xref: /linux/rust/kernel/types.rs (revision d072acda4862f095ec9056979b654cc06a22cc68)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Kernel types.
4 
5 use crate::init::{self, PinInit};
6 use core::{
7     cell::UnsafeCell,
8     marker::{PhantomData, PhantomPinned},
9     mem::{ManuallyDrop, MaybeUninit},
10     ops::{Deref, DerefMut},
11     ptr::NonNull,
12 };
13 
14 /// Used to transfer ownership to and from foreign (non-Rust) languages.
15 ///
16 /// Ownership is transferred from Rust to a foreign language by calling [`Self::into_foreign`] and
17 /// later may be transferred back to Rust by calling [`Self::from_foreign`].
18 ///
19 /// This trait is meant to be used in cases when Rust objects are stored in C objects and
20 /// eventually "freed" back to Rust.
21 pub trait ForeignOwnable: Sized {
22     /// Type of values borrowed between calls to [`ForeignOwnable::into_foreign`] and
23     /// [`ForeignOwnable::from_foreign`].
24     type Borrowed<'a>;
25 
26     /// Converts a Rust-owned object to a foreign-owned one.
27     ///
28     /// The foreign representation is a pointer to void. There are no guarantees for this pointer.
29     /// For example, it might be invalid, dangling or pointing to uninitialized memory. Using it in
30     /// any way except for [`ForeignOwnable::from_foreign`], [`ForeignOwnable::borrow`],
31     /// [`ForeignOwnable::try_from_foreign`] can result in undefined behavior.
32     fn into_foreign(self) -> *const crate::ffi::c_void;
33 
34     /// Borrows a foreign-owned object.
35     ///
36     /// # Safety
37     ///
38     /// `ptr` must have been returned by a previous call to [`ForeignOwnable::into_foreign`] for
39     /// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet.
40     unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> Self::Borrowed<'a>;
41 
42     /// Converts a foreign-owned object back to a Rust-owned one.
43     ///
44     /// # Safety
45     ///
46     /// `ptr` must have been returned by a previous call to [`ForeignOwnable::into_foreign`] for
47     /// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet.
48     /// Additionally, all instances (if any) of values returned by [`ForeignOwnable::borrow`] for
49     /// this object must have been dropped.
50     unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self;
51 
52     /// Tries to convert a foreign-owned object back to a Rust-owned one.
53     ///
54     /// A convenience wrapper over [`ForeignOwnable::from_foreign`] that returns [`None`] if `ptr`
55     /// is null.
56     ///
57     /// # Safety
58     ///
59     /// `ptr` must either be null or satisfy the safety requirements for
60     /// [`ForeignOwnable::from_foreign`].
61     unsafe fn try_from_foreign(ptr: *const crate::ffi::c_void) -> Option<Self> {
62         if ptr.is_null() {
63             None
64         } else {
65             // SAFETY: Since `ptr` is not null here, then `ptr` satisfies the safety requirements
66             // of `from_foreign` given the safety requirements of this function.
67             unsafe { Some(Self::from_foreign(ptr)) }
68         }
69     }
70 }
71 
72 impl ForeignOwnable for () {
73     type Borrowed<'a> = ();
74 
75     fn into_foreign(self) -> *const crate::ffi::c_void {
76         core::ptr::NonNull::dangling().as_ptr()
77     }
78 
79     unsafe fn borrow<'a>(_: *const crate::ffi::c_void) -> Self::Borrowed<'a> {}
80 
81     unsafe fn from_foreign(_: *const crate::ffi::c_void) -> Self {}
82 }
83 
84 /// Runs a cleanup function/closure when dropped.
85 ///
86 /// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running.
87 ///
88 /// # Examples
89 ///
90 /// In the example below, we have multiple exit paths and we want to log regardless of which one is
91 /// taken:
92 ///
93 /// ```
94 /// # use kernel::types::ScopeGuard;
95 /// fn example1(arg: bool) {
96 ///     let _log = ScopeGuard::new(|| pr_info!("example1 completed\n"));
97 ///
98 ///     if arg {
99 ///         return;
100 ///     }
101 ///
102 ///     pr_info!("Do something...\n");
103 /// }
104 ///
105 /// # example1(false);
106 /// # example1(true);
107 /// ```
108 ///
109 /// In the example below, we want to log the same message on all early exits but a different one on
110 /// the main exit path:
111 ///
112 /// ```
113 /// # use kernel::types::ScopeGuard;
114 /// fn example2(arg: bool) {
115 ///     let log = ScopeGuard::new(|| pr_info!("example2 returned early\n"));
116 ///
117 ///     if arg {
118 ///         return;
119 ///     }
120 ///
121 ///     // (Other early returns...)
