xref: /linux/rust/kernel/types.rs (revision 12717ebeffcf3e34063dbc1e1b7f34924150c7c9)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Kernel types.
4 
5 use crate::ffi::c_void;
6 use core::{
7     cell::UnsafeCell,
8     marker::{PhantomData, PhantomPinned},
9     mem::{ManuallyDrop, MaybeUninit},
10     ops::{Deref, DerefMut},
11     ptr::NonNull,
12 };
13 use pin_init::{PinInit, Zeroable};
14 
15 /// Used to transfer ownership to and from foreign (non-Rust) languages.
16 ///
17 /// Ownership is transferred from Rust to a foreign language by calling [`Self::into_foreign`] and
18 /// later may be transferred back to Rust by calling [`Self::from_foreign`].
19 ///
20 /// This trait is meant to be used in cases when Rust objects are stored in C objects and
21 /// eventually "freed" back to Rust.
22 ///
23 /// # Safety
24 ///
25 /// - Implementations must satisfy the guarantees of [`Self::into_foreign`].
26 pub unsafe trait ForeignOwnable: Sized {
27     /// The alignment of pointers returned by `into_foreign`.
28     const FOREIGN_ALIGN: usize;
29 
30     /// Type used to immutably borrow a value that is currently foreign-owned.
31     type Borrowed<'a>;
32 
33     /// Type used to mutably borrow a value that is currently foreign-owned.
34     type BorrowedMut<'a>;
35 
36     /// Converts a Rust-owned object to a foreign-owned one.
37     ///
38     /// The foreign representation is a pointer to void. Aside from the guarantees listed below,
39     /// there are no other guarantees for this pointer. For example, it might be invalid, dangling
40     /// or pointing to uninitialized memory. Using it in any way except for [`from_foreign`],
41     /// [`try_from_foreign`], [`borrow`], or [`borrow_mut`] can result in undefined behavior.
42     ///
43     /// # Guarantees
44     ///
45     /// - Minimum alignment of returned pointer is [`Self::FOREIGN_ALIGN`].
46     ///
47     /// [`from_foreign`]: Self::from_foreign
48     /// [`try_from_foreign`]: Self::try_from_foreign
49     /// [`borrow`]: Self::borrow
50     /// [`borrow_mut`]: Self::borrow_mut
51     fn into_foreign(self) -> *mut c_void;
52 
53     /// Converts a foreign-owned object back to a Rust-owned one.
54     ///
55     /// # Safety
56     ///
57     /// The provided pointer must have been returned by a previous call to [`into_foreign`], and it
58     /// must not be passed to `from_foreign` more than once.
59     ///
60     /// [`into_foreign`]: Self::into_foreign
61     unsafe fn from_foreign(ptr: *mut c_void) -> Self;
62 
63     /// Tries to convert a foreign-owned object back to a Rust-owned one.
64     ///
65     /// A convenience wrapper over [`ForeignOwnable::from_foreign`] that returns [`None`] if `ptr`
66     /// is null.
67     ///
68     /// # Safety
69     ///
70     /// `ptr` must either be null or satisfy the safety requirements for [`from_foreign`].
71     ///
72     /// [`from_foreign`]: Self::from_foreign
73     unsafe fn try_from_foreign(ptr: *mut c_void) -> Option<Self> {
74         if ptr.is_null() {
75             None
76         } else {
77             // SAFETY: Since `ptr` is not null here, then `ptr` satisfies the safety requirements
78             // of `from_foreign` given the safety requirements of this function.
79             unsafe { Some(Self::from_foreign(ptr)) }
80         }
81     }
82 
83     /// Borrows a foreign-owned object immutably.
84     ///
85     /// This method provides a way to access a foreign-owned value from Rust immutably. It provides
86     /// you with exactly the same abilities as an `&Self` when the value is Rust-owned.
87     ///
88     /// # Safety
89     ///
90     /// The provided pointer must have been returned by a previous call to [`into_foreign`], and if
91     /// the pointer is ever passed to [`from_foreign`], then that call must happen after the end of
92     /// the lifetime `'a`.
