xref: /linux/rust/kernel/types.rs (revision 7b1166dee847d5018c1f3cc781218e806078f752)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Kernel types.
4 
5 use core::{
6     cell::UnsafeCell,
7     marker::{PhantomData, PhantomPinned},
8     mem::{ManuallyDrop, MaybeUninit},
9     ops::{Deref, DerefMut},
10     ptr::NonNull,
11 };
12 use pin_init::{PinInit, Zeroable};
13 
14 /// Used to transfer ownership to and from foreign (non-Rust) languages.
15 ///
16 /// Ownership is transferred from Rust to a foreign language by calling [`Self::into_foreign`] and
17 /// later may be transferred back to Rust by calling [`Self::from_foreign`].
18 ///
19 /// This trait is meant to be used in cases when Rust objects are stored in C objects and
20 /// eventually "freed" back to Rust.
21 pub trait ForeignOwnable: Sized {
22     /// Type used to immutably borrow a value that is currently foreign-owned.
23     type Borrowed<'a>;
24 
25     /// Type used to mutably borrow a value that is currently foreign-owned.
26     type BorrowedMut<'a>;
27 
28     /// Converts a Rust-owned object to a foreign-owned one.
29     ///
30     /// The foreign representation is a pointer to void. There are no guarantees for this pointer.
31     /// For example, it might be invalid, dangling or pointing to uninitialized memory. Using it in
32     /// any way except for [`from_foreign`], [`try_from_foreign`], [`borrow`], or [`borrow_mut`] can
33     /// result in undefined behavior.
34     ///
35     /// [`from_foreign`]: Self::from_foreign
36     /// [`try_from_foreign`]: Self::try_from_foreign
37     /// [`borrow`]: Self::borrow
38     /// [`borrow_mut`]: Self::borrow_mut
39     fn into_foreign(self) -> *mut crate::ffi::c_void;
40 
41     /// Converts a foreign-owned object back to a Rust-owned one.
42     ///
43     /// # Safety
44     ///
45     /// The provided pointer must have been returned by a previous call to [`into_foreign`], and it
46     /// must not be passed to `from_foreign` more than once.
47     ///
48     /// [`into_foreign`]: Self::into_foreign
49     unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self;
50 
51     /// Tries to convert a foreign-owned object back to a Rust-owned one.
52     ///
53     /// A convenience wrapper over [`ForeignOwnable::from_foreign`] that returns [`None`] if `ptr`
54     /// is null.
55     ///
56     /// # Safety
57     ///
58     /// `ptr` must either be null or satisfy the safety requirements for [`from_foreign`].
59     ///
60     /// [`from_foreign`]: Self::from_foreign
61     unsafe fn try_from_foreign(ptr: *mut crate::ffi::c_void) -> Option<Self> {
62         if ptr.is_null() {
63             None
64         } else {
65             // SAFETY: Since `ptr` is not null here, then `ptr` satisfies the safety requirements
66             // of `from_foreign` given the safety requirements of this function.
67             unsafe { Some(Self::from_foreign(ptr)) }
68         }
69     }
70 
71     /// Borrows a foreign-owned object immutably.
72     ///
73     /// This method provides a way to access a foreign-owned value from Rust immutably. It provides
74     /// you with exactly the same abilities as an `&Self` when the value is Rust-owned.
75     ///
76     /// # Safety
77     ///
78     /// The provided pointer must have been returned by a previous call to [`into_foreign`], and if
79     /// the pointer is ever passed to [`from_foreign`], then that call must happen after the end of
80     /// the lifetime `'a`.
81     ///
82     /// [`into_foreign`]: Self::into_foreign
83     /// [`from_foreign`]: Self::from_foreign
84     unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> Self::Borrowed<'a>;
85 
86     /// Borrows a foreign-owned object mutably.
87     ///
88     /// This method provides a way to access a foreign-owned value from Rust mutably. It provides
89     /// you with exactly the same abilities as an `&mut Self` when the value is Rust-owned, except
90     /// that the address of the object must not be changed.
