1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Tasks (threads and processes). 4 //! 5 //! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h). 6 7 use crate::{ 8 bindings, 9 ffi::{c_int, c_long, c_uint}, 10 pid_namespace::PidNamespace, 11 types::{ARef, NotThreadSafe, Opaque}, 12 }; 13 use core::{ 14 cmp::{Eq, PartialEq}, 15 ops::Deref, 16 ptr, 17 }; 18 19 /// A sentinel value used for infinite timeouts. 20 pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX; 21 22 /// Bitmask for tasks that are sleeping in an interruptible state. 23 pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int; 24 /// Bitmask for tasks that are sleeping in an uninterruptible state. 25 pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int; 26 /// Convenience constant for waking up tasks regardless of whether they are in interruptible or 27 /// uninterruptible sleep. 28 pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint; 29 30 /// Returns the currently running task. 31 #[macro_export] 32 macro_rules! current { 33 () => { 34 // SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the 35 // caller. 36 unsafe { &*$crate::task::Task::current() } 37 }; 38 } 39 40 /// Returns the currently running task's pid namespace. 41 #[macro_export] 42 macro_rules! current_pid_ns { 43 () => { 44 // SAFETY: Deref + addr-of below create a temporary `PidNamespaceRef` that cannot outlive 45 // the caller. 46 unsafe { &*$crate::task::Task::current_pid_ns() } 47 }; 48 } 49 50 /// Wraps the kernel's `struct task_struct`. 51 /// 52 /// # Invariants 53 /// 54 /// All instances are valid tasks created by the C portion of the kernel. 55 /// 56 /// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures 57 /// that the allocation remains valid at least until the matching call to `put_task_struct`. 58 /// 59 /// # Examples 60 /// 61 /// The following is an example of getting the PID of the current thread with zero additional cost 62 /// when compared to the C version: 63 /// 64 /// ``` 65 /// let pid = current!().pid(); 66 /// ``` 67 /// 68 /// Getting the PID of the current process, also zero additional cost: 69 /// 70 /// ``` 71 /// let pid = current!().group_leader().pid(); 72 /// ``` 73 /// 74 /// Getting the current task and storing it in some struct. The reference count is automatically 75 /// incremented when creating `State` and decremented when it is dropped: 76 /// 77 /// ``` 78 /// use kernel::{task::Task, types::ARef}; 79 /// 80 /// struct State { 81 /// creator: ARef<Task>, 82 /// index: u32, 83 /// } 84 /// 85 /// impl State { 86 /// fn new() -> Self { 87 /// Self { 88 /// creator: current!().into(), 89 /// index: 0, 90 /// } 91 /// } 92 /// } 93 /// ``` 94 #[repr(transparent)] 95 pub struct Task(pub(crate) Opaque<bindings::task_struct>); 96 97 // SAFETY: By design, the only way to access a `Task` is via the `current` function or via an 98 // `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in 99 // which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor 100 // runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`. 101 unsafe impl Send for Task {} 102 103 // SAFETY: It's OK to access `Task` through shared references from other threads because we're 104 // either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly 105 // synchronised by C code (e.g., `signal_pending`). 106 unsafe impl Sync for Task {} 107 108 /// The type of process identifiers (PIDs). 109 type Pid = bindings::pid_t; 110 111 /// The type of user identifiers (UIDs). 112 #[derive(Copy, Clone)] 113 pub struct Kuid { 114 kuid: bindings::kuid_t, 115 } 116 117 impl Task { 118 /// Returns a raw pointer to the current task. 119 /// 120 /// It is up to the user to use the pointer correctly. 121 #[inline] 122 pub fn current_raw() -> *mut bindings::task_struct { 123 // SAFETY: Getting the current pointer is always safe. 124 unsafe { bindings::get_current() } 125 } 126 127 /// Returns a task reference for the currently executing task/thread. 128 /// 129 /// The recommended way to get the current task/thread is to use the 130 /// [`current`] macro because it is safe. 131 /// 132 /// # Safety 133 /// 134 /// Callers must ensure that the returned object doesn't outlive the current task/thread. 135 pub unsafe fn current() -> impl Deref<Target = Task> { 136 struct TaskRef<'a> { 137 task: &'a Task, 138 _not_send: NotThreadSafe, 139 } 140 141 impl Deref for TaskRef<'_> { 142 type Target = Task; 143 144 fn deref(&self) -> &Self::Target { 145 self.task 146 } 147 } 148 149 let current = Task::current_raw(); 150 TaskRef { 151 // SAFETY: If the current thread is still running, the current task is valid. Given 152 // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread 153 // (where it could potentially outlive the caller). 