xref: /linux/rust/kernel/task.rs (revision 798bb342e0416d846cf67f4725a3428f39bfb96b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Tasks (threads and processes).
4 //!
5 //! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
6 
7 use crate::{
8     bindings,
9     pid_namespace::PidNamespace,
10     types::{ARef, NotThreadSafe, Opaque},
11 };
12 use crate::ffi::{c_int, c_long, c_uint};
13 use core::{cmp::{Eq, PartialEq},ops::Deref, ptr};
14 
15 /// A sentinel value used for infinite timeouts.
16 pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
17 
18 /// Bitmask for tasks that are sleeping in an interruptible state.
19 pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
20 /// Bitmask for tasks that are sleeping in an uninterruptible state.
21 pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
22 /// Convenience constant for waking up tasks regardless of whether they are in interruptible or
23 /// uninterruptible sleep.
24 pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
25 
26 /// Returns the currently running task.
27 #[macro_export]
28 macro_rules! current {
29     () => {
30         // SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the
31         // caller.
32         unsafe { &*$crate::task::Task::current() }
33     };
34 }
35 
36 /// Returns the currently running task's pid namespace.
37 #[macro_export]
38 macro_rules! current_pid_ns {
39     () => {
40         // SAFETY: Deref + addr-of below create a temporary `PidNamespaceRef` that cannot outlive
41         // the caller.
42         unsafe { &*$crate::task::Task::current_pid_ns() }
43     };
44 }
45 
46 /// Wraps the kernel's `struct task_struct`.
47 ///
48 /// # Invariants
49 ///
50 /// All instances are valid tasks created by the C portion of the kernel.
51 ///
52 /// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
53 /// that the allocation remains valid at least until the matching call to `put_task_struct`.
54 ///
55 /// # Examples
56 ///
57 /// The following is an example of getting the PID of the current thread with zero additional cost
58 /// when compared to the C version:
59 ///
60 /// ```
61 /// let pid = current!().pid();
62 /// ```
63 ///
64 /// Getting the PID of the current process, also zero additional cost:
65 ///
66 /// ```
67 /// let pid = current!().group_leader().pid();
68 /// ```
69 ///
70 /// Getting the current task and storing it in some struct. The reference count is automatically
71 /// incremented when creating `State` and decremented when it is dropped:
72 ///
73 /// ```
74 /// use kernel::{task::Task, types::ARef};
75 ///
76 /// struct State {
77 ///     creator: ARef<Task>,
78 ///     index: u32,
79 /// }
80 ///
81 /// impl State {
82 ///     fn new() -> Self {
83 ///         Self {
84 ///             creator: current!().into(),
85 ///             index: 0,
86 ///         }
87 ///     }
88 /// }
89 /// ```
90 #[repr(transparent)]
91 pub struct Task(pub(crate) Opaque<bindings::task_struct>);
92 
93 // SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
94 // `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
95 // which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
96 // runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
97 unsafe impl Send for Task {}
98 
99 // SAFETY: It's OK to access `Task` through shared references from other threads because we're
100 // either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
101 // synchronised by C code (e.g., `signal_pending`).
102 unsafe impl Sync for Task {}
103 
104 /// The type of process identifiers (PIDs).
105 type Pid = bindings::pid_t;
106 
107 /// The type of user identifiers (UIDs).
108 #[derive(Copy, Clone)]
109 pub struct Kuid {
110     kuid: bindings::kuid_t,
111 }
112 
113 impl Task {
114     /// Returns a raw pointer to the current task.
115     ///
116     /// It is up to the user to use the pointer correctly.
117     #[inline]
118     pub fn current_raw() -> *mut bindings::task_struct {
119         // SAFETY: Getting the current pointer is always safe.
120         unsafe { bindings::get_current() }
121     }
122 
123     /// Returns a task reference for the currently executing task/thread.
124     ///
125     /// The recommended way to get the current task/thread is to use the
126     /// [`current`] macro because it is safe.
127     ///
128     /// # Safety
129     ///
130     /// Callers must ensure that the returned object doesn't outlive the current task/thread.
131     pub unsafe fn current() -> impl Deref<Target = Task> {
132         struct TaskRef<'a> {
133             task: &'a Task,
134             _not_send: NotThreadSafe,
135         }
136 
137         impl Deref for TaskRef<'_> {
138             type Target = Task;
139 
140             fn deref(&self) -> &Self::Target {
141                 self.task
142             }
143         }
144 
145         let current = Task::current_raw();
146         TaskRef {
147             // SAFETY: If the current thread is still running, the current task is valid. Given
148             // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread
149             // (where it could potentially outlive the caller).
