1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Tasks (threads and processes). 4 //! 5 //! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h). 6 7 use crate::{ 8 bindings, 9 ffi::{c_int, c_long, c_uint}, 10 mm::MmWithUser, 11 pid_namespace::PidNamespace, 12 types::{ARef, NotThreadSafe, Opaque}, 13 }; 14 use core::{ 15 cmp::{Eq, PartialEq}, 16 ops::Deref, 17 ptr, 18 }; 19 20 /// A sentinel value used for infinite timeouts. 21 pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX; 22 23 /// Bitmask for tasks that are sleeping in an interruptible state. 24 pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int; 25 /// Bitmask for tasks that are sleeping in an uninterruptible state. 26 pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int; 27 /// Bitmask for tasks that are sleeping in a freezable state. 28 pub const TASK_FREEZABLE: c_int = bindings::TASK_FREEZABLE as c_int; 29 /// Convenience constant for waking up tasks regardless of whether they are in interruptible or 30 /// uninterruptible sleep. 31 pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint; 32 33 /// Returns the currently running task. 34 #[macro_export] 35 macro_rules! current { 36 () => { 37 // SAFETY: This expression creates a temporary value that is dropped at the end of the 38 // caller's scope. The following mechanisms ensure that the resulting `&CurrentTask` cannot 39 // leave current task context: 40 // 41 // * To return to userspace, the caller must leave the current scope. 42 // * Operations such as `begin_new_exec()` are necessarily unsafe and the caller of 43 // `begin_new_exec()` is responsible for safety. 44 // * Rust abstractions for things such as a `kthread_use_mm()` scope must require the 45 // closure to be `Send`, so the `NotThreadSafe` field of `CurrentTask` ensures that the 46 // `&CurrentTask` cannot cross the scope in either direction. 47 unsafe { &*$crate::task::Task::current() } 48 }; 49 } 50 51 /// Wraps the kernel's `struct task_struct`. 52 /// 53 /// # Invariants 54 /// 55 /// All instances are valid tasks created by the C portion of the kernel. 56 /// 57 /// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures 58 /// that the allocation remains valid at least until the matching call to `put_task_struct`. 59 /// 60 /// # Examples 61 /// 62 /// The following is an example of getting the PID of the current thread with zero additional cost 63 /// when compared to the C version: 64 /// 65 /// ``` 66 /// let pid = current!().pid(); 67 /// ``` 68 /// 69 /// Getting the PID of the current process, also zero additional cost: 70 /// 71 /// ``` 72 /// let pid = current!().group_leader().pid(); 73 /// ``` 74 /// 75 /// Getting the current task and storing it in some struct. The reference count is automatically 76 /// incremented when creating `State` and decremented when it is dropped: 77 /// 78 /// ``` 79 /// use kernel::{task::Task, types::ARef}; 80 /// 81 /// struct State { 82 /// creator: ARef<Task>, 83 /// index: u32, 84 /// } 85 /// 86 /// impl State { 87 /// fn new() -> Self { 88 /// Self { 89 /// creator: ARef::from(&**current!()), 90 /// index: 0, 91 /// } 92 /// } 93 /// } 94 /// ``` 95 #[repr(transparent)] 96 pub struct Task(pub(crate) Opaque<bindings::task_struct>); 97 98 // SAFETY: By design, the only way to access a `Task` is via the `current` function or via an 99 // `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in 100 // which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor 101 // runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`. 102 unsafe impl Send for Task {} 103 104 // SAFETY: It's OK to access `Task` through shared references from other threads because we're 105 // either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly 106 // synchronised by C code (e.g., `signal_pending`). 107 unsafe impl Sync for Task {} 108 109 /// Represents the [`Task`] in the `current` global. 