122 ///
123 ///     log.dismiss();
124 ///     pr_info!("example2 no early return\n");
125 /// }
126 ///
127 /// # example2(false);
128 /// # example2(true);
129 /// ```
130 ///
131 /// In the example below, we need a mutable object (the vector) to be accessible within the log
132 /// function, so we wrap it in the [`ScopeGuard`]:
133 ///
134 /// ```
135 /// # use kernel::types::ScopeGuard;
136 /// fn example3(arg: bool) -> Result {
137 ///     let mut vec =
138 ///         ScopeGuard::new_with_data(KVec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
139 ///
140 ///     vec.push(10u8, GFP_KERNEL)?;
141 ///     if arg {
142 ///         return Ok(());
143 ///     }
144 ///     vec.push(20u8, GFP_KERNEL)?;
145 ///     Ok(())
146 /// }
147 ///
148 /// # assert_eq!(example3(false), Ok(()));
149 /// # assert_eq!(example3(true), Ok(()));
150 /// ```
151 ///
152 /// # Invariants
153 ///
154 /// The value stored in the struct is nearly always `Some(_)`, except between
155 /// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value
156 /// will have been returned to the caller. Since  [`ScopeGuard::dismiss`] consumes the guard,
157 /// callers won't be able to use it anymore.
158 pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>);
159 
160 impl<T, F: FnOnce(T)> ScopeGuard<T, F> {
161     /// Creates a new guarded object wrapping the given data and with the given cleanup function.
162     pub fn new_with_data(data: T, cleanup_func: F) -> Self {
163         // INVARIANT: The struct is being initialised with `Some(_)`.
164         Self(Some((data, cleanup_func)))
165     }
166 
167     /// Prevents the cleanup function from running and returns the guarded data.
168     pub fn dismiss(mut self) -> T {
169         // INVARIANT: This is the exception case in the invariant; it is not visible to callers
170         // because this function consumes `self`.
171         self.0.take().unwrap().0
172     }
173 }
174 
175 impl ScopeGuard<(), fn(())> {
176     /// Creates a new guarded object with the given cleanup function.
177     pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> {
178         ScopeGuard::new_with_data((), move |()| cleanup())
179     }
180 }
181 
182 impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> {
183     type Target = T;
184 
185     fn deref(&self) -> &T {
186         // The type invariants guarantee that `unwrap` will succeed.
187         &self.0.as_ref().unwrap().0
188     }
189 }
190 
191 impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> {
192     fn deref_mut(&mut self) -> &mut T {
193         // The type invariants guarantee that `unwrap` will succeed.
194         &mut self.0.as_mut().unwrap().0
195     }
196 }
197 
198 impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> {
199     fn drop(&mut self) {
200         // Run the cleanup function if one is still present.
201         if let Some((data, cleanup)) = self.0.take() {
202             cleanup(data)
203         }
204     }
205 }
206 
207 /// Stores an opaque value.
208 ///
209 /// `Opaque<T>` is meant to be used with FFI objects that are never interpreted by Rust code.
210 ///
211 /// It is used to wrap structs from the C side, like for example `Opaque<bindings::mutex>`.
212 /// It gets rid of all the usual assumptions that Rust has for a value:
213 ///
214 /// * The value is allowed to be uninitialized (for example have invalid bit patterns: `3` for a
215 ///   [`bool`]).
216 /// * The value is allowed to be mutated, when a `&Opaque<T>` exists on the Rust side.
217 /// * No uniqueness for mutable references: it is fine to have multiple `&mut Opaque<T>` point to
218 ///   the same value.
219 /// * The value is not allowed to be shared with other threads (i.e. it is `!Sync`).
220 ///
221 /// This has to be used for all values that the C side has access to, because it can't be ensured
222 /// that the C side is adhering to the usual constraints that Rust needs.
223 ///
224 /// Using `Opaque<T>` allows to continue to use references on the Rust side even for values shared
225 /// with C.
226 ///
227 /// # Examples
228 ///
229 /// ```
230 /// # #![expect(unreachable_pub, clippy::disallowed_names)]
231 /// use kernel::types::Opaque;
232 /// # // Emulate a C struct binding which is from C, maybe uninitialized or not, only the C side
233 /// # // knows.
234 /// # mod bindings {
235 /// #     pub struct Foo {
236 /// #         pub val: u8,
237 /// #     }
238 /// # }
239 ///
240 /// // `foo.val` is assumed to be handled on the C side, so we use `Opaque` to wrap it.
241 /// pub struct Foo {
242 ///     foo: Opaque<bindings::Foo>,
243 /// }
244 ///
245 /// impl Foo {
246 ///     pub fn get_val(&self) -> u8 {
247 ///         let ptr = Opaque::get(&self.foo);
248 ///
249 ///         // SAFETY: `Self` is valid from C side.