91     ///
92     /// Note that for types like [`Arc`], an `&mut Arc<T>` only gives you immutable access to the
93     /// inner value, so this method also only provides immutable access in that case.
94     ///
95     /// In the case of `Box<T>`, this method gives you the ability to modify the inner `T`, but it
96     /// does not let you change the box itself. That is, you cannot change which allocation the box
97     /// points at.
98     ///
99     /// # Safety
100     ///
101     /// The provided pointer must have been returned by a previous call to [`into_foreign`], and if
102     /// the pointer is ever passed to [`from_foreign`], then that call must happen after the end of
103     /// the lifetime `'a`.
104     ///
105     /// The lifetime `'a` must not overlap with the lifetime of any other call to [`borrow`] or
106     /// `borrow_mut` on the same object.
107     ///
108     /// [`into_foreign`]: Self::into_foreign
109     /// [`from_foreign`]: Self::from_foreign
110     /// [`borrow`]: Self::borrow
111     /// [`Arc`]: crate::sync::Arc
112     unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> Self::BorrowedMut<'a>;
113 }
114 
115 impl ForeignOwnable for () {
116     type Borrowed<'a> = ();
117     type BorrowedMut<'a> = ();
118 
119     fn into_foreign(self) -> *mut crate::ffi::c_void {
120         core::ptr::NonNull::dangling().as_ptr()
121     }
122 
123     unsafe fn from_foreign(_: *mut crate::ffi::c_void) -> Self {}
124 
125     unsafe fn borrow<'a>(_: *mut crate::ffi::c_void) -> Self::Borrowed<'a> {}
126     unsafe fn borrow_mut<'a>(_: *mut crate::ffi::c_void) -> Self::BorrowedMut<'a> {}
127 }
128 
129 /// Runs a cleanup function/closure when dropped.
130 ///
131 /// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running.
132 ///
133 /// # Examples
134 ///
135 /// In the example below, we have multiple exit paths and we want to log regardless of which one is
136 /// taken:
137 ///
138 /// ```
139 /// # use kernel::types::ScopeGuard;
140 /// fn example1(arg: bool) {
141 ///     let _log = ScopeGuard::new(|| pr_info!("example1 completed\n"));
142 ///
143 ///     if arg {
144 ///         return;
145 ///     }
146 ///
147 ///     pr_info!("Do something...\n");
148 /// }
149 ///
150 /// # example1(false);
151 /// # example1(true);
152 /// ```
153 ///
154 /// In the example below, we want to log the same message on all early exits but a different one on
155 /// the main exit path:
156 ///
157 /// ```
158 /// # use kernel::types::ScopeGuard;
159 /// fn example2(arg: bool) {
160 ///     let log = ScopeGuard::new(|| pr_info!("example2 returned early\n"));
161 ///
162 ///     if arg {
163 ///         return;
164 ///     }
165 ///
166 ///     // (Other early returns...)
167 ///
168 ///     log.dismiss();
169 ///     pr_info!("example2 no early return\n");
170 /// }
171 ///
172 /// # example2(false);
173 /// # example2(true);
174 /// ```
175 ///
176 /// In the example below, we need a mutable object (the vector) to be accessible within the log
177 /// function, so we wrap it in the [`ScopeGuard`]:
178 ///
179 /// ```
180 /// # use kernel::types::ScopeGuard;
181 /// fn example3(arg: bool) -> Result {
182 ///     let mut vec =
183 ///         ScopeGuard::new_with_data(KVec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
184 ///
185 ///     vec.push(10u8, GFP_KERNEL)?;
186 ///     if arg {
187 ///         return Ok(());
188 ///     }
189 ///     vec.push(20u8, GFP_KERNEL)?;
190 ///     Ok(())
191 /// }
192 ///
193 /// # assert_eq!(example3(false), Ok(()));
194 /// # assert_eq!(example3(true), Ok(()));
195 /// ```
196 ///
197 /// # Invariants
198 ///
199 /// The value stored in the struct is nearly always `Some(_)`, except between
200 /// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value
201 /// will have been returned to the caller. Since  [`ScopeGuard::dismiss`] consumes the guard,
202 /// callers won't be able to use it anymore.