93     ///
94     /// [`into_foreign`]: Self::into_foreign
95     /// [`from_foreign`]: Self::from_foreign
96     unsafe fn borrow<'a>(ptr: *mut c_void) -> Self::Borrowed<'a>;
97 
98     /// Borrows a foreign-owned object mutably.
99     ///
100     /// This method provides a way to access a foreign-owned value from Rust mutably. It provides
101     /// you with exactly the same abilities as an `&mut Self` when the value is Rust-owned, except
102     /// that the address of the object must not be changed.
103     ///
104     /// Note that for types like [`Arc`], an `&mut Arc<T>` only gives you immutable access to the
105     /// inner value, so this method also only provides immutable access in that case.
106     ///
107     /// In the case of `Box<T>`, this method gives you the ability to modify the inner `T`, but it
108     /// does not let you change the box itself. That is, you cannot change which allocation the box
109     /// points at.
110     ///
111     /// # Safety
112     ///
113     /// The provided pointer must have been returned by a previous call to [`into_foreign`], and if
114     /// the pointer is ever passed to [`from_foreign`], then that call must happen after the end of
115     /// the lifetime `'a`.
116     ///
117     /// The lifetime `'a` must not overlap with the lifetime of any other call to [`borrow`] or
118     /// `borrow_mut` on the same object.
119     ///
120     /// [`into_foreign`]: Self::into_foreign
121     /// [`from_foreign`]: Self::from_foreign
122     /// [`borrow`]: Self::borrow
123     /// [`Arc`]: crate::sync::Arc
124     unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> Self::BorrowedMut<'a>;
125 }
126 
127 // SAFETY: The pointer returned by `into_foreign` comes from a well aligned
128 // pointer to `()`.
129 unsafe impl ForeignOwnable for () {
130     const FOREIGN_ALIGN: usize = core::mem::align_of::<()>();
131     type Borrowed<'a> = ();
132     type BorrowedMut<'a> = ();
133 
134     fn into_foreign(self) -> *mut c_void {
135         core::ptr::NonNull::dangling().as_ptr()
136     }
137 
138     unsafe fn from_foreign(_: *mut c_void) -> Self {}
139 
140     unsafe fn borrow<'a>(_: *mut c_void) -> Self::Borrowed<'a> {}
141     unsafe fn borrow_mut<'a>(_: *mut c_void) -> Self::BorrowedMut<'a> {}
142 }
143 
144 /// Runs a cleanup function/closure when dropped.
145 ///
146 /// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running.
147 ///
148 /// # Examples
149 ///
150 /// In the example below, we have multiple exit paths and we want to log regardless of which one is
151 /// taken:
152 ///
153 /// ```
154 /// # use kernel::types::ScopeGuard;
155 /// fn example1(arg: bool) {
156 ///     let _log = ScopeGuard::new(|| pr_info!("example1 completed\n"));
157 ///
158 ///     if arg {
159 ///         return;
160 ///     }
161 ///
162 ///     pr_info!("Do something...\n");
163 /// }
164 ///
165 /// # example1(false);
166 /// # example1(true);
167 /// ```
168 ///
169 /// In the example below, we want to log the same message on all early exits but a different one on
170 /// the main exit path:
171 ///
172 /// ```
173 /// # use kernel::types::ScopeGuard;
174 /// fn example2(arg: bool) {
175 ///     let log = ScopeGuard::new(|| pr_info!("example2 returned early\n"));
176 ///
177 ///     if arg {
178 ///         return;
179 ///     }
180 ///
181 ///     // (Other early returns...)