150             task: unsafe { &*current.cast() },
151             _not_send: NotThreadSafe,
152         }
153     }
154 
155     /// Returns a PidNamespace reference for the currently executing task's/thread's pid namespace.
156     ///
157     /// This function can be used to create an unbounded lifetime by e.g., storing the returned
158     /// PidNamespace in a global variable which would be a bug. So the recommended way to get the
159     /// current task's/thread's pid namespace is to use the [`current_pid_ns`] macro because it is
160     /// safe.
161     ///
162     /// # Safety
163     ///
164     /// Callers must ensure that the returned object doesn't outlive the current task/thread.
165     pub unsafe fn current_pid_ns() -> impl Deref<Target = PidNamespace> {
166         struct PidNamespaceRef<'a> {
167             task: &'a PidNamespace,
168             _not_send: NotThreadSafe,
169         }
170 
171         impl Deref for PidNamespaceRef<'_> {
172             type Target = PidNamespace;
173 
174             fn deref(&self) -> &Self::Target {
175                 self.task
176             }
177         }
178 
179         // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`.
180         //
181         // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive. A
182         // `unshare(CLONE_NEWPID)` or `setns(fd_pidns/pidfd, CLONE_NEWPID)` will not have an effect
183         // on the calling `Task`'s pid namespace. It will only effect the pid namespace of children
184         // created by the calling `Task`. This invariant guarantees that after having acquired a
185         // reference to a `Task`'s pid namespace it will remain unchanged.
186         //
187         // When a task has exited and been reaped `release_task()` will be called. This will set
188         // the `PidNamespace` of the task to `NULL`. So retrieving the `PidNamespace` of a task
189         // that is dead will return `NULL`. Note, that neither holding the RCU lock nor holding a
190         // referencing count to
191         // the `Task` will prevent `release_task()` being called.
192         //
193         // In order to retrieve the `PidNamespace` of a `Task` the `task_active_pid_ns()` function
194         // can be used. There are two cases to consider:
195         //
196         // (1) retrieving the `PidNamespace` of the `current` task
197         // (2) retrieving the `PidNamespace` of a non-`current` task
198         //
199         // From system call context retrieving the `PidNamespace` for case (1) is always safe and
200         // requires neither RCU locking nor a reference count to be held. Retrieving the
201         // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath
202         // like that is exposed to Rust.
203         //
204         // Retrieving the `PidNamespace` from system call context for (2) requires RCU protection.
205         // Accessing `PidNamespace` outside of RCU protection requires a reference count that
206         // must've been acquired while holding the RCU lock. Note that accessing a non-`current`
207         // task means `NULL` can be returned as the non-`current` task could have already passed
208         // through `release_task()`.
209         //
210         // To retrieve (1) the `current_pid_ns!()` macro should be used which ensure that the
211         // returned `PidNamespace` cannot outlive the calling scope. The associated
212         // `current_pid_ns()` function should not be called directly as it could be abused to
213         // created an unbounded lifetime for `PidNamespace`. The `current_pid_ns!()` macro allows
214         // Rust to handle the common case of accessing `current`'s `PidNamespace` without RCU
215         // protection and without having to acquire a reference count.
216         //
217         // For (2) the `task_get_pid_ns()` method must be used. This will always acquire a
218         // reference on `PidNamespace` and will return an `Option` to force the caller to
219         // explicitly handle the case where `PidNamespace` is `None`, something that tends to be
220         // forgotten when doing the equivalent operation in `C`. Missing RCU primitives make it
221         // difficult to perform operations that are otherwise safe without holding a reference
222         // count as long as RCU protection is guaranteed. But it is not important currently. But we
223         // do want it in the future.
224         //
225         // Note for (2) the required RCU protection around calling `task_active_pid_ns()`
226         // synchronizes against putting the last reference of the associated `struct pid` of
227         // `task->thread_pid`. The `struct pid` stored in that field is used to retrieve the
228         // `PidNamespace` of the caller. When `release_task()` is called `task->thread_pid` will be
229         // `NULL`ed and `put_pid()` on said `struct pid` will be delayed in `free_pid()` via
230         // `call_rcu()` allowing everyone with an RCU protected access to the `struct pid` acquired
231         // from `task->thread_pid` to finish.
232         //
233         // SAFETY: The current task's pid namespace is valid as long as the current task is running.
234         let pidns = unsafe { bindings::task_active_pid_ns(Task::current_raw()) };
235         PidNamespaceRef {
236             // SAFETY: If the current thread is still running, the current task and its associated
237             // pid namespace are valid. `PidNamespaceRef` is not `Send`, so we know it cannot be
238             // transferred to another thread (where it could potentially outlive the current
239             // `Task`). The caller needs to ensure that the PidNamespaceRef doesn't outlive the
240             // current task/thread.