203 pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>);
204 
205 impl<T, F: FnOnce(T)> ScopeGuard<T, F> {
206     /// Creates a new guarded object wrapping the given data and with the given cleanup function.
207     pub fn new_with_data(data: T, cleanup_func: F) -> Self {
208         // INVARIANT: The struct is being initialised with `Some(_)`.
209         Self(Some((data, cleanup_func)))
210     }
211 
212     /// Prevents the cleanup function from running and returns the guarded data.
213     pub fn dismiss(mut self) -> T {
214         // INVARIANT: This is the exception case in the invariant; it is not visible to callers
215         // because this function consumes `self`.
216         self.0.take().unwrap().0
217     }
218 }
219 
220 impl ScopeGuard<(), fn(())> {
221     /// Creates a new guarded object with the given cleanup function.
222     pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> {
223         ScopeGuard::new_with_data((), move |()| cleanup())
224     }
225 }
226 
227 impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> {
228     type Target = T;
229 
230     fn deref(&self) -> &T {
231         // The type invariants guarantee that `unwrap` will succeed.
232         &self.0.as_ref().unwrap().0
233     }
234 }
235 
236 impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> {
237     fn deref_mut(&mut self) -> &mut T {
238         // The type invariants guarantee that `unwrap` will succeed.
239         &mut self.0.as_mut().unwrap().0
240     }
241 }
242 
243 impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> {
244     fn drop(&mut self) {
245         // Run the cleanup function if one is still present.
246         if let Some((data, cleanup)) = self.0.take() {
247             cleanup(data)
248         }
249     }
250 }
251 
252 /// Stores an opaque value.
253 ///
254 /// [`Opaque<T>`] is meant to be used with FFI objects that are never interpreted by Rust code.
255 ///
256 /// It is used to wrap structs from the C side, like for example `Opaque<bindings::mutex>`.
257 /// It gets rid of all the usual assumptions that Rust has for a value:
258 ///
259 /// * The value is allowed to be uninitialized (for example have invalid bit patterns: `3` for a
260 ///   [`bool`]).
261 /// * The value is allowed to be mutated, when a `&Opaque<T>` exists on the Rust side.
262 /// * No uniqueness for mutable references: it is fine to have multiple `&mut Opaque<T>` point to
263 ///   the same value.
264 /// * The value is not allowed to be shared with other threads (i.e. it is `!Sync`).
265 ///
266 /// This has to be used for all values that the C side has access to, because it can't be ensured
267 /// that the C side is adhering to the usual constraints that Rust needs.
268 ///
269 /// Using [`Opaque<T>`] allows to continue to use references on the Rust side even for values shared
270 /// with C.
271 ///
272 /// # Examples
273 ///
274 /// ```
275 /// # #![expect(unreachable_pub, clippy::disallowed_names)]
276 /// use kernel::types::Opaque;
277 /// # // Emulate a C struct binding which is from C, maybe uninitialized or not, only the C side
278 /// # // knows.
279 /// # mod bindings {
280 /// #     pub struct Foo {
281 /// #         pub val: u8,
282 /// #     }
283 /// # }
284 ///
285 /// // `foo.val` is assumed to be handled on the C side, so we use `Opaque` to wrap it.
286 /// pub struct Foo {
287 ///     foo: Opaque<bindings::Foo>,
288 /// }
289 ///
290 /// impl Foo {
291 ///     pub fn get_val(&self) -> u8 {
292 ///         let ptr = Opaque::get(&self.foo);
293 ///
294 ///         // SAFETY: `Self` is valid from C side.
295 ///         unsafe { (*ptr).val }
296 ///     }
297 /// }
298 ///
299 /// // Create an instance of `Foo` with the `Opaque` wrapper.