182 ///
183 ///     log.dismiss();
184 ///     pr_info!("example2 no early return\n");
185 /// }
186 ///
187 /// # example2(false);
188 /// # example2(true);
189 /// ```
190 ///
191 /// In the example below, we need a mutable object (the vector) to be accessible within the log
192 /// function, so we wrap it in the [`ScopeGuard`]:
193 ///
194 /// ```
195 /// # use kernel::types::ScopeGuard;
196 /// fn example3(arg: bool) -> Result {
197 ///     let mut vec =
198 ///         ScopeGuard::new_with_data(KVec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
199 ///
200 ///     vec.push(10u8, GFP_KERNEL)?;
201 ///     if arg {
202 ///         return Ok(());
203 ///     }
204 ///     vec.push(20u8, GFP_KERNEL)?;
205 ///     Ok(())
206 /// }
207 ///
208 /// # assert_eq!(example3(false), Ok(()));
209 /// # assert_eq!(example3(true), Ok(()));
210 /// ```
211 ///
212 /// # Invariants
213 ///
214 /// The value stored in the struct is nearly always `Some(_)`, except between
215 /// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value
216 /// will have been returned to the caller. Since  [`ScopeGuard::dismiss`] consumes the guard,
217 /// callers won't be able to use it anymore.
218 pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>);
219 
220 impl<T, F: FnOnce(T)> ScopeGuard<T, F> {
221     /// Creates a new guarded object wrapping the given data and with the given cleanup function.
222     pub fn new_with_data(data: T, cleanup_func: F) -> Self {
223         // INVARIANT: The struct is being initialised with `Some(_)`.
224         Self(Some((data, cleanup_func)))
225     }
226 
227     /// Prevents the cleanup function from running and returns the guarded data.
228     pub fn dismiss(mut self) -> T {
229         // INVARIANT: This is the exception case in the invariant; it is not visible to callers
230         // because this function consumes `self`.
231         self.0.take().unwrap().0
232     }
233 }
234 
235 impl ScopeGuard<(), fn(())> {
236     /// Creates a new guarded object with the given cleanup function.
237     pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> {
238         ScopeGuard::new_with_data((), move |()| cleanup())
239     }
240 }
241 
242 impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> {
243     type Target = T;
244 
245     fn deref(&self) -> &T {
246         // The type invariants guarantee that `unwrap` will succeed.
247         &self.0.as_ref().unwrap().0
248     }
249 }
250 
251 impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> {
252     fn deref_mut(&mut self) -> &mut T {
253         // The type invariants guarantee that `unwrap` will succeed.
254         &mut self.0.as_mut().unwrap().0
255     }
256 }
257 
258 impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> {
259     fn drop(&mut self) {
260         // Run the cleanup function if one is still present.
261         if let Some((data, cleanup)) = self.0.take() {
262             cleanup(data)
263         }
264     }
265 }
266 
267 /// Stores an opaque value.
268 ///
269 /// [`Opaque<T>`] is meant to be used with FFI objects that are never interpreted by Rust code.
270 ///
271 /// It is used to wrap structs from the C side, like for example `Opaque<bindings::mutex>`.
272 /// It gets rid of all the usual assumptions that Rust has for a value:
273 ///
274 /// * The value is allowed to be uninitialized (for example have invalid bit patterns: `3` for a
275 ///   [`bool`]).
276 /// * The value is allowed to be mutated, when a `&Opaque<T>` exists on the Rust side.
277 /// * No uniqueness for mutable references: it is fine to have multiple `&mut Opaque<T>` point to
278 ///   the same value.
279 /// * The value is not allowed to be shared with other threads (i.e. it is `!Sync`).
280 ///
281 /// This has to be used for all values that the C side has access to, because it can't be ensured
282 /// that the C side is adhering to the usual constraints that Rust needs.
283 ///
284 /// Using [`Opaque<T>`] allows to continue to use references on the Rust side even for values shared
285 /// with C.
286 ///
287 /// # Examples
288 ///
289 /// ```
290 /// # #![expect(unreachable_pub, clippy::disallowed_names)]
291 /// use kernel::types::Opaque;
292 /// # // Emulate a C struct binding which is from C, maybe uninitialized or not, only the C side
293 /// # // knows.
294 /// # mod bindings {
295 /// #     pub struct Foo {
296 /// #         pub val: u8,
297 /// #     }
298 /// # }
299 ///
300 /// // `foo.val` is assumed to be handled on the C side, so we use `Opaque` to wrap it.
