xref: /linux/rust/kernel/sync/lock.rs (revision ebc733e54a1a79ea2dde2ba5121ae73a188e20d4)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic kernel lock and guard.
4 //!
5 //! It contains a generic Rust lock and guard that allow for different backends (e.g., mutexes,
6 //! spinlocks, raw spinlocks) to be provided with minimal effort.
7 
8 use super::LockClassKey;
9 use crate::{bindings, init::PinInit, pin_init, str::CStr, types::Opaque, types::ScopeGuard};
10 use core::{cell::UnsafeCell, marker::PhantomData, marker::PhantomPinned};
11 use macros::pin_data;
12 
13 pub mod mutex;
14 pub mod spinlock;
15 
16 /// The "backend" of a lock.
17 ///
18 /// It is the actual implementation of the lock, without the need to repeat patterns used in all
19 /// locks.
20 ///
21 /// # Safety
22 ///
23 /// - Implementers must ensure that only one thread/CPU may access the protected data once the lock
24 /// is owned, that is, between calls to `lock` and `unlock`.
25 /// - Implementers must also ensure that `relock` uses the same locking method as the original
26 /// lock operation.
27 pub unsafe trait Backend {
28     /// The state required by the lock.
29     type State;
30 
31     /// The state required to be kept between lock and unlock.
32     type GuardState;
33 
34     /// Initialises the lock.
35     ///
36     /// # Safety
37     ///
38     /// `ptr` must be valid for write for the duration of the call, while `name` and `key` must
39     /// remain valid for read indefinitely.
40     unsafe fn init(
41         ptr: *mut Self::State,
42         name: *const core::ffi::c_char,
43         key: *mut bindings::lock_class_key,
44     );
45 
46     /// Acquires the lock, making the caller its owner.
47     ///
48     /// # Safety
49     ///
50     /// Callers must ensure that [`Backend::init`] has been previously called.
51     #[must_use]
52     unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState;
53 
54     /// Releases the lock, giving up its ownership.
55     ///
56     /// # Safety
57     ///
58     /// It must only be called by the current owner of the lock.
59     unsafe fn unlock(ptr: *mut Self::State, guard_state: &Self::GuardState);
60 
61     /// Reacquires the lock, making the caller its owner.
62     ///
63     /// # Safety
64     ///
65     /// Callers must ensure that `guard_state` comes from a previous call to [`Backend::lock`] (or
66     /// variant) that has been unlocked with [`Backend::unlock`] and will be relocked now.
67     unsafe fn relock(ptr: *mut Self::State, guard_state: &mut Self::GuardState) {
68         // SAFETY: The safety requirements ensure that the lock is initialised.
69         *guard_state = unsafe { Self::lock(ptr) };
70     }
71 }
72 
73 /// A mutual exclusion primitive.
74 ///
75 /// Exposes one of the kernel locking primitives. Which one is exposed depends on the lock
76 /// [`Backend`] specified as the generic parameter `B`.
77 #[pin_data]
78 pub struct Lock<T: ?Sized, B: Backend> {
79     /// The kernel lock object.
80     #[pin]
81     state: Opaque<B::State>,
82 
83     /// Some locks are known to be self-referential (e.g., mutexes), while others are architecture
84     /// or config defined (e.g., spinlocks). So we conservatively require them to be pinned in case
85     /// some architecture uses self-references now or in the future.
86     #[pin]
87     _pin: PhantomPinned,
88 
89     /// The data protected by the lock.
90     pub(crate) data: UnsafeCell<T>,
91 }
92 
93 // SAFETY: `Lock` can be transferred across thread boundaries iff the data it protects can.
94 unsafe impl<T: ?Sized + Send, B: Backend> Send for Lock<T, B> {}
95 
96 // SAFETY: `Lock` serialises the interior mutability it provides, so it is `Sync` as long as the
97 // data it protects is `Send`.
98 unsafe impl<T: ?Sized + Send, B: Backend> Sync for Lock<T, B> {}
99 
100 impl<T, B: Backend> Lock<T, B> {
101     /// Constructs a new lock initialiser.
102     pub fn new(t: T, name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> {
103         pin_init!(Self {
104             data: UnsafeCell::new(t),
105             _pin: PhantomPinned,
106             // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
107             // static lifetimes so they live indefinitely.
108             state <- Opaque::ffi_init(|slot| unsafe {
109                 B::init(slot, name.as_char_ptr(), key.as_ptr())
110             }),
111         })
112     }
113 }
114 
115 impl<T: ?Sized, B: Backend> Lock<T, B> {
116     /// Acquires the lock and gives the caller access to the data protected by it.
117     pub fn lock(&self) -> Guard<'_, T, B> {
118         // SAFETY: The constructor of the type calls `init`, so the existence of the object proves
119         // that `init` was called.
120         let state = unsafe { B::lock(self.state.get()) };
121         // SAFETY: The lock was just acquired.
122         unsafe { Guard::new(self, state) }
123     }
124 }
125 
126 /// A lock guard.
127 ///
128 /// Allows mutual exclusion primitives that implement the [`Backend`] trait to automatically unlock
129 /// when a guard goes out of scope. It also provides a safe and convenient way to access the data
130 /// protected by the lock.
131 #[must_use = "the lock unlocks immediately when the guard is unused"]
132 pub struct Guard<'a, T: ?Sized, B: Backend> {
133     pub(crate) lock: &'a Lock<T, B>,
134     pub(crate) state: B::GuardState,
135     _not_send: PhantomData<*mut ()>,
136 }
137 
138 // SAFETY: `Guard` is sync when the data protected by the lock is also sync.
139 unsafe impl<T: Sync + ?Sized, B: Backend> Sync for Guard<'_, T, B> {}
140 
141 impl<T: ?Sized, B: Backend> Guard<'_, T, B> {
142     pub(crate) fn do_unlocked(&mut self, cb: impl FnOnce()) {
143         // SAFETY: The caller owns the lock, so it is safe to unlock it.
144         unsafe { B::unlock(self.lock.state.get(), &self.state) };
145 
146         // SAFETY: The lock was just unlocked above and is being relocked now.
147         let _relock =
148             ScopeGuard::new(|| unsafe { B::relock(self.lock.state.get(), &mut self.state) });
149 
150         cb();
151     }
152 }
153 
154 impl<T: ?Sized, B: Backend> core::ops::Deref for Guard<'_, T, B> {
155     type Target = T;
156 
157     fn deref(&self) -> &Self::Target {
158         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
159         unsafe { &*self.lock.data.get() }
160     }
161 }
162 
163 impl<T: ?Sized, B: Backend> core::ops::DerefMut for Guard<'_, T, B> {
164     fn deref_mut(&mut self) -> &mut Self::Target {
165         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
166         unsafe { &mut *self.lock.data.get() }
167     }
168 }
169 
170 impl<T: ?Sized, B: Backend> Drop for Guard<'_, T, B> {
171     fn drop(&mut self) {
172         // SAFETY: The caller owns the lock, so it is safe to unlock it.
173         unsafe { B::unlock(self.lock.state.get(), &self.state) };
174     }
175 }
176 
177 impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B> {
178     /// Constructs a new immutable lock guard.
179     ///
180     /// # Safety
181     ///
182     /// The caller must ensure that it owns the lock.
183     pub(crate) unsafe fn new(lock: &'a Lock<T, B>, state: B::GuardState) -> Self {
184         Self {
185             lock,
186             state,
187             _not_send: PhantomData,
188         }
189     }
190 }
191