xref: /linux/rust/kernel/sync/lock.rs (revision c8b90d40d5bba8e6fba457b8a7c10d3c0d467e37)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic kernel lock and guard.
4 //!
5 //! It contains a generic Rust lock and guard that allow for different backends (e.g., mutexes,
6 //! spinlocks, raw spinlocks) to be provided with minimal effort.
7 
8 use super::LockClassKey;
9 use crate::{
10     init::PinInit,
11     pin_init,
12     str::CStr,
13     types::{NotThreadSafe, Opaque, ScopeGuard},
14 };
15 use core::{cell::UnsafeCell, marker::PhantomPinned};
16 use macros::pin_data;
17 
18 pub mod mutex;
19 pub mod spinlock;
20 
21 pub(super) mod global;
22 pub use global::{GlobalGuard, GlobalLock, GlobalLockBackend, GlobalLockedBy};
23 
24 /// The "backend" of a lock.
25 ///
26 /// It is the actual implementation of the lock, without the need to repeat patterns used in all
27 /// locks.
28 ///
29 /// # Safety
30 ///
31 /// - Implementers must ensure that only one thread/CPU may access the protected data once the lock
32 ///   is owned, that is, between calls to [`lock`] and [`unlock`].
33 /// - Implementers must also ensure that [`relock`] uses the same locking method as the original
34 ///   lock operation.
35 ///
36 /// [`lock`]: Backend::lock
37 /// [`unlock`]: Backend::unlock
38 /// [`relock`]: Backend::relock
39 pub unsafe trait Backend {
40     /// The state required by the lock.
41     type State;
42 
43     /// The state required to be kept between [`lock`] and [`unlock`].
44     ///
45     /// [`lock`]: Backend::lock
46     /// [`unlock`]: Backend::unlock
47     type GuardState;
48 
49     /// Initialises the lock.
50     ///
51     /// # Safety
52     ///
53     /// `ptr` must be valid for write for the duration of the call, while `name` and `key` must
54     /// remain valid for read indefinitely.
55     unsafe fn init(
56         ptr: *mut Self::State,
57         name: *const crate::ffi::c_char,
58         key: *mut bindings::lock_class_key,
59     );
60 
61     /// Acquires the lock, making the caller its owner.
62     ///
63     /// # Safety
64     ///
65     /// Callers must ensure that [`Backend::init`] has been previously called.
66     #[must_use]
67     unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState;
68 
69     /// Tries to acquire the lock.
70     ///
71     /// # Safety
72     ///
73     /// Callers must ensure that [`Backend::init`] has been previously called.
74     unsafe fn try_lock(ptr: *mut Self::State) -> Option<Self::GuardState>;
75 
76     /// Releases the lock, giving up its ownership.
77     ///
78     /// # Safety
79     ///
80     /// It must only be called by the current owner of the lock.
81     unsafe fn unlock(ptr: *mut Self::State, guard_state: &Self::GuardState);
82 
83     /// Reacquires the lock, making the caller its owner.
84     ///
85     /// # Safety
86     ///
87     /// Callers must ensure that `guard_state` comes from a previous call to [`Backend::lock`] (or
88     /// variant) that has been unlocked with [`Backend::unlock`] and will be relocked now.
89     unsafe fn relock(ptr: *mut Self::State, guard_state: &mut Self::GuardState) {
90         // SAFETY: The safety requirements ensure that the lock is initialised.
91         *guard_state = unsafe { Self::lock(ptr) };
92     }
93 }
94 
95 /// A mutual exclusion primitive.
96 ///
97 /// Exposes one of the kernel locking primitives. Which one is exposed depends on the lock
98 /// [`Backend`] specified as the generic parameter `B`.
99 #[pin_data]
100 pub struct Lock<T: ?Sized, B: Backend> {
101     /// The kernel lock object.
102     #[pin]
103     state: Opaque<B::State>,
104 
105     /// Some locks are known to be self-referential (e.g., mutexes), while others are architecture
106     /// or config defined (e.g., spinlocks). So we conservatively require them to be pinned in case
107     /// some architecture uses self-references now or in the future.
108     #[pin]
109     _pin: PhantomPinned,
110 
111     /// The data protected by the lock.
112     pub(crate) data: UnsafeCell<T>,
113 }
114 
115 // SAFETY: `Lock` can be transferred across thread boundaries iff the data it protects can.
