xref: /linux/rust/kernel/time.rs (revision 25489a4f556414445d342951615178368ee45cde)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Time related primitives.
4 //!
5 //! This module contains the kernel APIs related to time and timers that
6 //! have been ported or wrapped for usage by Rust code in the kernel.
7 //!
8 //! There are two types in this module:
9 //!
10 //! - The [`Instant`] type represents a specific point in time.
11 //! - The [`Delta`] type represents a span of time.
12 //!
13 //! Note that the C side uses `ktime_t` type to represent both. However, timestamp
14 //! and timedelta are different. To avoid confusion, we use two different types.
15 //!
16 //! A [`Instant`] object can be created by calling the [`Instant::now()`] function.
17 //! It represents a point in time at which the object was created.
18 //! By calling the [`Instant::elapsed()`] method, a [`Delta`] object representing
19 //! the elapsed time can be created. The [`Delta`] object can also be created
20 //! by subtracting two [`Instant`] objects.
21 //!
22 //! A [`Delta`] type supports methods to retrieve the duration in various units.
23 //!
24 //! C header: [`include/linux/jiffies.h`](srctree/include/linux/jiffies.h).
25 //! C header: [`include/linux/ktime.h`](srctree/include/linux/ktime.h).
26 
27 pub mod hrtimer;
28 
29 /// The number of nanoseconds per microsecond.
30 pub const NSEC_PER_USEC: i64 = bindings::NSEC_PER_USEC as i64;
31 
32 /// The number of nanoseconds per millisecond.
33 pub const NSEC_PER_MSEC: i64 = bindings::NSEC_PER_MSEC as i64;
34 
35 /// The number of nanoseconds per second.
36 pub const NSEC_PER_SEC: i64 = bindings::NSEC_PER_SEC as i64;
37 
38 /// The time unit of Linux kernel. One jiffy equals (1/HZ) second.
39 pub type Jiffies = crate::ffi::c_ulong;
40 
41 /// The millisecond time unit.
42 pub type Msecs = crate::ffi::c_uint;
43 
44 /// Converts milliseconds to jiffies.
45 #[inline]
46 pub fn msecs_to_jiffies(msecs: Msecs) -> Jiffies {
47     // SAFETY: The `__msecs_to_jiffies` function is always safe to call no
48     // matter what the argument is.
49     unsafe { bindings::__msecs_to_jiffies(msecs) }
50 }
51 
52 /// A specific point in time.
53 ///
54 /// # Invariants
55 ///
56 /// The `inner` value is in the range from 0 to `KTIME_MAX`.
57 #[repr(transparent)]
58 #[derive(Copy, Clone, PartialEq, PartialOrd, Eq, Ord)]
59 pub struct Instant {
60     inner: bindings::ktime_t,
61 }
62 
63 impl Instant {
64     /// Get the current time using `CLOCK_MONOTONIC`.
65     #[inline]
66     pub fn now() -> Self {
67         // INVARIANT: The `ktime_get()` function returns a value in the range
68         // from 0 to `KTIME_MAX`.
69         Self {
70             // SAFETY: It is always safe to call `ktime_get()` outside of NMI context.
71             inner: unsafe { bindings::ktime_get() },
72         }
73     }
74 
75     /// Return the amount of time elapsed since the [`Instant`].
76     #[inline]
77     pub fn elapsed(&self) -> Delta {
78         Self::now() - *self
79     }
80 }
81 
82 impl core::ops::Sub for Instant {
83     type Output = Delta;
84 
85     // By the type invariant, it never overflows.
86     #[inline]
87     fn sub(self, other: Instant) -> Delta {
88         Delta {
89             nanos: self.inner - other.inner,
90         }
91     }
92 }
93 
94 /// An identifier for a clock. Used when specifying clock sources.
95 ///
96 ///
97 /// Selection of the clock depends on the use case. In some cases the usage of a
98 /// particular clock is mandatory, e.g. in network protocols, filesystems.In other
99 /// cases the user of the clock has to decide which clock is best suited for the
100 /// purpose. In most scenarios clock [`ClockId::Monotonic`] is the best choice as it
101 /// provides a accurate monotonic notion of time (leap second smearing ignored).
102 #[derive(Clone, Copy, PartialEq, Eq, Debug)]
103 #[repr(u32)]
104 pub enum ClockId {
105     /// A settable system-wide clock that measures real (i.e., wall-clock) time.
106     ///
107     /// Setting this clock requires appropriate privileges. This clock is
108     /// affected by discontinuous jumps in the system time (e.g., if the system
109     /// administrator manually changes the clock), and by frequency adjustments
110     /// performed by NTP and similar applications via adjtime(3), adjtimex(2),
111     /// clock_adjtime(2), and ntp_adjtime(3). This clock normally counts the
112     /// number of seconds since 1970-01-01 00:00:00 Coordinated Universal Time
113     /// (UTC) except that it ignores leap seconds; near a leap second it may be
114     /// adjusted by leap second smearing to stay roughly in sync with UTC. Leap
115     /// second smearing applies frequency adjustments to the clock to speed up
116     /// or slow down the clock to account for the leap second without
117     /// discontinuities in the clock. If leap second smearing is not applied,
118     /// the clock will experience discontinuity around leap second adjustment.