241             task: unsafe { PidNamespace::from_ptr(pidns) },
242             _not_send: NotThreadSafe,
243         }
244     }
245 
246     /// Returns a raw pointer to the task.
247     #[inline]
248     pub fn as_ptr(&self) -> *mut bindings::task_struct {
249         self.0.get()
250     }
251 
252     /// Returns the group leader of the given task.
253     pub fn group_leader(&self) -> &Task {
254         // SAFETY: The group leader of a task never changes after initialization, so reading this
255         // field is not a data race.
256         let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) };
257 
258         // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
259         // and given that a task has a reference to its group leader, we know it must be valid for
260         // the lifetime of the returned task reference.
261         unsafe { &*ptr.cast() }
262     }
263 
264     /// Returns the PID of the given task.
265     pub fn pid(&self) -> Pid {
266         // SAFETY: The pid of a task never changes after initialization, so reading this field is
267         // not a data race.
268         unsafe { *ptr::addr_of!((*self.as_ptr()).pid) }
269     }
270 
271     /// Returns the UID of the given task.
272     pub fn uid(&self) -> Kuid {
273         // SAFETY: It's always safe to call `task_uid` on a valid task.
274         Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) })
275     }
276 
277     /// Returns the effective UID of the given task.
278     pub fn euid(&self) -> Kuid {
279         // SAFETY: It's always safe to call `task_euid` on a valid task.
280         Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) })
281     }
282 
283     /// Determines whether the given task has pending signals.
284     pub fn signal_pending(&self) -> bool {
285         // SAFETY: It's always safe to call `signal_pending` on a valid task.
286         unsafe { bindings::signal_pending(self.as_ptr()) != 0 }
287     }
288 
289     /// Returns task's pid namespace with elevated reference count
290     pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> {
291         // SAFETY: By the type invariant, we know that `self.0` is valid.
292         let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) };
293         if ptr.is_null() {
294             None
295         } else {
296             // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a
297             // reference count via `task_get_pid_ns()`.
298             // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`.
299             Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) })
300         }
301     }
302 
303     /// Returns the given task's pid in the provided pid namespace.
304     #[doc(alias = "task_tgid_nr_ns")]
305     pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid {
306         let pidns = match pidns {
307             Some(pidns) => pidns.as_ptr(),
308             None => core::ptr::null_mut(),
309         };
310         // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid
311         // PidNamespace that we can use as a pointer or we received an empty PidNamespace and
312         // thus pass a null pointer. The underlying C function is safe to be used with NULL
313         // pointers.
314         unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) }
315     }
316 
317     /// Wakes up the task.
318     pub fn wake_up(&self) {
319         // SAFETY: It's always safe to call `signal_pending` on a valid task, even if the task
320         // running.
321         unsafe { bindings::wake_up_process(self.as_ptr()) };
322     }
323 }
324 
325 // SAFETY: The type invariants guarantee that `Task` is always refcounted.
326 unsafe impl crate::types::AlwaysRefCounted for Task {
327     fn inc_ref(&self) {
328         // SAFETY: The existence of a shared reference means that the refcount is nonzero.
329         unsafe { bindings::get_task_struct(self.as_ptr()) };
330     }
331 
332     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
333         // SAFETY: The safety requirements guarantee that the refcount is nonzero.
334         unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
335     }
336 }
337 
338 impl Kuid {
339     /// Get the current euid.
340     #[inline]
341     pub fn current_euid() -> Kuid {
342         // SAFETY: Just an FFI call.
343         Self::from_raw(unsafe { bindings::current_euid() })
344     }
345 
346     /// Create a `Kuid` given the raw C type.
347     #[inline]
348     pub fn from_raw(kuid: bindings::kuid_t) -> Self {
349         Self { kuid }
350     }
351 
352     /// Turn this kuid into the raw C type.
353     #[inline]
354     pub fn into_raw(self) -> bindings::kuid_t {
355         self.kuid
356     }
357 
358     /// Converts this kernel UID into a userspace UID.
359     ///
360     /// Uses the namespace of the current task.
361     #[inline]
362     pub fn into_uid_in_current_ns(self) -> bindings::uid_t {
363         // SAFETY: Just an FFI call.
364         unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) }
365     }
366 }
367 
368 impl PartialEq for Kuid {
369     #[inline]
370     fn eq(&self, other: &Kuid) -> bool {
371         // SAFETY: Just an FFI call.
372         unsafe { bindings::uid_eq(self.kuid, other.kuid) }
373     }
374 }
375 
376 impl Eq for Kuid {}
377