154 task: unsafe { &*current.cast() }, 155 _not_send: NotThreadSafe, 156 } 157 } 158 159 /// Returns a PidNamespace reference for the currently executing task's/thread's pid namespace. 160 /// 161 /// This function can be used to create an unbounded lifetime by e.g., storing the returned 162 /// PidNamespace in a global variable which would be a bug. So the recommended way to get the 163 /// current task's/thread's pid namespace is to use the [`current_pid_ns`] macro because it is 164 /// safe. 165 /// 166 /// # Safety 167 /// 168 /// Callers must ensure that the returned object doesn't outlive the current task/thread. 169 pub unsafe fn current_pid_ns() -> impl Deref<Target = PidNamespace> { 170 struct PidNamespaceRef<'a> { 171 task: &'a PidNamespace, 172 _not_send: NotThreadSafe, 173 } 174 175 impl Deref for PidNamespaceRef<'_> { 176 type Target = PidNamespace; 177 178 fn deref(&self) -> &Self::Target { 179 self.task 180 } 181 } 182 183 // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`. 184 // 185 // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive. A 186 // `unshare(CLONE_NEWPID)` or `setns(fd_pidns/pidfd, CLONE_NEWPID)` will not have an effect 187 // on the calling `Task`'s pid namespace. It will only effect the pid namespace of children 188 // created by the calling `Task`. This invariant guarantees that after having acquired a 189 // reference to a `Task`'s pid namespace it will remain unchanged. 190 // 191 // When a task has exited and been reaped `release_task()` will be called. This will set 192 // the `PidNamespace` of the task to `NULL`. So retrieving the `PidNamespace` of a task 193 // that is dead will return `NULL`. Note, that neither holding the RCU lock nor holding a 194 // referencing count to 195 // the `Task` will prevent `release_task()` being called. 196 // 197 // In order to retrieve the `PidNamespace` of a `Task` the `task_active_pid_ns()` function 198 // can be used. There are two cases to consider: 199 // 200 // (1) retrieving the `PidNamespace` of the `current` task 201 // (2) retrieving the `PidNamespace` of a non-`current` task 202 // 203 // From system call context retrieving the `PidNamespace` for case (1) is always safe and 204 // requires neither RCU locking nor a reference count to be held. Retrieving the 205 // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath 206 // like that is exposed to Rust. 207 // 208 // Retrieving the `PidNamespace` from system call context for (2) requires RCU protection. 209 // Accessing `PidNamespace` outside of RCU protection requires a reference count that 210 // must've been acquired while holding the RCU lock. Note that accessing a non-`current` 211 // task means `NULL` can be returned as the non-`current` task could have already passed 212 // through `release_task()`. 213 // 214 // To retrieve (1) the `current_pid_ns!()` macro should be used which ensure that the 215 // returned `PidNamespace` cannot outlive the calling scope. The associated 216 // `current_pid_ns()` function should not be called directly as it could be abused to 217 // created an unbounded lifetime for `PidNamespace`. The `current_pid_ns!()` macro allows 218 // Rust to handle the common case of accessing `current`'s `PidNamespace` without RCU 219 // protection and without having to acquire a reference count. 220 // 221 // For (2) the `task_get_pid_ns()` method must be used. This will always acquire a 222 // reference on `PidNamespace` and will return an `Option` to force the caller to 223 // explicitly handle the case where `PidNamespace` is `None`, something that tends to be 224 // forgotten when doing the equivalent operation in `C`. Missing RCU primitives make it 225 // difficult to perform operations that are otherwise safe without holding a reference 226 // count as long as RCU protection is guaranteed. But it is not important currently. But we 227 // do want it in the future. 228 // 229 // Note for (2) the required RCU protection around calling `task_active_pid_ns()` 230 // synchronizes against putting the last reference of the associated `struct pid` of 231 // `task->thread_pid`. The `struct pid` stored in that field is used to retrieve the 232 // `PidNamespace` of the caller. When `release_task()` is called `task->thread_pid` will be 233 // `NULL`ed and `put_pid()` on said `struct pid` will be delayed in `free_pid()` via 234 // `call_rcu()` allowing everyone with an RCU protected access to the `struct pid` acquired 235 // from `task->thread_pid` to finish. 236 // 237 // SAFETY: The current task's pid namespace is valid as long as the current task is running. 238 let pidns = unsafe { bindings::task_active_pid_ns(Task::current_raw()) }; 239 PidNamespaceRef { 240 // SAFETY: If the current thread is still running, the current task and its associated 241 // pid namespace are valid. `PidNamespaceRef` is not `Send`, so we know it cannot be 242 // transferred to another thread (where it could potentially outlive the current 243 // `Task`). The caller needs to ensure that the PidNamespaceRef doesn't outlive the 244 // current task/thread. 