257 /// This is the low-level trait that is designed for being as general as possible.
258 ///
259 /// The `ID` parameter to this trait exists so that a single type can provide multiple
260 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then
261 /// you will implement this trait once for each field, using a different id for each field. The
262 /// actual value of the id is not important as long as you use different ids for different fields
263 /// of the same struct. (Fields of different structs need not use different ids.)
264 ///
265 /// Note that the id is used only to select the right method to call during compilation. It won't be
266 /// part of the final executable.
267 ///
268 /// # Safety
269 ///
270 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`]
271 /// remain valid for the duration specified in the guarantees section of the documentation for
272 /// [`__enqueue`].
273 ///
274 /// [`__enqueue`]: RawWorkItem::__enqueue
275 pub unsafe trait RawWorkItem<const ID: u64> {
276     /// The return type of [`Queue::enqueue`].
277     type EnqueueOutput;
278 
279     /// Enqueues this work item on a queue using the provided `queue_work_on` method.
280     ///
281     /// # Guarantees
282     ///
283     /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a
284     /// valid `work_struct` for the duration of the call to the closure. If the closure returns
285     /// true, then it is further guaranteed that the pointer remains valid until someone calls the
286     /// function pointer stored in the `work_struct`.
287     ///
288     /// # Safety
289     ///
290     /// The provided closure may only return `false` if the `work_struct` is already in a workqueue.
291     ///
292     /// If the work item type is annotated with any lifetimes, then you must not call the function
293     /// pointer after any such lifetime expires. (Never calling the function pointer is okay.)
294     ///
295     /// If the work item type is not [`Send`], then the function pointer must be called on the same
296     /// thread as the call to `__enqueue`.
297     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
298     where
299         F: FnOnce(*mut bindings::work_struct) -> bool;
300 }
301 
302 /// Defines the method that should be called directly when a work item is executed.
303 ///
304 /// This trait is implemented by `Pin<Box<T>>` and [`Arc<T>`], and is mainly intended to be
305 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`]
306 /// instead. The [`run`] method on this trait will usually just perform the appropriate
307 /// `container_of` translation and then call into the [`run`][WorkItem::run] method from the
308 /// [`WorkItem`] trait.
309 ///
310 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
311 ///
312 /// # Safety
313 ///
314 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`]
315 /// method of this trait as the function pointer.
316 ///
317 /// [`__enqueue`]: RawWorkItem::__enqueue
318 /// [`run`]: WorkItemPointer::run
319 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> {
320     /// Run this work item.
321     ///
322     /// # Safety
323     ///
324     /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`]
325     /// where the `queue_work_on` closure returned true, and the pointer must still be valid.
326     ///
327     /// [`__enqueue`]: RawWorkItem::__enqueue
328     unsafe extern "C" fn run(ptr: *mut bindings::work_struct);
329 }
330 
331 /// Defines the method that should be called when this work item is executed.
332 ///
333 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
334 pub trait WorkItem<const ID: u64 = 0> {
335     /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or
336     /// `Pin<Box<Self>>`.
337     type Pointer: WorkItemPointer<ID>;
338 
339     /// The method that should be called when this work item is executed.
340     fn run(this: Self::Pointer);
341 }
342 
343 /// Links for a work item.
344 ///
345 /// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`]
346 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue.
347 ///
348 /// Wraps the kernel's C `struct work_struct`.
349 ///
350 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it.
351 ///
352 /// [`run`]: WorkItemPointer::run
353 #[pin_data]
354 #[repr(transparent)]
355 pub struct Work<T: ?Sized, const ID: u64 = 0> {
356     #[pin]
357     work: Opaque<bindings::work_struct>,
358     _inner: PhantomData<T>,
359 }
360 
361 // SAFETY: Kernel work items are usable from any thread.
362 //
363 // We do not need to constrain `T` since the work item does not actually contain a `T`.
364 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {}
365 // SAFETY: Kernel work items are usable from any thread.
366 //
367 // We do not need to constrain `T` since the work item does not actually contain a `T`.
368 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {}
369 
370 impl<T: ?Sized, const ID: u64> Work<T, ID> {
371     /// Creates a new instance of [`Work`].
372     #[inline]
373     #[allow(clippy::new_ret_no_self)]
374     pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self>
375     where
376         T: WorkItem<ID>,
377     {
378         pin_init!(Self {
379             work <- Opaque::ffi_init(|slot| {
380                 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as
381                 // the work item function.
382                 unsafe {
383                     bindings::init_work_with_key(
384                         slot,
385                         Some(T::Pointer::run),
386                         false,
387                         name.as_char_ptr(),
388                         key.as_ptr(),
389                     )
390                 }
391             }),
392             _inner: PhantomData,
393         })
394     }
395 
396     /// Get a pointer to the inner `work_struct`.