301 /// pub struct Foo {
302 ///     foo: Opaque<bindings::Foo>,
303 /// }
304 ///
305 /// impl Foo {
306 ///     pub fn get_val(&self) -> u8 {
307 ///         let ptr = Opaque::get(&self.foo);
308 ///
309 ///         // SAFETY: `Self` is valid from C side.
310 ///         unsafe { (*ptr).val }
311 ///     }
312 /// }
313 ///
314 /// // Create an instance of `Foo` with the `Opaque` wrapper.
315 /// let foo = Foo {
316 ///     foo: Opaque::new(bindings::Foo { val: 0xdb }),
317 /// };
318 ///
319 /// assert_eq!(foo.get_val(), 0xdb);
320 /// ```
321 #[repr(transparent)]
322 pub struct Opaque<T> {
323     value: UnsafeCell<MaybeUninit<T>>,
324     _pin: PhantomPinned,
325 }
326 
327 // SAFETY: `Opaque<T>` allows the inner value to be any bit pattern, including all zeros.
328 unsafe impl<T> Zeroable for Opaque<T> {}
329 
330 impl<T> Opaque<T> {
331     /// Creates a new opaque value.
332     pub const fn new(value: T) -> Self {
333         Self {
334             value: UnsafeCell::new(MaybeUninit::new(value)),
335             _pin: PhantomPinned,
336         }
337     }
338 
339     /// Creates an uninitialised value.
340     pub const fn uninit() -> Self {
341         Self {
342             value: UnsafeCell::new(MaybeUninit::uninit()),
343             _pin: PhantomPinned,
344         }
345     }
346 
347     /// Creates a new zeroed opaque value.
348     pub const fn zeroed() -> Self {
349         Self {
350             value: UnsafeCell::new(MaybeUninit::zeroed()),
351             _pin: PhantomPinned,
352         }
353     }
354 
355     /// Create an opaque pin-initializer from the given pin-initializer.
356     pub fn pin_init(slot: impl PinInit<T>) -> impl PinInit<Self> {
357         Self::ffi_init(|ptr: *mut T| {
358             // SAFETY:
359             //   - `ptr` is a valid pointer to uninitialized memory,
360             //   - `slot` is not accessed on error; the call is infallible,
361             //   - `slot` is pinned in memory.
362             let _ = unsafe { PinInit::<T>::__pinned_init(slot, ptr) };
363         })
364     }
365 
366     /// Creates a pin-initializer from the given initializer closure.
367     ///
368     /// The returned initializer calls the given closure with the pointer to the inner `T` of this
369     /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it.
370     ///
371     /// This function is safe, because the `T` inside of an `Opaque` is allowed to be
372     /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs
373     /// to verify at that point that the inner value is valid.
374     pub fn ffi_init(init_func: impl FnOnce(*mut T)) -> impl PinInit<Self> {
375         // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully
376         // initialize the `T`.
377         unsafe {
378             pin_init::pin_init_from_closure::<_, ::core::convert::Infallible>(move |slot| {
379                 init_func(Self::raw_get(slot));
380                 Ok(())
381             })
382         }
383     }
384 
385     /// Creates a fallible pin-initializer from the given initializer closure.
386     ///
387     /// The returned initializer calls the given closure with the pointer to the inner `T` of this
388     /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it.
389     ///
390     /// This function is safe, because the `T` inside of an `Opaque` is allowed to be
391     /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs
392     /// to verify at that point that the inner value is valid.
393     pub fn try_ffi_init<E>(
394         init_func: impl FnOnce(*mut T) -> Result<(), E>,
395     ) -> impl PinInit<Self, E> {
396         // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully
397         // initialize the `T`.
398         unsafe {
399             pin_init::pin_init_from_closure::<_, E>(move |slot| init_func(Self::raw_get(slot)))
400         }
401     }
402 
403     /// Returns a raw pointer to the opaque data.
404     pub const fn get(&self) -> *mut T {
405         UnsafeCell::get(&self.value).cast::<T>()
406     }
407 
408     /// Gets the value behind `this`.
409     ///
410     /// This function is useful to get access to the value without creating intermediate
411     /// references.