300 /// let foo = Foo {
301 ///     foo: Opaque::new(bindings::Foo { val: 0xdb }),
302 /// };
303 ///
304 /// assert_eq!(foo.get_val(), 0xdb);
305 /// ```
306 #[repr(transparent)]
307 pub struct Opaque<T> {
308     value: UnsafeCell<MaybeUninit<T>>,
309     _pin: PhantomPinned,
310 }
311 
312 // SAFETY: `Opaque<T>` allows the inner value to be any bit pattern, including all zeros.
313 unsafe impl<T> Zeroable for Opaque<T> {}
314 
315 impl<T> Opaque<T> {
316     /// Creates a new opaque value.
317     pub const fn new(value: T) -> Self {
318         Self {
319             value: UnsafeCell::new(MaybeUninit::new(value)),
320             _pin: PhantomPinned,
321         }
322     }
323 
324     /// Creates an uninitialised value.
325     pub const fn uninit() -> Self {
326         Self {
327             value: UnsafeCell::new(MaybeUninit::uninit()),
328             _pin: PhantomPinned,
329         }
330     }
331 
332     /// Creates a new zeroed opaque value.
333     pub const fn zeroed() -> Self {
334         Self {
335             value: UnsafeCell::new(MaybeUninit::zeroed()),
336             _pin: PhantomPinned,
337         }
338     }
339 
340     /// Create an opaque pin-initializer from the given pin-initializer.
341     pub fn pin_init(slot: impl PinInit<T>) -> impl PinInit<Self> {
342         Self::ffi_init(|ptr: *mut T| {
343             // SAFETY:
344             //   - `ptr` is a valid pointer to uninitialized memory,
345             //   - `slot` is not accessed on error; the call is infallible,
346             //   - `slot` is pinned in memory.
347             let _ = unsafe { PinInit::<T>::__pinned_init(slot, ptr) };
348         })
349     }
350 
351     /// Creates a pin-initializer from the given initializer closure.
352     ///
353     /// The returned initializer calls the given closure with the pointer to the inner `T` of this
354     /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it.
355     ///
356     /// This function is safe, because the `T` inside of an `Opaque` is allowed to be
357     /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs
358     /// to verify at that point that the inner value is valid.
359     pub fn ffi_init(init_func: impl FnOnce(*mut T)) -> impl PinInit<Self> {
360         // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully
361         // initialize the `T`.
362         unsafe {
363             pin_init::pin_init_from_closure::<_, ::core::convert::Infallible>(move |slot| {
364                 init_func(Self::raw_get(slot));
365                 Ok(())
366             })
367         }
368     }
369 
370     /// Creates a fallible pin-initializer from the given initializer closure.
371     ///
372     /// The returned initializer calls the given closure with the pointer to the inner `T` of this
373     /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it.
374     ///
375     /// This function is safe, because the `T` inside of an `Opaque` is allowed to be
376     /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs
377     /// to verify at that point that the inner value is valid.
378     pub fn try_ffi_init<E>(
379         init_func: impl FnOnce(*mut T) -> Result<(), E>,
380     ) -> impl PinInit<Self, E> {
381         // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully
382         // initialize the `T`.
383         unsafe {
384             pin_init::pin_init_from_closure::<_, E>(move |slot| init_func(Self::raw_get(slot)))
385         }
386     }
387 
388     /// Returns a raw pointer to the opaque data.
389     pub const fn get(&self) -> *mut T {
390         UnsafeCell::get(&self.value).cast::<T>()
391     }
392 
393     /// Gets the value behind `this`.
394     ///
395     /// This function is useful to get access to the value without creating intermediate
396     /// references.
397     pub const fn raw_get(this: *const Self) -> *mut T {
398         UnsafeCell::raw_get(this.cast::<UnsafeCell<MaybeUninit<T>>>()).cast::<T>()
399     }
400 }
401 
402 /// Types that are _always_ reference counted.