250 ///         unsafe { (*ptr).val }
251 ///     }
252 /// }
253 ///
254 /// // Create an instance of `Foo` with the `Opaque` wrapper.
255 /// let foo = Foo {
256 ///     foo: Opaque::new(bindings::Foo { val: 0xdb }),
257 /// };
258 ///
259 /// assert_eq!(foo.get_val(), 0xdb);
260 /// ```
261 #[repr(transparent)]
262 pub struct Opaque<T> {
263     value: UnsafeCell<MaybeUninit<T>>,
264     _pin: PhantomPinned,
265 }
266 
267 impl<T> Opaque<T> {
268     /// Creates a new opaque value.
269     pub const fn new(value: T) -> Self {
270         Self {
271             value: UnsafeCell::new(MaybeUninit::new(value)),
272             _pin: PhantomPinned,
273         }
274     }
275 
276     /// Creates an uninitialised value.
277     pub const fn uninit() -> Self {
278         Self {
279             value: UnsafeCell::new(MaybeUninit::uninit()),
280             _pin: PhantomPinned,
281         }
282     }
283 
284     /// Creates a pin-initializer from the given initializer closure.
285     ///
286     /// The returned initializer calls the given closure with the pointer to the inner `T` of this
287     /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it.
288     ///
289     /// This function is safe, because the `T` inside of an `Opaque` is allowed to be
290     /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs
291     /// to verify at that point that the inner value is valid.
292     pub fn ffi_init(init_func: impl FnOnce(*mut T)) -> impl PinInit<Self> {
293         // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully
294         // initialize the `T`.
295         unsafe {
296             init::pin_init_from_closure::<_, ::core::convert::Infallible>(move |slot| {
297                 init_func(Self::raw_get(slot));
298                 Ok(())
299             })
300         }
301     }
302 
303     /// Returns a raw pointer to the opaque data.
304     pub const fn get(&self) -> *mut T {
305         UnsafeCell::get(&self.value).cast::<T>()
306     }
307 
308     /// Gets the value behind `this`.
309     ///
310     /// This function is useful to get access to the value without creating intermediate
311     /// references.
312     pub const fn raw_get(this: *const Self) -> *mut T {
313         UnsafeCell::raw_get(this.cast::<UnsafeCell<MaybeUninit<T>>>()).cast::<T>()
314     }
315 }
316 
317 /// Types that are _always_ reference counted.
318 ///
319 /// It allows such types to define their own custom ref increment and decrement functions.
320 /// Additionally, it allows users to convert from a shared reference `&T` to an owned reference
321 /// [`ARef<T>`].
322 ///
323 /// This is usually implemented by wrappers to existing structures on the C side of the code. For
324 /// Rust code, the recommendation is to use [`Arc`](crate::sync::Arc) to create reference-counted
325 /// instances of a type.
326 ///
327 /// # Safety
328 ///
329 /// Implementers must ensure that increments to the reference count keep the object alive in memory
330 /// at least until matching decrements are performed.
331 ///
332 /// Implementers must also ensure that all instances are reference-counted. (Otherwise they
333 /// won't be able to honour the requirement that [`AlwaysRefCounted::inc_ref`] keep the object
334 /// alive.)
335 pub unsafe trait AlwaysRefCounted {
336     /// Increments the reference count on the object.
337     fn inc_ref(&self);
338 
339     /// Decrements the reference count on the object.
340     ///
341     /// Frees the object when the count reaches zero.
342     ///
343     /// # Safety
344     ///
345     /// Callers must ensure that there was a previous matching increment to the reference count,
346     /// and that the object is no longer used after its reference count is decremented (as it may
347     /// result in the object being freed), unless the caller owns another increment on the refcount
348     /// (e.g., it calls [`AlwaysRefCounted::inc_ref`] twice, then calls
349     /// [`AlwaysRefCounted::dec_ref`] once).
350     unsafe fn dec_ref(obj: NonNull<Self>);
351 }
352 
353 /// An owned reference to an always-reference-counted object.
354 ///
355 /// The object's reference count is automatically decremented when an instance of [`ARef`] is
356 /// dropped. It is also automatically incremented when a new instance is created via
357 /// [`ARef::clone`].
358 ///
359 /// # Invariants
360 ///
361 /// The pointer stored in `ptr` is non-null and valid for the lifetime of the [`ARef`] instance. In
362 /// particular, the [`ARef`] instance owns an increment on the underlying object's reference count.
