xref: /linux/rust/kernel/task.rs (revision 47b60ec7ba22a6359379bce9643bfff7a1ffe9ed)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Tasks (threads and processes).
4 //!
5 //! C header: [`include/linux/sched.h`](../../../../include/linux/sched.h).
6 
7 use crate::{bindings, types::Opaque};
8 use core::{marker::PhantomData, ops::Deref, ptr};
9 
10 /// Returns the currently running task.
11 #[macro_export]
12 macro_rules! current {
13     () => {
14         // SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the
15         // caller.
16         unsafe { &*$crate::task::Task::current() }
17     };
18 }
19 
20 /// Wraps the kernel's `struct task_struct`.
21 ///
22 /// # Invariants
23 ///
24 /// All instances are valid tasks created by the C portion of the kernel.
25 ///
26 /// Instances of this type are always ref-counted, that is, a call to `get_task_struct` ensures
27 /// that the allocation remains valid at least until the matching call to `put_task_struct`.
28 ///
29 /// # Examples
30 ///
31 /// The following is an example of getting the PID of the current thread with zero additional cost
32 /// when compared to the C version:
33 ///
34 /// ```
35 /// let pid = current!().pid();
36 /// ```
37 ///
38 /// Getting the PID of the current process, also zero additional cost:
39 ///
40 /// ```
41 /// let pid = current!().group_leader().pid();
42 /// ```
43 ///
44 /// Getting the current task and storing it in some struct. The reference count is automatically
45 /// incremented when creating `State` and decremented when it is dropped:
46 ///
47 /// ```
48 /// use kernel::{task::Task, types::ARef};
49 ///
50 /// struct State {
51 ///     creator: ARef<Task>,
52 ///     index: u32,
53 /// }
54 ///
55 /// impl State {
56 ///     fn new() -> Self {
57 ///         Self {
58 ///             creator: current!().into(),
59 ///             index: 0,
60 ///         }
61 ///     }
62 /// }
63 /// ```
64 #[repr(transparent)]
65 pub struct Task(pub(crate) Opaque<bindings::task_struct>);
66 
67 // SAFETY: It's OK to access `Task` through references from other threads because we're either
68 // accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
69 // synchronised by C code (e.g., `signal_pending`).
70 unsafe impl Sync for Task {}
71 
72 /// The type of process identifiers (PIDs).
73 type Pid = bindings::pid_t;
74 
75 impl Task {
76     /// Returns a task reference for the currently executing task/thread.
77     ///
78     /// The recommended way to get the current task/thread is to use the
79     /// [`current`](crate::current) macro because it is safe.
80     ///
81     /// # Safety
82     ///
83     /// Callers must ensure that the returned object doesn't outlive the current task/thread.
84     pub unsafe fn current() -> impl Deref<Target = Task> {
85         struct TaskRef<'a> {
86             task: &'a Task,
87             _not_send: PhantomData<*mut ()>,
88         }
89 
90         impl Deref for TaskRef<'_> {
91             type Target = Task;
92 
93             fn deref(&self) -> &Self::Target {
94                 self.task
95             }
96         }
97 
98         // SAFETY: Just an FFI call with no additional safety requirements.
99         let ptr = unsafe { bindings::get_current() };
100 
101         TaskRef {
102             // SAFETY: If the current thread is still running, the current task is valid. Given
103             // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread
104             // (where it could potentially outlive the caller).
105             task: unsafe { &*ptr.cast() },
106             _not_send: PhantomData,
107         }
108     }
109 
110     /// Returns the group leader of the given task.
111     pub fn group_leader(&self) -> &Task {
112         // SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always
113         // have a valid group_leader.
114         let ptr = unsafe { *ptr::addr_of!((*self.0.get()).group_leader) };
115 
116         // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
117         // and given that a task has a reference to its group leader, we know it must be valid for
118         // the lifetime of the returned task reference.
119         unsafe { &*ptr.cast() }
120     }
121 
122     /// Returns the PID of the given task.
123     pub fn pid(&self) -> Pid {
124         // SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always
125         // have a valid pid.
126         unsafe { *ptr::addr_of!((*self.0.get()).pid) }
127     }
128 
129     /// Determines whether the given task has pending signals.
130     pub fn signal_pending(&self) -> bool {
131         // SAFETY: By the type invariant, we know that `self.0` is valid.
132         unsafe { bindings::signal_pending(self.0.get()) != 0 }
133     }
134 
135     /// Wakes up the task.
136     pub fn wake_up(&self) {
137         // SAFETY: By the type invariant, we know that `self.0.get()` is non-null and valid.
138         // And `wake_up_process` is safe to be called for any valid task, even if the task is
139         // running.
140         unsafe { bindings::wake_up_process(self.0.get()) };
141     }
142 }
143 
144 // SAFETY: The type invariants guarantee that `Task` is always ref-counted.
145 unsafe impl crate::types::AlwaysRefCounted for Task {
146     fn inc_ref(&self) {
147         // SAFETY: The existence of a shared reference means that the refcount is nonzero.
148         unsafe { bindings::get_task_struct(self.0.get()) };
149     }
150 
151     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
152         // SAFETY: The safety requirements guarantee that the refcount is nonzero.
153         unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
154     }
155 }
156