245 task: unsafe { PidNamespace::from_ptr(pidns) }, 246 _not_send: NotThreadSafe, 247 } 248 } 249 250 /// Returns a raw pointer to the task. 251 #[inline] 252 pub fn as_ptr(&self) -> *mut bindings::task_struct { 253 self.0.get() 254 } 255 256 /// Returns the group leader of the given task. 257 pub fn group_leader(&self) -> &Task { 258 // SAFETY: The group leader of a task never changes after initialization, so reading this 259 // field is not a data race. 260 let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) }; 261 262 // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`, 263 // and given that a task has a reference to its group leader, we know it must be valid for 264 // the lifetime of the returned task reference. 265 unsafe { &*ptr.cast() } 266 } 267 268 /// Returns the PID of the given task. 269 pub fn pid(&self) -> Pid { 270 // SAFETY: The pid of a task never changes after initialization, so reading this field is 271 // not a data race. 272 unsafe { *ptr::addr_of!((*self.as_ptr()).pid) } 273 } 274 275 /// Returns the UID of the given task. 276 pub fn uid(&self) -> Kuid { 277 // SAFETY: It's always safe to call `task_uid` on a valid task. 278 Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) }) 279 } 280 281 /// Returns the effective UID of the given task. 282 pub fn euid(&self) -> Kuid { 283 // SAFETY: It's always safe to call `task_euid` on a valid task. 284 Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) }) 285 } 286 287 /// Determines whether the given task has pending signals. 288 pub fn signal_pending(&self) -> bool { 289 // SAFETY: It's always safe to call `signal_pending` on a valid task. 290 unsafe { bindings::signal_pending(self.as_ptr()) != 0 } 291 } 292 293 /// Returns task's pid namespace with elevated reference count 294 pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> { 295 // SAFETY: By the type invariant, we know that `self.0` is valid. 296 let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) }; 297 if ptr.is_null() { 298 None 299 } else { 300 // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a 301 // reference count via `task_get_pid_ns()`. 302 // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`. 303 Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) }) 304 } 305 } 306 307 /// Returns the given task's pid in the provided pid namespace. 308 #[doc(alias = "task_tgid_nr_ns")] 309 pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid { 310 let pidns = match pidns { 311 Some(pidns) => pidns.as_ptr(), 312 None => core::ptr::null_mut(), 313 }; 314 // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid 315 // PidNamespace that we can use as a pointer or we received an empty PidNamespace and 316 // thus pass a null pointer. The underlying C function is safe to be used with NULL 317 // pointers. 318 unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) } 319 } 320 321 /// Wakes up the task. 322 pub fn wake_up(&self) { 323 // SAFETY: It's always safe to call `signal_pending` on a valid task, even if the task 324 // running. 325 unsafe { bindings::wake_up_process(self.as_ptr()) }; 326 } 327 } 328 329 // SAFETY: The type invariants guarantee that `Task` is always refcounted. 330 unsafe impl crate::types::AlwaysRefCounted for Task { 331 fn inc_ref(&self) { 332 // SAFETY: The existence of a shared reference means that the refcount is nonzero. 333 unsafe { bindings::get_task_struct(self.as_ptr()) }; 334 } 335 336 unsafe fn dec_ref(obj: ptr::NonNull<Self>) { 337 // SAFETY: The safety requirements guarantee that the refcount is nonzero. 338 unsafe { bindings::put_task_struct(obj.cast().as_ptr()) } 339 } 340 } 341 342 impl Kuid { 343 /// Get the current euid. 344 #[inline] 345 pub fn current_euid() -> Kuid { 346 // SAFETY: Just an FFI call. 347 Self::from_raw(unsafe { bindings::current_euid() }) 348 } 349 350 /// Create a `Kuid` given the raw C type. 351 #[inline] 352 pub fn from_raw(kuid: bindings::kuid_t) -> Self { 353 Self { kuid } 354 } 355 356 /// Turn this kuid into the raw C type. 357 #[inline] 358 pub fn into_raw(self) -> bindings::kuid_t { 359 self.kuid 360 } 361 362 /// Converts this kernel UID into a userspace UID. 363 /// 364 /// Uses the namespace of the current task. 365 #[inline] 366 pub fn into_uid_in_current_ns(self) -> bindings::uid_t { 367 // SAFETY: Just an FFI call. 368 unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) } 369 } 370 } 371 372 impl PartialEq for Kuid { 373 #[inline] 374 fn eq(&self, other: &Kuid) -> bool { 375 // SAFETY: Just an FFI call. 376 unsafe { bindings::uid_eq(self.kuid, other.kuid) } 377 } 378 } 379 380 impl Eq for Kuid {} 381