412     pub const fn raw_get(this: *const Self) -> *mut T {
413         UnsafeCell::raw_get(this.cast::<UnsafeCell<MaybeUninit<T>>>()).cast::<T>()
414     }
415 }
416 
417 /// Types that are _always_ reference counted.
418 ///
419 /// It allows such types to define their own custom ref increment and decrement functions.
420 /// Additionally, it allows users to convert from a shared reference `&T` to an owned reference
421 /// [`ARef<T>`].
422 ///
423 /// This is usually implemented by wrappers to existing structures on the C side of the code. For
424 /// Rust code, the recommendation is to use [`Arc`](crate::sync::Arc) to create reference-counted
425 /// instances of a type.
426 ///
427 /// # Safety
428 ///
429 /// Implementers must ensure that increments to the reference count keep the object alive in memory
430 /// at least until matching decrements are performed.
431 ///
432 /// Implementers must also ensure that all instances are reference-counted. (Otherwise they
433 /// won't be able to honour the requirement that [`AlwaysRefCounted::inc_ref`] keep the object
434 /// alive.)
435 pub unsafe trait AlwaysRefCounted {
436     /// Increments the reference count on the object.
437     fn inc_ref(&self);
438 
439     /// Decrements the reference count on the object.
440     ///
441     /// Frees the object when the count reaches zero.
442     ///
443     /// # Safety
444     ///
445     /// Callers must ensure that there was a previous matching increment to the reference count,
446     /// and that the object is no longer used after its reference count is decremented (as it may
447     /// result in the object being freed), unless the caller owns another increment on the refcount
448     /// (e.g., it calls [`AlwaysRefCounted::inc_ref`] twice, then calls
449     /// [`AlwaysRefCounted::dec_ref`] once).
450     unsafe fn dec_ref(obj: NonNull<Self>);
451 }
452 
453 /// An owned reference to an always-reference-counted object.
454 ///
455 /// The object's reference count is automatically decremented when an instance of [`ARef`] is
456 /// dropped. It is also automatically incremented when a new instance is created via
457 /// [`ARef::clone`].
458 ///
459 /// # Invariants
460 ///
461 /// The pointer stored in `ptr` is non-null and valid for the lifetime of the [`ARef`] instance. In
462 /// particular, the [`ARef`] instance owns an increment on the underlying object's reference count.
463 pub struct ARef<T: AlwaysRefCounted> {
464     ptr: NonNull<T>,
465     _p: PhantomData<T>,
466 }
467 
468 // SAFETY: It is safe to send `ARef<T>` to another thread when the underlying `T` is `Sync` because
469 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
470 // `T` to be `Send` because any thread that has an `ARef<T>` may ultimately access `T` using a
471 // mutable reference, for example, when the reference count reaches zero and `T` is dropped.
472 unsafe impl<T: AlwaysRefCounted + Sync + Send> Send for ARef<T> {}
473 
474 // SAFETY: It is safe to send `&ARef<T>` to another thread when the underlying `T` is `Sync`
475 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
476 // it needs `T` to be `Send` because any thread that has a `&ARef<T>` may clone it and get an
477 // `ARef<T>` on that thread, so the thread may ultimately access `T` using a mutable reference, for
478 // example, when the reference count reaches zero and `T` is dropped.
479 unsafe impl<T: AlwaysRefCounted + Sync + Send> Sync for ARef<T> {}
480 
481 impl<T: AlwaysRefCounted> ARef<T> {
482     /// Creates a new instance of [`ARef`].
483     ///
484     /// It takes over an increment of the reference count on the underlying object.
485     ///
486     /// # Safety
487     ///
488     /// Callers must ensure that the reference count was incremented at least once, and that they
489     /// are properly relinquishing one increment. That is, if there is only one increment, callers
490     /// must not use the underlying object anymore -- it is only safe to do so via the newly
491     /// created [`ARef`].
492     pub unsafe fn from_raw(ptr: NonNull<T>) -> Self {
493         // INVARIANT: The safety requirements guarantee that the new instance now owns the
494         // increment on the refcount.
495         Self {
496             ptr,
497             _p: PhantomData,
498         }
499     }
500 
501     /// Consumes the `ARef`, returning a raw pointer.