110 /// 111 /// This type exists to provide more efficient operations that are only valid on the current task. 112 /// For example, to retrieve the pid-namespace of a task, you must use rcu protection unless it is 113 /// the current task. 114 /// 115 /// # Invariants 116 /// 117 /// Each value of this type must only be accessed from the task context it was created within. 118 /// 119 /// Of course, every thread is in a different task context, but for the purposes of this invariant, 120 /// these operations also permanently leave the task context: 121 /// 122 /// * Returning to userspace from system call context. 123 /// * Calling `release_task()`. 124 /// * Calling `begin_new_exec()` in a binary format loader. 125 /// 126 /// Other operations temporarily create a new sub-context: 127 /// 128 /// * Calling `kthread_use_mm()` creates a new context, and `kthread_unuse_mm()` returns to the 129 /// old context. 130 /// 131 /// This means that a `CurrentTask` obtained before a `kthread_use_mm()` call may be used again 132 /// once `kthread_unuse_mm()` is called, but it must not be used between these two calls. 133 /// Conversely, a `CurrentTask` obtained between a `kthread_use_mm()`/`kthread_unuse_mm()` pair 134 /// must not be used after `kthread_unuse_mm()`. 135 #[repr(transparent)] 136 pub struct CurrentTask(Task, NotThreadSafe); 137 138 // Make all `Task` methods available on `CurrentTask`. 139 impl Deref for CurrentTask { 140 type Target = Task; 141 #[inline] 142 fn deref(&self) -> &Task { 143 &self.0 144 } 145 } 146 147 /// The type of process identifiers (PIDs). 148 pub type Pid = bindings::pid_t; 149 150 /// The type of user identifiers (UIDs). 151 #[derive(Copy, Clone)] 152 pub struct Kuid { 153 kuid: bindings::kuid_t, 154 } 155 156 impl Task { 157 /// Returns a raw pointer to the current task. 158 /// 159 /// It is up to the user to use the pointer correctly. 160 #[inline] 161 pub fn current_raw() -> *mut bindings::task_struct { 162 // SAFETY: Getting the current pointer is always safe. 163 unsafe { bindings::get_current() } 164 } 165 166 /// Returns a task reference for the currently executing task/thread. 167 /// 168 /// The recommended way to get the current task/thread is to use the 169 /// [`current`] macro because it is safe. 170 /// 171 /// # Safety 172 /// 173 /// Callers must ensure that the returned object is only used to access a [`CurrentTask`] 174 /// within the task context that was active when this function was called. For more details, 175 /// see the invariants section for [`CurrentTask`]. 176 #[inline] 177 pub unsafe fn current() -> impl Deref<Target = CurrentTask> { 178 struct TaskRef { 179 task: *const CurrentTask, 180 } 181 182 impl Deref for TaskRef { 183 type Target = CurrentTask; 184 185 fn deref(&self) -> &Self::Target { 186 // SAFETY: The returned reference borrows from this `TaskRef`, so it cannot outlive 187 // the `TaskRef`, which the caller of `Task::current()` has promised will not 188 // outlive the task/thread for which `self.task` is the `current` pointer. Thus, it 189 // is okay to return a `CurrentTask` reference here. 190 unsafe { &*self.task } 191 } 192 } 193 194 TaskRef { 195 // CAST: The layout of `struct task_struct` and `CurrentTask` is identical. 196 task: Task::current_raw().cast(), 197 } 198 } 199 200 /// Returns a raw pointer to the task. 201 #[inline] 202 pub fn as_ptr(&self) -> *mut bindings::task_struct { 203 self.0.get() 204 } 205 206 /// Returns the group leader of the given task. 207 pub fn group_leader(&self) -> &Task { 208 // SAFETY: The group leader of a task never changes after initialization, so reading this 209 // field is not a data race. 210 let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) }; 211 212 // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`, 213 // and given that a task has a reference to its group leader, we know it must be valid for 214 // the lifetime of the returned task reference. 