397     ///
398     /// # Safety
399     ///
400     /// The provided pointer must not be dangling and must be properly aligned. (But the memory
401     /// need not be initialized.)
402     #[inline]
403     pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct {
404         // SAFETY: The caller promises that the pointer is aligned and not dangling.
405         //
406         // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that
407         // the compiler does not complain that the `work` field is unused.
408         unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) }
409     }
410 }
411 
412 /// Declares that a type has a [`Work<T, ID>`] field.
413 ///
414 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro
415 /// like this:
416 ///
417 /// ```no_run
418 /// use kernel::prelude::*;
419 /// use kernel::workqueue::{impl_has_work, Work};
420 ///
421 /// struct MyWorkItem {
422 ///     work_field: Work<MyWorkItem, 1>,
423 /// }
424 ///
425 /// impl_has_work! {
426 ///     impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field }
427 /// }
428 /// ```
429 ///
430 /// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct`
431 /// fields by using a different id for each one.
432 ///
433 /// # Safety
434 ///
435 /// The [`OFFSET`] constant must be the offset of a field in `Self` of type [`Work<T, ID>`]. The
436 /// methods on this trait must have exactly the behavior that the definitions given below have.
437 ///
438 /// [`impl_has_work!`]: crate::impl_has_work
439 /// [`OFFSET`]: HasWork::OFFSET
440 pub unsafe trait HasWork<T, const ID: u64 = 0> {
441     /// The offset of the [`Work<T, ID>`] field.
442     const OFFSET: usize;
443 
444     /// Returns the offset of the [`Work<T, ID>`] field.
445     ///
446     /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not
447     /// [`Sized`].
448     ///
449     /// [`OFFSET`]: HasWork::OFFSET
450     #[inline]
451     fn get_work_offset(&self) -> usize {
452         Self::OFFSET
453     }
454 
455     /// Returns a pointer to the [`Work<T, ID>`] field.
456     ///
457     /// # Safety
458     ///
459     /// The provided pointer must point at a valid struct of type `Self`.
460     #[inline]
461     unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> {
462         // SAFETY: The caller promises that the pointer is valid.
463         unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> }
464     }
465 
466     /// Returns a pointer to the struct containing the [`Work<T, ID>`] field.
467     ///
468     /// # Safety
469     ///
470     /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`.
471     #[inline]
472     unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self
473     where
474         Self: Sized,
475     {
476         // SAFETY: The caller promises that the pointer points at a field of the right type in the
477         // right kind of struct.
478         unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self }
479     }
480 }
481 
482 /// Used to safely implement the [`HasWork<T, ID>`] trait.
483 ///
484 /// # Examples
485 ///
486 /// ```
487 /// use kernel::sync::Arc;
488 /// use kernel::workqueue::{self, impl_has_work, Work};
489 ///
490 /// struct MyStruct {
491 ///     work_field: Work<MyStruct, 17>,
492 /// }
493 ///
494 /// impl_has_work! {
495 ///     impl HasWork<MyStruct, 17> for MyStruct { self.work_field }
496 /// }
497 /// ```
498 #[macro_export]
499 macro_rules! impl_has_work {
500     ($(impl$(<$($implarg:ident),*>)?
501        HasWork<$work_type:ty $(, $id:tt)?>
502        for $self:ident $(<$($selfarg:ident),*>)?
503        { self.$field:ident }
504     )*) => {$(
505         // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right
506         // type.
507         unsafe impl$(<$($implarg),*>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self $(<$($selfarg),*>)? {
508             const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize;
509 
510             #[inline]
511             unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> {
512                 // SAFETY: The caller promises that the pointer is not dangling.
513                 unsafe {
514                     ::core::ptr::addr_of_mut!((*ptr).$field)
515                 }
516             }
517         }
518     )*};
519 }
520 pub use impl_has_work;
521 
522 impl_has_work! {
523     impl<T> HasWork<Self> for ClosureWork<T> { self.work }
524 }
525 
526 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T>
527 where
528     T: WorkItem<ID, Pointer = Self>,
529     T: HasWork<T, ID>,
530 {
531     unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
532         // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
533         let ptr = ptr as *mut Work<T, ID>;
534         // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
535         let ptr = unsafe { T::work_container_of(ptr) };
536         // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
537         let arc = unsafe { Arc::from_raw(ptr) };
538 
539         T::run(arc)
540     }
541 }
542 
543 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T>
544 where
545     T: WorkItem<ID, Pointer = Self>,
546     T: HasWork<T, ID>,
547 {
548     type EnqueueOutput = Result<(), Self>;
549 
550     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
551     where
552         F: FnOnce(*mut bindings::work_struct) -> bool,
553     {
554         // Casting between const and mut is not a problem as long as the pointer is a raw pointer.
555         let ptr = Arc::into_raw(self).cast_mut();
556 
557         // SAFETY: Pointers into an `Arc` point at a valid value.
