xref: /linux/rust/kernel/task.rs (revision 0c0a19430bfdfedab437e77b9262e8e62ced384e)
1  // SPDX-License-Identifier: GPL-2.0
2  
3  //! Tasks (threads and processes).
4  //!
5  //! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
6  
7  use crate::{
8      bindings,
9      ffi::{c_int, c_long, c_uint},
10      pid_namespace::PidNamespace,
11      types::{ARef, NotThreadSafe, Opaque},
12  };
13  use core::{
14      cmp::{Eq, PartialEq},
15      ops::Deref,
16      ptr,
17  };
18  
19  /// A sentinel value used for infinite timeouts.
20  pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
21  
22  /// Bitmask for tasks that are sleeping in an interruptible state.
23  pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
24  /// Bitmask for tasks that are sleeping in an uninterruptible state.
25  pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
26  /// Convenience constant for waking up tasks regardless of whether they are in interruptible or
27  /// uninterruptible sleep.
28  pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
29  
30  /// Returns the currently running task.
31  #[macro_export]
32  macro_rules! current {
33      () => {
34          // SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the
35          // caller.
36          unsafe { &*$crate::task::Task::current() }
37      };
38  }
39  
40  /// Returns the currently running task's pid namespace.
41  #[macro_export]
42  macro_rules! current_pid_ns {
43      () => {
44          // SAFETY: Deref + addr-of below create a temporary `PidNamespaceRef` that cannot outlive
45          // the caller.
46          unsafe { &*$crate::task::Task::current_pid_ns() }
47      };
48  }
49  
50  /// Wraps the kernel's `struct task_struct`.
51  ///
52  /// # Invariants
53  ///
54  /// All instances are valid tasks created by the C portion of the kernel.
55  ///
56  /// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
57  /// that the allocation remains valid at least until the matching call to `put_task_struct`.
58  ///
59  /// # Examples
60  ///
61  /// The following is an example of getting the PID of the current thread with zero additional cost
62  /// when compared to the C version:
63  ///
64  /// ```
65  /// let pid = current!().pid();
66  /// ```
67  ///
68  /// Getting the PID of the current process, also zero additional cost:
69  ///
70  /// ```
71  /// let pid = current!().group_leader().pid();
72  /// ```
73  ///
74  /// Getting the current task and storing it in some struct. The reference count is automatically
75  /// incremented when creating `State` and decremented when it is dropped:
76  ///
77  /// ```
78  /// use kernel::{task::Task, types::ARef};
79  ///
80  /// struct State {
81  ///     creator: ARef<Task>,
82  ///     index: u32,
83  /// }
84  ///
85  /// impl State {
86  ///     fn new() -> Self {
87  ///         Self {
88  ///             creator: current!().into(),
89  ///             index: 0,
90  ///         }
91  ///     }
92  /// }
93  /// ```
94  #[repr(transparent)]
95  pub struct Task(pub(crate) Opaque<bindings::task_struct>);
96  
97  // SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
98  // `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
99  // which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
100  // runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
101  unsafe impl Send for Task {}
102  
103  // SAFETY: It's OK to access `Task` through shared references from other threads because we're
104  // either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
105  // synchronised by C code (e.g., `signal_pending`).
106  unsafe impl Sync for Task {}
107  
108  /// The type of process identifiers (PIDs).
109  type Pid = bindings::pid_t;
110  
111  /// The type of user identifiers (UIDs).
112  #[derive(Copy, Clone)]
113  pub struct Kuid {
114      kuid: bindings::kuid_t,
115  }
116  
117  impl Task {
118      /// Returns a raw pointer to the current task.
119      ///
120      /// It is up to the user to use the pointer correctly.
121      #[inline]
122      pub fn current_raw() -> *mut bindings::task_struct {
123          // SAFETY: Getting the current pointer is always safe.
124          unsafe { bindings::get_current() }
125      }
126  
127      /// Returns a task reference for the currently executing task/thread.
128      ///
129      /// The recommended way to get the current task/thread is to use the
130      /// [`current`] macro because it is safe.
131      ///
132      /// # Safety
133      ///
134      /// Callers must ensure that the returned object doesn't outlive the current task/thread.
135      pub unsafe fn current() -> impl Deref<Target = Task> {
136          struct TaskRef<'a> {
137              task: &'a Task,
138              _not_send: NotThreadSafe,
139          }
140  
141          impl Deref for TaskRef<'_> {
142              type Target = Task;
143  
144              fn deref(&self) -> &Self::Target {
145                  self.task
146              }
147          }
148  
149          let current = Task::current_raw();
150          TaskRef {
151              // SAFETY: If the current thread is still running, the current task is valid. Given
152              // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread
153              // (where it could potentially outlive the caller).