116 unsafe impl<T: ?Sized + Send, B: Backend> Send for Lock<T, B> {}
117 
118 // SAFETY: `Lock` serialises the interior mutability it provides, so it is `Sync` as long as the
119 // data it protects is `Send`.
120 unsafe impl<T: ?Sized + Send, B: Backend> Sync for Lock<T, B> {}
121 
122 impl<T, B: Backend> Lock<T, B> {
123     /// Constructs a new lock initialiser.
124     pub fn new(t: T, name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> {
125         pin_init!(Self {
126             data: UnsafeCell::new(t),
127             _pin: PhantomPinned,
128             // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
129             // static lifetimes so they live indefinitely.
130             state <- Opaque::ffi_init(|slot| unsafe {
131                 B::init(slot, name.as_char_ptr(), key.as_ptr())
132             }),
133         })
134     }
135 }
136 
137 impl<T: ?Sized, B: Backend> Lock<T, B> {
138     /// Acquires the lock and gives the caller access to the data protected by it.
139     pub fn lock(&self) -> Guard<'_, T, B> {
140         // SAFETY: The constructor of the type calls `init`, so the existence of the object proves
141         // that `init` was called.
142         let state = unsafe { B::lock(self.state.get()) };
143         // SAFETY: The lock was just acquired.
144         unsafe { Guard::new(self, state) }
145     }
146 
147     /// Tries to acquire the lock.
148     ///
149     /// Returns a guard that can be used to access the data protected by the lock if successful.
150     pub fn try_lock(&self) -> Option<Guard<'_, T, B>> {
151         // SAFETY: The constructor of the type calls `init`, so the existence of the object proves
152         // that `init` was called.
153         unsafe { B::try_lock(self.state.get()).map(|state| Guard::new(self, state)) }
154     }
155 }
156 
157 /// A lock guard.
158 ///
159 /// Allows mutual exclusion primitives that implement the [`Backend`] trait to automatically unlock
160 /// when a guard goes out of scope. It also provides a safe and convenient way to access the data
161 /// protected by the lock.
162 #[must_use = "the lock unlocks immediately when the guard is unused"]
163 pub struct Guard<'a, T: ?Sized, B: Backend> {
164     pub(crate) lock: &'a Lock<T, B>,
165     pub(crate) state: B::GuardState,
166     _not_send: NotThreadSafe,
167 }
168 
169 // SAFETY: `Guard` is sync when the data protected by the lock is also sync.
170 unsafe impl<T: Sync + ?Sized, B: Backend> Sync for Guard<'_, T, B> {}
171 
172 impl<T: ?Sized, B: Backend> Guard<'_, T, B> {
173     pub(crate) fn do_unlocked<U>(&mut self, cb: impl FnOnce() -> U) -> U {
174         // SAFETY: The caller owns the lock, so it is safe to unlock it.
175         unsafe { B::unlock(self.lock.state.get(), &self.state) };
176 
177         let _relock = ScopeGuard::new(||
178                 // SAFETY: The lock was just unlocked above and is being relocked now.
179                 unsafe { B::relock(self.lock.state.get(), &mut self.state) });
180 
181         cb()
182     }
183 }
184 
185 impl<T: ?Sized, B: Backend> core::ops::Deref for Guard<'_, T, B> {
186     type Target = T;
187 
188     fn deref(&self) -> &Self::Target {
189         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
190         unsafe { &*self.lock.data.get() }
191     }
192 }
193 
194 impl<T: ?Sized, B: Backend> core::ops::DerefMut for Guard<'_, T, B> {
195     fn deref_mut(&mut self) -> &mut Self::Target {
196         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
197         unsafe { &mut *self.lock.data.get() }
198     }
199 }
200 
201 impl<T: ?Sized, B: Backend> Drop for Guard<'_, T, B> {
202     fn drop(&mut self) {
203         // SAFETY: The caller owns the lock, so it is safe to unlock it.
204         unsafe { B::unlock(self.lock.state.get(), &self.state) };
205     }
206 }
207 
208 impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B> {
209     /// Constructs a new immutable lock guard.
210     ///
211     /// # Safety
212     ///
213     /// The caller must ensure that it owns the lock.
214     pub(crate) unsafe fn new(lock: &'a Lock<T, B>, state: B::GuardState) -> Self {
215         Self {
216             lock,
217             state,
218             _not_send: NotThreadSafe,
219         }
220     }
221 }
222