558         let work_ptr = unsafe { T::raw_get_work(ptr) };
559         // SAFETY: `raw_get_work` returns a pointer to a valid value.
560         let work_ptr = unsafe { Work::raw_get(work_ptr) };
561 
562         if queue_work_on(work_ptr) {
563             Ok(())
564         } else {
565             // SAFETY: The work queue has not taken ownership of the pointer.
566             Err(unsafe { Arc::from_raw(ptr) })
567         }
568     }
569 }
570 
571 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<Box<T>>
572 where
573     T: WorkItem<ID, Pointer = Self>,
574     T: HasWork<T, ID>,
575 {
576     unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
577         // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
578         let ptr = ptr as *mut Work<T, ID>;
579         // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
580         let ptr = unsafe { T::work_container_of(ptr) };
581         // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
582         let boxed = unsafe { Box::from_raw(ptr) };
583         // SAFETY: The box was already pinned when it was enqueued.
584         let pinned = unsafe { Pin::new_unchecked(boxed) };
585 
586         T::run(pinned)
587     }
588 }
589 
590 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<Box<T>>
591 where
592     T: WorkItem<ID, Pointer = Self>,
593     T: HasWork<T, ID>,
594 {
595     type EnqueueOutput = ();
596 
597     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
598     where
599         F: FnOnce(*mut bindings::work_struct) -> bool,
600     {
601         // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily
602         // remove the `Pin` wrapper.
603         let boxed = unsafe { Pin::into_inner_unchecked(self) };
604         let ptr = Box::into_raw(boxed);
605 
606         // SAFETY: Pointers into a `Box` point at a valid value.
607         let work_ptr = unsafe { T::raw_get_work(ptr) };
608         // SAFETY: `raw_get_work` returns a pointer to a valid value.
609         let work_ptr = unsafe { Work::raw_get(work_ptr) };
610 
611         if !queue_work_on(work_ptr) {
612             // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a
613             // workqueue.
614             unsafe { ::core::hint::unreachable_unchecked() }
615         }
616     }
617 }
618 
619 /// Returns the system work queue (`system_wq`).
620 ///
621 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are
622 /// users which expect relatively short queue flush time.
623 ///
624 /// Callers shouldn't queue work items which can run for too long.
625 pub fn system() -> &'static Queue {
626     // SAFETY: `system_wq` is a C global, always available.
627     unsafe { Queue::from_raw(bindings::system_wq) }
628 }
629 
630 /// Returns the system high-priority work queue (`system_highpri_wq`).
631 ///
632 /// It is similar to the one returned by [`system`] but for work items which require higher
633 /// scheduling priority.
634 pub fn system_highpri() -> &'static Queue {
635     // SAFETY: `system_highpri_wq` is a C global, always available.
636     unsafe { Queue::from_raw(bindings::system_highpri_wq) }
637 }
638 
639 /// Returns the system work queue for potentially long-running work items (`system_long_wq`).
640 ///
641 /// It is similar to the one returned by [`system`] but may host long running work items. Queue
642 /// flushing might take relatively long.
643 pub fn system_long() -> &'static Queue {
644     // SAFETY: `system_long_wq` is a C global, always available.
645     unsafe { Queue::from_raw(bindings::system_long_wq) }
646 }
647 
648 /// Returns the system unbound work queue (`system_unbound_wq`).
649 ///
650 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items
651 /// are executed immediately as long as `max_active` limit is not reached and resources are
652 /// available.
653 pub fn system_unbound() -> &'static Queue {
654     // SAFETY: `system_unbound_wq` is a C global, always available.
655     unsafe { Queue::from_raw(bindings::system_unbound_wq) }
656 }
657 
658 /// Returns the system freezable work queue (`system_freezable_wq`).
659 ///
660 /// It is equivalent to the one returned by [`system`] except that it's freezable.
661 ///
662 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
663 /// items on the workqueue are drained and no new work item starts execution until thawed.
664 pub fn system_freezable() -> &'static Queue {
665     // SAFETY: `system_freezable_wq` is a C global, always available.
666     unsafe { Queue::from_raw(bindings::system_freezable_wq) }
667 }
668 
669 /// Returns the system power-efficient work queue (`system_power_efficient_wq`).
670 ///
671 /// It is inclined towards saving power and is converted to "unbound" variants if the
672 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one
673 /// returned by [`system`].
674 pub fn system_power_efficient() -> &'static Queue {
675     // SAFETY: `system_power_efficient_wq` is a C global, always available.
676     unsafe { Queue::from_raw(bindings::system_power_efficient_wq) }
677 }
678 
679 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`).
680 ///
681 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable.
682 ///
683 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
684 /// items on the workqueue are drained and no new work item starts execution until thawed.
685 pub fn system_freezable_power_efficient() -> &'static Queue {
686     // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available.
687     unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) }
688 }
689