119     RealTime = bindings::CLOCK_REALTIME,
120     /// A monotonically increasing clock.
121     ///
122     /// A nonsettable system-wide clock that represents monotonic time since—as
123     /// described by POSIX—"some unspecified point in the past". On Linux, that
124     /// point corresponds to the number of seconds that the system has been
125     /// running since it was booted.
126     ///
127     /// The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in the
128     /// CLOCK_REAL (e.g., if the system administrator manually changes the
129     /// clock), but is affected by frequency adjustments. This clock does not
130     /// count time that the system is suspended.
131     Monotonic = bindings::CLOCK_MONOTONIC,
132     /// A monotonic that ticks while system is suspended.
133     ///
134     /// A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC,
135     /// except that it also includes any time that the system is suspended. This
136     /// allows applications to get a suspend-aware monotonic clock without
137     /// having to deal with the complications of CLOCK_REALTIME, which may have
138     /// discontinuities if the time is changed using settimeofday(2) or similar.
139     BootTime = bindings::CLOCK_BOOTTIME,
140     /// International Atomic Time.
141     ///
142     /// A system-wide clock derived from wall-clock time but counting leap seconds.
143     ///
144     /// This clock is coupled to CLOCK_REALTIME and will be set when CLOCK_REALTIME is
145     /// set, or when the offset to CLOCK_REALTIME is changed via adjtimex(2). This
146     /// usually happens during boot and **should** not happen during normal operations.
147     /// However, if NTP or another application adjusts CLOCK_REALTIME by leap second
148     /// smearing, this clock will not be precise during leap second smearing.
149     ///
150     /// The acronym TAI refers to International Atomic Time.
151     TAI = bindings::CLOCK_TAI,
152 }
153 
154 impl ClockId {
155     fn into_c(self) -> bindings::clockid_t {
156         self as bindings::clockid_t
157     }
158 }
159 
160 /// A span of time.
161 ///
162 /// This struct represents a span of time, with its value stored as nanoseconds.
163 /// The value can represent any valid i64 value, including negative, zero, and
164 /// positive numbers.
165 #[derive(Copy, Clone, PartialEq, PartialOrd, Eq, Ord, Debug)]
166 pub struct Delta {
167     nanos: i64,
168 }
169 
170 impl Delta {
171     /// A span of time equal to zero.
172     pub const ZERO: Self = Self { nanos: 0 };
173 
174     /// Create a new [`Delta`] from a number of microseconds.
175     ///
176     /// The `micros` can range from -9_223_372_036_854_775 to 9_223_372_036_854_775.
177     /// If `micros` is outside this range, `i64::MIN` is used for negative values,
178     /// and `i64::MAX` is used for positive values due to saturation.
179     #[inline]
180     pub const fn from_micros(micros: i64) -> Self {
181         Self {
182             nanos: micros.saturating_mul(NSEC_PER_USEC),
183         }
184     }
185 
186     /// Create a new [`Delta`] from a number of milliseconds.
187     ///
188     /// The `millis` can range from -9_223_372_036_854 to 9_223_372_036_854.
189     /// If `millis` is outside this range, `i64::MIN` is used for negative values,
190     /// and `i64::MAX` is used for positive values due to saturation.
191     #[inline]
192     pub const fn from_millis(millis: i64) -> Self {
193         Self {
194             nanos: millis.saturating_mul(NSEC_PER_MSEC),
195         }
196     }
197 
198     /// Create a new [`Delta`] from a number of seconds.
199     ///
200     /// The `secs` can range from -9_223_372_036 to 9_223_372_036.
201     /// If `secs` is outside this range, `i64::MIN` is used for negative values,
202     /// and `i64::MAX` is used for positive values due to saturation.
203     #[inline]
204     pub const fn from_secs(secs: i64) -> Self {
205         Self {
206             nanos: secs.saturating_mul(NSEC_PER_SEC),
207         }
208     }
209 
210     /// Return `true` if the [`Delta`] spans no time.
211     #[inline]
212     pub fn is_zero(self) -> bool {
213         self.as_nanos() == 0
214     }
215 
216     /// Return `true` if the [`Delta`] spans a negative amount of time.
217     #[inline]
218     pub fn is_negative(self) -> bool {
219         self.as_nanos() < 0
220     }
221 
222     /// Return the number of nanoseconds in the [`Delta`].
223     #[inline]
224     pub const fn as_nanos(self) -> i64 {
225         self.nanos
226     }
227 
228     /// Return the smallest number of microseconds greater than or equal
229     /// to the value in the [`Delta`].
230     #[inline]
231     pub const fn as_micros_ceil(self) -> i64 {
232         self.as_nanos().saturating_add(NSEC_PER_USEC - 1) / NSEC_PER_USEC
233     }
234 
235     /// Return the number of milliseconds in the [`Delta`].
236     #[inline]
237     pub const fn as_millis(self) -> i64 {
238         self.as_nanos() / NSEC_PER_MSEC
239     }
240 }
241