215 unsafe { &*ptr.cast() } 216 } 217 218 /// Returns the PID of the given task. 219 pub fn pid(&self) -> Pid { 220 // SAFETY: The pid of a task never changes after initialization, so reading this field is 221 // not a data race. 222 unsafe { *ptr::addr_of!((*self.as_ptr()).pid) } 223 } 224 225 /// Returns the UID of the given task. 226 #[inline] 227 pub fn uid(&self) -> Kuid { 228 // SAFETY: It's always safe to call `task_uid` on a valid task. 229 Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) }) 230 } 231 232 /// Returns the effective UID of the given task. 233 #[inline] 234 pub fn euid(&self) -> Kuid { 235 // SAFETY: It's always safe to call `task_euid` on a valid task. 236 Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) }) 237 } 238 239 /// Determines whether the given task has pending signals. 240 #[inline] 241 pub fn signal_pending(&self) -> bool { 242 // SAFETY: It's always safe to call `signal_pending` on a valid task. 243 unsafe { bindings::signal_pending(self.as_ptr()) != 0 } 244 } 245 246 /// Returns task's pid namespace with elevated reference count 247 #[inline] 248 pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> { 249 // SAFETY: By the type invariant, we know that `self.0` is valid. 250 let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) }; 251 if ptr.is_null() { 252 None 253 } else { 254 // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a 255 // reference count via `task_get_pid_ns()`. 256 // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`. 257 Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) }) 258 } 259 } 260 261 /// Returns the given task's pid in the provided pid namespace. 262 #[doc(alias = "task_tgid_nr_ns")] 263 #[inline] 264 pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid { 265 let pidns = match pidns { 266 Some(pidns) => pidns.as_ptr(), 267 None => core::ptr::null_mut(), 268 }; 269 // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid 270 // PidNamespace that we can use as a pointer or we received an empty PidNamespace and 271 // thus pass a null pointer. The underlying C function is safe to be used with NULL 272 // pointers. 273 unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) } 274 } 275 276 /// Wakes up the task. 277 #[inline] 278 pub fn wake_up(&self) { 279 // SAFETY: It's always safe to call `wake_up_process` on a valid task, even if the task 280 // running. 281 unsafe { bindings::wake_up_process(self.as_ptr()) }; 282 } 283 } 284 285 impl CurrentTask { 286 /// Access the address space of the current task. 287 /// 288 /// This function does not touch the refcount of the mm. 289 #[inline] 290 pub fn mm(&self) -> Option<&MmWithUser> { 291 // SAFETY: The `mm` field of `current` is not modified from other threads, so reading it is 292 // not a data race. 293 let mm = unsafe { (*self.as_ptr()).mm }; 294 295 if mm.is_null() { 296 return None; 297 } 298 299 // SAFETY: If `current->mm` is non-null, then it references a valid mm with a non-zero 300 // value of `mm_users`. Furthermore, the returned `&MmWithUser` borrows from this 301 // `CurrentTask`, so it cannot escape the scope in which the current pointer was obtained. 302 // 303 // This is safe even if `kthread_use_mm()`/`kthread_unuse_mm()` are used. There are two 304 // relevant cases: 305 // * If the `&CurrentTask` was created before `kthread_use_mm()`, then it cannot be 306 // accessed during the `kthread_use_mm()`/`kthread_unuse_mm()` scope due to the 307 // `NotThreadSafe` field of `CurrentTask`. 308 // * If the `&CurrentTask` was created within a `kthread_use_mm()`/`kthread_unuse_mm()` 309 // scope, then the `&CurrentTask` cannot escape that scope, so the returned `&MmWithUser` 310 // also cannot escape that scope. 311 // In either case, it's not possible to read `current->mm` and keep using it after the 312 // scope is ended with `kthread_unuse_mm()`. 