154              task: unsafe { &*current.cast() },
155              _not_send: NotThreadSafe,
156          }
157      }
158  
159      /// Returns a PidNamespace reference for the currently executing task's/thread's pid namespace.
160      ///
161      /// This function can be used to create an unbounded lifetime by e.g., storing the returned
162      /// PidNamespace in a global variable which would be a bug. So the recommended way to get the
163      /// current task's/thread's pid namespace is to use the [`current_pid_ns`] macro because it is
164      /// safe.
165      ///
166      /// # Safety
167      ///
168      /// Callers must ensure that the returned object doesn't outlive the current task/thread.
169      pub unsafe fn current_pid_ns() -> impl Deref<Target = PidNamespace> {
170          struct PidNamespaceRef<'a> {
171              task: &'a PidNamespace,
172              _not_send: NotThreadSafe,
173          }
174  
175          impl Deref for PidNamespaceRef<'_> {
176              type Target = PidNamespace;
177  
178              fn deref(&self) -> &Self::Target {
179                  self.task
180              }
181          }
182  
183          // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`.
184          //
185          // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive. A
186          // `unshare(CLONE_NEWPID)` or `setns(fd_pidns/pidfd, CLONE_NEWPID)` will not have an effect
187          // on the calling `Task`'s pid namespace. It will only effect the pid namespace of children
188          // created by the calling `Task`. This invariant guarantees that after having acquired a
189          // reference to a `Task`'s pid namespace it will remain unchanged.
190          //
191          // When a task has exited and been reaped `release_task()` will be called. This will set
192          // the `PidNamespace` of the task to `NULL`. So retrieving the `PidNamespace` of a task
193          // that is dead will return `NULL`. Note, that neither holding the RCU lock nor holding a
194          // referencing count to
195          // the `Task` will prevent `release_task()` being called.
196          //
197          // In order to retrieve the `PidNamespace` of a `Task` the `task_active_pid_ns()` function
198          // can be used. There are two cases to consider:
199          //
200          // (1) retrieving the `PidNamespace` of the `current` task
201          // (2) retrieving the `PidNamespace` of a non-`current` task
202          //
203          // From system call context retrieving the `PidNamespace` for case (1) is always safe and
204          // requires neither RCU locking nor a reference count to be held. Retrieving the
205          // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath
206          // like that is exposed to Rust.
207          //
208          // Retrieving the `PidNamespace` from system call context for (2) requires RCU protection.
209          // Accessing `PidNamespace` outside of RCU protection requires a reference count that
210          // must've been acquired while holding the RCU lock. Note that accessing a non-`current`
211          // task means `NULL` can be returned as the non-`current` task could have already passed
212          // through `release_task()`.
213          //
214          // To retrieve (1) the `current_pid_ns!()` macro should be used which ensure that the
215          // returned `PidNamespace` cannot outlive the calling scope. The associated
216          // `current_pid_ns()` function should not be called directly as it could be abused to
217          // created an unbounded lifetime for `PidNamespace`. The `current_pid_ns!()` macro allows
218          // Rust to handle the common case of accessing `current`'s `PidNamespace` without RCU
219          // protection and without having to acquire a reference count.
220          //
221          // For (2) the `task_get_pid_ns()` method must be used. This will always acquire a
222          // reference on `PidNamespace` and will return an `Option` to force the caller to
223          // explicitly handle the case where `PidNamespace` is `None`, something that tends to be
224          // forgotten when doing the equivalent operation in `C`. Missing RCU primitives make it
225          // difficult to perform operations that are otherwise safe without holding a reference
226          // count as long as RCU protection is guaranteed. But it is not important currently. But we
227          // do want it in the future.
228          //
229          // Note for (2) the required RCU protection around calling `task_active_pid_ns()`
230          // synchronizes against putting the last reference of the associated `struct pid` of
231          // `task->thread_pid`. The `struct pid` stored in that field is used to retrieve the
232          // `PidNamespace` of the caller. When `release_task()` is called `task->thread_pid` will be
233          // `NULL`ed and `put_pid()` on said `struct pid` will be delayed in `free_pid()` via
234          // `call_rcu()` allowing everyone with an RCU protected access to the `struct pid` acquired
235          // from `task->thread_pid` to finish.
236          //
237          // SAFETY: The current task's pid namespace is valid as long as the current task is running.
238          let pidns = unsafe { bindings::task_active_pid_ns(Task::current_raw()) };
239          PidNamespaceRef {
240              // SAFETY: If the current thread is still running, the current task and its associated
241              // pid namespace are valid. `PidNamespaceRef` is not `Send`, so we know it cannot be
242              // transferred to another thread (where it could potentially outlive the current
243              // `Task`). The caller needs to ensure that the PidNamespaceRef doesn't outlive the
244              // current task/thread.