403 ///
404 /// It allows such types to define their own custom ref increment and decrement functions.
405 /// Additionally, it allows users to convert from a shared reference `&T` to an owned reference
406 /// [`ARef<T>`].
407 ///
408 /// This is usually implemented by wrappers to existing structures on the C side of the code. For
409 /// Rust code, the recommendation is to use [`Arc`](crate::sync::Arc) to create reference-counted
410 /// instances of a type.
411 ///
412 /// # Safety
413 ///
414 /// Implementers must ensure that increments to the reference count keep the object alive in memory
415 /// at least until matching decrements are performed.
416 ///
417 /// Implementers must also ensure that all instances are reference-counted. (Otherwise they
418 /// won't be able to honour the requirement that [`AlwaysRefCounted::inc_ref`] keep the object
419 /// alive.)
420 pub unsafe trait AlwaysRefCounted {
421     /// Increments the reference count on the object.
422     fn inc_ref(&self);
423 
424     /// Decrements the reference count on the object.
425     ///
426     /// Frees the object when the count reaches zero.
427     ///
428     /// # Safety
429     ///
430     /// Callers must ensure that there was a previous matching increment to the reference count,
431     /// and that the object is no longer used after its reference count is decremented (as it may
432     /// result in the object being freed), unless the caller owns another increment on the refcount
433     /// (e.g., it calls [`AlwaysRefCounted::inc_ref`] twice, then calls
434     /// [`AlwaysRefCounted::dec_ref`] once).
435     unsafe fn dec_ref(obj: NonNull<Self>);
436 }
437 
438 /// An owned reference to an always-reference-counted object.
439 ///
440 /// The object's reference count is automatically decremented when an instance of [`ARef`] is
441 /// dropped. It is also automatically incremented when a new instance is created via
442 /// [`ARef::clone`].
443 ///
444 /// # Invariants
445 ///
446 /// The pointer stored in `ptr` is non-null and valid for the lifetime of the [`ARef`] instance. In
447 /// particular, the [`ARef`] instance owns an increment on the underlying object's reference count.
448 pub struct ARef<T: AlwaysRefCounted> {
449     ptr: NonNull<T>,
450     _p: PhantomData<T>,
451 }
452 
453 // SAFETY: It is safe to send `ARef<T>` to another thread when the underlying `T` is `Sync` because
454 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
455 // `T` to be `Send` because any thread that has an `ARef<T>` may ultimately access `T` using a
456 // mutable reference, for example, when the reference count reaches zero and `T` is dropped.
457 unsafe impl<T: AlwaysRefCounted + Sync + Send> Send for ARef<T> {}
458 
459 // SAFETY: It is safe to send `&ARef<T>` to another thread when the underlying `T` is `Sync`
460 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
461 // it needs `T` to be `Send` because any thread that has a `&ARef<T>` may clone it and get an
462 // `ARef<T>` on that thread, so the thread may ultimately access `T` using a mutable reference, for
463 // example, when the reference count reaches zero and `T` is dropped.
464 unsafe impl<T: AlwaysRefCounted + Sync + Send> Sync for ARef<T> {}
465 
466 impl<T: AlwaysRefCounted> ARef<T> {
467     /// Creates a new instance of [`ARef`].
468     ///
469     /// It takes over an increment of the reference count on the underlying object.
470     ///
471     /// # Safety
472     ///
473     /// Callers must ensure that the reference count was incremented at least once, and that they
474     /// are properly relinquishing one increment. That is, if there is only one increment, callers
475     /// must not use the underlying object anymore -- it is only safe to do so via the newly
476     /// created [`ARef`].
477     pub unsafe fn from_raw(ptr: NonNull<T>) -> Self {
478         // INVARIANT: The safety requirements guarantee that the new instance now owns the
479         // increment on the refcount.
480         Self {
481             ptr,
482             _p: PhantomData,
483         }
484     }
485 
486     /// Consumes the `ARef`, returning a raw pointer.