502     ///
503     /// This function does not change the refcount. After calling this function, the caller is
504     /// responsible for the refcount previously managed by the `ARef`.
505     ///
506     /// # Examples
507     ///
508     /// ```
509     /// use core::ptr::NonNull;
510     /// use kernel::types::{ARef, AlwaysRefCounted};
511     ///
512     /// struct Empty {}
513     ///
514     /// # // SAFETY: TODO.
515     /// unsafe impl AlwaysRefCounted for Empty {
516     ///     fn inc_ref(&self) {}
517     ///     unsafe fn dec_ref(_obj: NonNull<Self>) {}
518     /// }
519     ///
520     /// let mut data = Empty {};
521     /// let ptr = NonNull::<Empty>::new(&mut data).unwrap();
522     /// # // SAFETY: TODO.
523     /// let data_ref: ARef<Empty> = unsafe { ARef::from_raw(ptr) };
524     /// let raw_ptr: NonNull<Empty> = ARef::into_raw(data_ref);
525     ///
526     /// assert_eq!(ptr, raw_ptr);
527     /// ```
528     pub fn into_raw(me: Self) -> NonNull<T> {
529         ManuallyDrop::new(me).ptr
530     }
531 }
532 
533 impl<T: AlwaysRefCounted> Clone for ARef<T> {
534     fn clone(&self) -> Self {
535         self.inc_ref();
536         // SAFETY: We just incremented the refcount above.
537         unsafe { Self::from_raw(self.ptr) }
538     }
539 }
540 
541 impl<T: AlwaysRefCounted> Deref for ARef<T> {
542     type Target = T;
543 
544     fn deref(&self) -> &Self::Target {
545         // SAFETY: The type invariants guarantee that the object is valid.
546         unsafe { self.ptr.as_ref() }
547     }
548 }
549 
550 impl<T: AlwaysRefCounted> From<&T> for ARef<T> {
551     fn from(b: &T) -> Self {
552         b.inc_ref();
553         // SAFETY: We just incremented the refcount above.
554         unsafe { Self::from_raw(NonNull::from(b)) }
555     }
556 }
557 
558 impl<T: AlwaysRefCounted> Drop for ARef<T> {
559     fn drop(&mut self) {
560         // SAFETY: The type invariants guarantee that the `ARef` owns the reference we're about to
561         // decrement.
562         unsafe { T::dec_ref(self.ptr) };
563     }
564 }
565 
566 /// A sum type that always holds either a value of type `L` or `R`.
567 ///
568 /// # Examples
569 ///
570 /// ```
571 /// use kernel::types::Either;
572 ///
573 /// let left_value: Either<i32, &str> = Either::Left(7);
574 /// let right_value: Either<i32, &str> = Either::Right("right value");
575 /// ```
576 pub enum Either<L, R> {
577     /// Constructs an instance of [`Either`] containing a value of type `L`.
578     Left(L),
579 
580     /// Constructs an instance of [`Either`] containing a value of type `R`.
581     Right(R),
582 }
583 
584 /// Zero-sized type to mark types not [`Send`].
585 ///
586 /// Add this type as a field to your struct if your type should not be sent to a different task.
587 /// Since [`Send`] is an auto trait, adding a single field that is `!Send` will ensure that the
588 /// whole type is `!Send`.
589 ///
590 /// If a type is `!Send` it is impossible to give control over an instance of the type to another
591 /// task. This is useful to include in types that store or reference task-local information. A file
592 /// descriptor is an example of such task-local information.
593 ///
594 /// This type also makes the type `!Sync`, which prevents immutable access to the value from
595 /// several threads in parallel.
596 pub type NotThreadSafe = PhantomData<*mut ()>;
597 
598 /// Used to construct instances of type [`NotThreadSafe`] similar to how `PhantomData` is
599 /// constructed.
600 ///
601 /// [`NotThreadSafe`]: type@NotThreadSafe
602 #[allow(non_upper_case_globals)]
603 pub const NotThreadSafe: NotThreadSafe = PhantomData;
604