245              task: unsafe { PidNamespace::from_ptr(pidns) },
246              _not_send: NotThreadSafe,
247          }
248      }
249  
250      /// Returns a raw pointer to the task.
251      #[inline]
252      pub fn as_ptr(&self) -> *mut bindings::task_struct {
253          self.0.get()
254      }
255  
256      /// Returns the group leader of the given task.
257      pub fn group_leader(&self) -> &Task {
258          // SAFETY: The group leader of a task never changes after initialization, so reading this
259          // field is not a data race.
260          let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) };
261  
262          // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
263          // and given that a task has a reference to its group leader, we know it must be valid for
264          // the lifetime of the returned task reference.
265          unsafe { &*ptr.cast() }
266      }
267  
268      /// Returns the PID of the given task.
269      pub fn pid(&self) -> Pid {
270          // SAFETY: The pid of a task never changes after initialization, so reading this field is
271          // not a data race.
272          unsafe { *ptr::addr_of!((*self.as_ptr()).pid) }
273      }
274  
275      /// Returns the UID of the given task.
276      pub fn uid(&self) -> Kuid {
277          // SAFETY: It's always safe to call `task_uid` on a valid task.
278          Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) })
279      }
280  
281      /// Returns the effective UID of the given task.
282      pub fn euid(&self) -> Kuid {
283          // SAFETY: It's always safe to call `task_euid` on a valid task.
284          Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) })
285      }
286  
287      /// Determines whether the given task has pending signals.
288      pub fn signal_pending(&self) -> bool {
289          // SAFETY: It's always safe to call `signal_pending` on a valid task.
290          unsafe { bindings::signal_pending(self.as_ptr()) != 0 }
291      }
292  
293      /// Returns task's pid namespace with elevated reference count
294      pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> {
295          // SAFETY: By the type invariant, we know that `self.0` is valid.
296          let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) };
297          if ptr.is_null() {
298              None
299          } else {
300              // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a
301              // reference count via `task_get_pid_ns()`.
302              // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`.
303              Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) })
304          }
305      }
306  
307      /// Returns the given task's pid in the provided pid namespace.
308      #[doc(alias = "task_tgid_nr_ns")]
309      pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid {
310          let pidns = match pidns {
311              Some(pidns) => pidns.as_ptr(),
312              None => core::ptr::null_mut(),
313          };
314          // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid
315          // PidNamespace that we can use as a pointer or we received an empty PidNamespace and
316          // thus pass a null pointer. The underlying C function is safe to be used with NULL
317          // pointers.
318          unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) }
319      }
320  
321      /// Wakes up the task.
322      pub fn wake_up(&self) {
323          // SAFETY: It's always safe to call `signal_pending` on a valid task, even if the task
324          // running.
325          unsafe { bindings::wake_up_process(self.as_ptr()) };
326      }
327  }
328  
329  // SAFETY: The type invariants guarantee that `Task` is always refcounted.
330  unsafe impl crate::types::AlwaysRefCounted for Task {
331      fn inc_ref(&self) {
332          // SAFETY: The existence of a shared reference means that the refcount is nonzero.
333          unsafe { bindings::get_task_struct(self.as_ptr()) };
334      }
335  
336      unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
337          // SAFETY: The safety requirements guarantee that the refcount is nonzero.
338          unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
339      }
340  }
341  
342  impl Kuid {
343      /// Get the current euid.
344      #[inline]
345      pub fn current_euid() -> Kuid {
346          // SAFETY: Just an FFI call.
347          Self::from_raw(unsafe { bindings::current_euid() })
348      }
349  
350      /// Create a `Kuid` given the raw C type.
351      #[inline]
352      pub fn from_raw(kuid: bindings::kuid_t) -> Self {
353          Self { kuid }
354      }
355  
356      /// Turn this kuid into the raw C type.
357      #[inline]
358      pub fn into_raw(self) -> bindings::kuid_t {
359          self.kuid
360      }
361  
362      /// Converts this kernel UID into a userspace UID.
363      ///
364      /// Uses the namespace of the current task.
365      #[inline]
366      pub fn into_uid_in_current_ns(self) -> bindings::uid_t {
367          // SAFETY: Just an FFI call.
368          unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) }
369      }
370  }
371  
372  impl PartialEq for Kuid {
373      #[inline]
374      fn eq(&self, other: &Kuid) -> bool {
375          // SAFETY: Just an FFI call.
376          unsafe { bindings::uid_eq(self.kuid, other.kuid) }
377      }
378  }
379  
380  impl Eq for Kuid {}
381