487     ///
488     /// This function does not change the refcount. After calling this function, the caller is
489     /// responsible for the refcount previously managed by the `ARef`.
490     ///
491     /// # Examples
492     ///
493     /// ```
494     /// use core::ptr::NonNull;
495     /// use kernel::types::{ARef, AlwaysRefCounted};
496     ///
497     /// struct Empty {}
498     ///
499     /// # // SAFETY: TODO.
500     /// unsafe impl AlwaysRefCounted for Empty {
501     ///     fn inc_ref(&self) {}
502     ///     unsafe fn dec_ref(_obj: NonNull<Self>) {}
503     /// }
504     ///
505     /// let mut data = Empty {};
506     /// let ptr = NonNull::<Empty>::new(&mut data).unwrap();
507     /// # // SAFETY: TODO.
508     /// let data_ref: ARef<Empty> = unsafe { ARef::from_raw(ptr) };
509     /// let raw_ptr: NonNull<Empty> = ARef::into_raw(data_ref);
510     ///
511     /// assert_eq!(ptr, raw_ptr);
512     /// ```
513     pub fn into_raw(me: Self) -> NonNull<T> {
514         ManuallyDrop::new(me).ptr
515     }
516 }
517 
518 impl<T: AlwaysRefCounted> Clone for ARef<T> {
519     fn clone(&self) -> Self {
520         self.inc_ref();
521         // SAFETY: We just incremented the refcount above.
522         unsafe { Self::from_raw(self.ptr) }
523     }
524 }
525 
526 impl<T: AlwaysRefCounted> Deref for ARef<T> {
527     type Target = T;
528 
529     fn deref(&self) -> &Self::Target {
530         // SAFETY: The type invariants guarantee that the object is valid.
531         unsafe { self.ptr.as_ref() }
532     }
533 }
534 
535 impl<T: AlwaysRefCounted> From<&T> for ARef<T> {
536     fn from(b: &T) -> Self {
537         b.inc_ref();
538         // SAFETY: We just incremented the refcount above.
539         unsafe { Self::from_raw(NonNull::from(b)) }
540     }
541 }
542 
543 impl<T: AlwaysRefCounted> Drop for ARef<T> {
544     fn drop(&mut self) {
545         // SAFETY: The type invariants guarantee that the `ARef` owns the reference we're about to
546         // decrement.
547         unsafe { T::dec_ref(self.ptr) };
548     }
549 }
550 
551 /// A sum type that always holds either a value of type `L` or `R`.
552 ///
553 /// # Examples
554 ///
555 /// ```
556 /// use kernel::types::Either;
557 ///
558 /// let left_value: Either<i32, &str> = Either::Left(7);
559 /// let right_value: Either<i32, &str> = Either::Right("right value");
560 /// ```
561 pub enum Either<L, R> {
562     /// Constructs an instance of [`Either`] containing a value of type `L`.
563     Left(L),
564 
565     /// Constructs an instance of [`Either`] containing a value of type `R`.
566     Right(R),
567 }
568 
569 /// Zero-sized type to mark types not [`Send`].
570 ///
571 /// Add this type as a field to your struct if your type should not be sent to a different task.
572 /// Since [`Send`] is an auto trait, adding a single field that is `!Send` will ensure that the
573 /// whole type is `!Send`.
574 ///
575 /// If a type is `!Send` it is impossible to give control over an instance of the type to another
576 /// task. This is useful to include in types that store or reference task-local information. A file
577 /// descriptor is an example of such task-local information.
578 ///
579 /// This type also makes the type `!Sync`, which prevents immutable access to the value from
580 /// several threads in parallel.
581 pub type NotThreadSafe = PhantomData<*mut ()>;
582 
583 /// Used to construct instances of type [`NotThreadSafe`] similar to how `PhantomData` is
584 /// constructed.
585 ///
586 /// [`NotThreadSafe`]: type@NotThreadSafe
587 #[allow(non_upper_case_globals)]
588 pub const NotThreadSafe: NotThreadSafe = PhantomData;
589