363 pub struct ARef<T: AlwaysRefCounted> {
364     ptr: NonNull<T>,
365     _p: PhantomData<T>,
366 }
367 
368 // SAFETY: It is safe to send `ARef<T>` to another thread when the underlying `T` is `Sync` because
369 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
370 // `T` to be `Send` because any thread that has an `ARef<T>` may ultimately access `T` using a
371 // mutable reference, for example, when the reference count reaches zero and `T` is dropped.
372 unsafe impl<T: AlwaysRefCounted + Sync + Send> Send for ARef<T> {}
373 
374 // SAFETY: It is safe to send `&ARef<T>` to another thread when the underlying `T` is `Sync`
375 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
376 // it needs `T` to be `Send` because any thread that has a `&ARef<T>` may clone it and get an
377 // `ARef<T>` on that thread, so the thread may ultimately access `T` using a mutable reference, for
378 // example, when the reference count reaches zero and `T` is dropped.
379 unsafe impl<T: AlwaysRefCounted + Sync + Send> Sync for ARef<T> {}
380 
381 impl<T: AlwaysRefCounted> ARef<T> {
382     /// Creates a new instance of [`ARef`].
383     ///
384     /// It takes over an increment of the reference count on the underlying object.
385     ///
386     /// # Safety
387     ///
388     /// Callers must ensure that the reference count was incremented at least once, and that they
389     /// are properly relinquishing one increment. That is, if there is only one increment, callers
390     /// must not use the underlying object anymore -- it is only safe to do so via the newly
391     /// created [`ARef`].
392     pub unsafe fn from_raw(ptr: NonNull<T>) -> Self {
393         // INVARIANT: The safety requirements guarantee that the new instance now owns the
394         // increment on the refcount.
395         Self {
396             ptr,
397             _p: PhantomData,
398         }
399     }
400 
401     /// Consumes the `ARef`, returning a raw pointer.
402     ///
403     /// This function does not change the refcount. After calling this function, the caller is
404     /// responsible for the refcount previously managed by the `ARef`.
405     ///
406     /// # Examples
407     ///
408     /// ```
409     /// use core::ptr::NonNull;
410     /// use kernel::types::{ARef, AlwaysRefCounted};
411     ///
412     /// struct Empty {}
413     ///
414     /// # // SAFETY: TODO.
415     /// unsafe impl AlwaysRefCounted for Empty {
416     ///     fn inc_ref(&self) {}
417     ///     unsafe fn dec_ref(_obj: NonNull<Self>) {}
418     /// }
419     ///
420     /// let mut data = Empty {};
421     /// let ptr = NonNull::<Empty>::new(&mut data as *mut _).unwrap();
422     /// # // SAFETY: TODO.
423     /// let data_ref: ARef<Empty> = unsafe { ARef::from_raw(ptr) };
424     /// let raw_ptr: NonNull<Empty> = ARef::into_raw(data_ref);
425     ///
426     /// assert_eq!(ptr, raw_ptr);
427     /// ```
428     pub fn into_raw(me: Self) -> NonNull<T> {
429         ManuallyDrop::new(me).ptr
430     }
431 }
432 
433 impl<T: AlwaysRefCounted> Clone for ARef<T> {
434     fn clone(&self) -> Self {
435         self.inc_ref();
436         // SAFETY: We just incremented the refcount above.
437         unsafe { Self::from_raw(self.ptr) }
438     }
439 }
440 
441 impl<T: AlwaysRefCounted> Deref for ARef<T> {
442     type Target = T;
443 
444     fn deref(&self) -> &Self::Target {
445         // SAFETY: The type invariants guarantee that the object is valid.
446         unsafe { self.ptr.as_ref() }
447     }
448 }
449 
450 impl<T: AlwaysRefCounted> From<&T> for ARef<T> {
451     fn from(b: &T) -> Self {
452         b.inc_ref();
453         // SAFETY: We just incremented the refcount above.
454         unsafe { Self::from_raw(NonNull::from(b)) }
455     }
456 }
457 
458 impl<T: AlwaysRefCounted> Drop for ARef<T> {
459     fn drop(&mut self) {
460         // SAFETY: The type invariants guarantee that the `ARef` owns the reference we're about to
461         // decrement.
462         unsafe { T::dec_ref(self.ptr) };
463     }
464 }
465 
466 /// A sum type that always holds either a value of type `L` or `R`.
467 ///
468 /// # Examples
469 ///
470 /// ```
471 /// use kernel::types::Either;
472 ///
473 /// let left_value: Either<i32, &str> = Either::Left(7);
474 /// let right_value: Either<i32, &str> = Either::Right("right value");
475 /// ```
476 pub enum Either<L, R> {
477     /// Constructs an instance of [`Either`] containing a value of type `L`.
478     Left(L),
479 
480     /// Constructs an instance of [`Either`] containing a value of type `R`.
481     Right(R),
482 }
483