313 Some(unsafe { MmWithUser::from_raw(mm) }) 314 } 315 316 /// Access the pid namespace of the current task. 317 /// 318 /// This function does not touch the refcount of the namespace or use RCU protection. 319 /// 320 /// To access the pid namespace of another task, see [`Task::get_pid_ns`]. 321 #[doc(alias = "task_active_pid_ns")] 322 #[inline] 323 pub fn active_pid_ns(&self) -> Option<&PidNamespace> { 324 // SAFETY: It is safe to call `task_active_pid_ns` without RCU protection when calling it 325 // on the current task. 326 let active_ns = unsafe { bindings::task_active_pid_ns(self.as_ptr()) }; 327 328 if active_ns.is_null() { 329 return None; 330 } 331 332 // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`. 333 // 334 // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive. 335 // 336 // From system call context retrieving the `PidNamespace` for the current task is always 337 // safe and requires neither RCU locking nor a reference count to be held. Retrieving the 338 // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath 339 // like that is exposed to Rust. 340 // 341 // SAFETY: If `current`'s pid ns is non-null, then it references a valid pid ns. 342 // Furthermore, the returned `&PidNamespace` borrows from this `CurrentTask`, so it cannot 343 // escape the scope in which the current pointer was obtained, e.g. it cannot live past a 344 // `release_task()` call. 345 Some(unsafe { PidNamespace::from_ptr(active_ns) }) 346 } 347 } 348 349 // SAFETY: The type invariants guarantee that `Task` is always refcounted. 350 unsafe impl crate::types::AlwaysRefCounted for Task { 351 #[inline] 352 fn inc_ref(&self) { 353 // SAFETY: The existence of a shared reference means that the refcount is nonzero. 354 unsafe { bindings::get_task_struct(self.as_ptr()) }; 355 } 356 357 #[inline] 358 unsafe fn dec_ref(obj: ptr::NonNull<Self>) { 359 // SAFETY: The safety requirements guarantee that the refcount is nonzero. 360 unsafe { bindings::put_task_struct(obj.cast().as_ptr()) } 361 } 362 } 363 364 impl Kuid { 365 /// Get the current euid. 366 #[inline] 367 pub fn current_euid() -> Kuid { 368 // SAFETY: Just an FFI call. 369 Self::from_raw(unsafe { bindings::current_euid() }) 370 } 371 372 /// Create a `Kuid` given the raw C type. 373 #[inline] 374 pub fn from_raw(kuid: bindings::kuid_t) -> Self { 375 Self { kuid } 376 } 377 378 /// Turn this kuid into the raw C type. 379 #[inline] 380 pub fn into_raw(self) -> bindings::kuid_t { 381 self.kuid 382 } 383 384 /// Converts this kernel UID into a userspace UID. 385 /// 386 /// Uses the namespace of the current task. 387 #[inline] 388 pub fn into_uid_in_current_ns(self) -> bindings::uid_t { 389 // SAFETY: Just an FFI call. 390 unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) } 391 } 392 } 393 394 impl PartialEq for Kuid { 395 #[inline] 396 fn eq(&self, other: &Kuid) -> bool { 397 // SAFETY: Just an FFI call. 398 unsafe { bindings::uid_eq(self.kuid, other.kuid) } 399 } 400 } 401 402 impl Eq for Kuid {} 403 404 /// Annotation for functions that can sleep. 405 /// 406 /// Equivalent to the C side [`might_sleep()`], this function serves as 407 /// a debugging aid and a potential scheduling point. 408 /// 409 /// This function can only be used in a nonatomic context. 410 /// 411 /// [`might_sleep()`]: https://docs.kernel.org/driver-api/basics.html#c.might_sleep 412 #[track_caller] 413 #[inline] 414 pub fn might_sleep() { 415 #[cfg(CONFIG_DEBUG_ATOMIC_SLEEP)] 416 { 417 let loc = core::panic::Location::caller(); 418 let file = kernel::file_from_location(loc); 419 420 // SAFETY: `file.as_ptr()` is valid for reading and guaranteed to be nul-terminated. 421 unsafe { crate::bindings::__might_sleep(file.as_ptr().cast(), loc.line() as i32) } 422 } 423 424 // SAFETY: Always safe to call. 425 unsafe { crate::bindings::might_resched() } 426 } 427