xref: /linux/rust/kernel/task.rs (revision d072acda4862f095ec9056979b654cc06a22cc68)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Tasks (threads and processes).
4 //!
5 //! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
6 
7 use crate::ffi::{c_int, c_long, c_uint};
8 use crate::types::Opaque;
9 use core::{marker::PhantomData, ops::Deref, ptr};
10 
11 /// A sentinel value used for infinite timeouts.
12 pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
13 
14 /// Bitmask for tasks that are sleeping in an interruptible state.
15 pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
16 /// Bitmask for tasks that are sleeping in an uninterruptible state.
17 pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
18 /// Convenience constant for waking up tasks regardless of whether they are in interruptible or
19 /// uninterruptible sleep.
20 pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
21 
22 /// Returns the currently running task.
23 #[macro_export]
24 macro_rules! current {
25     () => {
26         // SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the
27         // caller.
28         unsafe { &*$crate::task::Task::current() }
29     };
30 }
31 
32 /// Wraps the kernel's `struct task_struct`.
33 ///
34 /// # Invariants
35 ///
36 /// All instances are valid tasks created by the C portion of the kernel.
37 ///
38 /// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
39 /// that the allocation remains valid at least until the matching call to `put_task_struct`.
40 ///
41 /// # Examples
42 ///
43 /// The following is an example of getting the PID of the current thread with zero additional cost
44 /// when compared to the C version:
45 ///
46 /// ```
47 /// let pid = current!().pid();
48 /// ```
49 ///
50 /// Getting the PID of the current process, also zero additional cost:
51 ///
52 /// ```
53 /// let pid = current!().group_leader().pid();
54 /// ```
55 ///
56 /// Getting the current task and storing it in some struct. The reference count is automatically
57 /// incremented when creating `State` and decremented when it is dropped:
58 ///
59 /// ```
60 /// use kernel::{task::Task, types::ARef};
61 ///
62 /// struct State {
63 ///     creator: ARef<Task>,
64 ///     index: u32,
65 /// }
66 ///
67 /// impl State {
68 ///     fn new() -> Self {
69 ///         Self {
70 ///             creator: current!().into(),
71 ///             index: 0,
72 ///         }
73 ///     }
74 /// }
75 /// ```
76 #[repr(transparent)]
77 pub struct Task(pub(crate) Opaque<bindings::task_struct>);
78 
79 // SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
80 // `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
81 // which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
82 // runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
83 unsafe impl Send for Task {}
84 
85 // SAFETY: It's OK to access `Task` through shared references from other threads because we're
86 // either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
87 // synchronised by C code (e.g., `signal_pending`).
88 unsafe impl Sync for Task {}
89 
90 /// The type of process identifiers (PIDs).
91 type Pid = bindings::pid_t;
92 
93 impl Task {
94     /// Returns a task reference for the currently executing task/thread.
95     ///
96     /// The recommended way to get the current task/thread is to use the
97     /// [`current`] macro because it is safe.
98     ///
99     /// # Safety
100     ///
101     /// Callers must ensure that the returned object doesn't outlive the current task/thread.
102     pub unsafe fn current() -> impl Deref<Target = Task> {
103         struct TaskRef<'a> {
104             task: &'a Task,
105             _not_send: PhantomData<*mut ()>,
106         }
107 
108         impl Deref for TaskRef<'_> {
109             type Target = Task;
110 
111             fn deref(&self) -> &Self::Target {
112                 self.task
113             }
114         }
115 
116         // SAFETY: Just an FFI call with no additional safety requirements.
117         let ptr = unsafe { bindings::get_current() };
118 
119         TaskRef {
120             // SAFETY: If the current thread is still running, the current task is valid. Given
121             // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread
122             // (where it could potentially outlive the caller).
123             task: unsafe { &*ptr.cast() },
124             _not_send: PhantomData,
125         }
126     }
127 
128     /// Returns the group leader of the given task.
129     pub fn group_leader(&self) -> &Task {
130         // SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always
131         // have a valid `group_leader`.
132         let ptr = unsafe { *ptr::addr_of!((*self.0.get()).group_leader) };
133 
134         // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
135         // and given that a task has a reference to its group leader, we know it must be valid for
136         // the lifetime of the returned task reference.
137         unsafe { &*ptr.cast() }
138     }
139 
140     /// Returns the PID of the given task.
141     pub fn pid(&self) -> Pid {
142         // SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always
143         // have a valid pid.
144         unsafe { *ptr::addr_of!((*self.0.get()).pid) }
145     }
146 
147     /// Determines whether the given task has pending signals.
148     pub fn signal_pending(&self) -> bool {
149         // SAFETY: By the type invariant, we know that `self.0` is valid.
150         unsafe { bindings::signal_pending(self.0.get()) != 0 }
151     }
152 
153     /// Wakes up the task.
154     pub fn wake_up(&self) {
155         // SAFETY: By the type invariant, we know that `self.0.get()` is non-null and valid.
156         // And `wake_up_process` is safe to be called for any valid task, even if the task is
157         // running.
158         unsafe { bindings::wake_up_process(self.0.get()) };
159     }
160 }
161 
162 // SAFETY: The type invariants guarantee that `Task` is always refcounted.
163 unsafe impl crate::types::AlwaysRefCounted for Task {
164     fn inc_ref(&self) {
165         // SAFETY: The existence of a shared reference means that the refcount is nonzero.
166         unsafe { bindings::get_task_struct(self.0.get()) };
167     }
168 
169     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
170         // SAFETY: The safety requirements guarantee that the refcount is nonzero.
171         unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
172     }
173 }
174