xref: /linux/rust/kernel/sync/lock.rs (revision 8838a1a2d219a86ab05e679c73f68dd75a25aca5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic kernel lock and guard.
4 //!
5 //! It contains a generic Rust lock and guard that allow for different backends (e.g., mutexes,
6 //! spinlocks, raw spinlocks) to be provided with minimal effort.
7 
8 use super::LockClassKey;
9 use crate::{
10     init::PinInit,
11     pin_init,
12     str::CStr,
13     types::{NotThreadSafe, Opaque, ScopeGuard},
14 };
15 use core::{cell::UnsafeCell, marker::PhantomPinned};
16 use macros::pin_data;
17 
18 pub mod mutex;
19 pub mod spinlock;
20 
21 pub(super) mod global;
22 pub use global::{GlobalGuard, GlobalLock, GlobalLockBackend, GlobalLockedBy};
23 
24 /// The "backend" of a lock.
25 ///
26 /// It is the actual implementation of the lock, without the need to repeat patterns used in all
27 /// locks.
28 ///
29 /// # Safety
30 ///
31 /// - Implementers must ensure that only one thread/CPU may access the protected data once the lock
32 ///   is owned, that is, between calls to [`lock`] and [`unlock`].
33 /// - Implementers must also ensure that [`relock`] uses the same locking method as the original
34 ///   lock operation.
35 ///
36 /// [`lock`]: Backend::lock
37 /// [`unlock`]: Backend::unlock
38 /// [`relock`]: Backend::relock
39 pub unsafe trait Backend {
40     /// The state required by the lock.
41     type State;
42 
43     /// The state required to be kept between [`lock`] and [`unlock`].
44     ///
45     /// [`lock`]: Backend::lock
46     /// [`unlock`]: Backend::unlock
47     type GuardState;
48 
49     /// Initialises the lock.
50     ///
51     /// # Safety
52     ///
53     /// `ptr` must be valid for write for the duration of the call, while `name` and `key` must
54     /// remain valid for read indefinitely.
55     unsafe fn init(
56         ptr: *mut Self::State,
57         name: *const crate::ffi::c_char,
58         key: *mut bindings::lock_class_key,
59     );
60 
61     /// Acquires the lock, making the caller its owner.
62     ///
63     /// # Safety
64     ///
65     /// Callers must ensure that [`Backend::init`] has been previously called.
66     #[must_use]
67     unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState;
68 
69     /// Tries to acquire the lock.
70     ///
71     /// # Safety
72     ///
73     /// Callers must ensure that [`Backend::init`] has been previously called.
74     unsafe fn try_lock(ptr: *mut Self::State) -> Option<Self::GuardState>;
75 
76     /// Releases the lock, giving up its ownership.
77     ///
78     /// # Safety
79     ///
80     /// It must only be called by the current owner of the lock.
81     unsafe fn unlock(ptr: *mut Self::State, guard_state: &Self::GuardState);
82 
83     /// Reacquires the lock, making the caller its owner.
84     ///
85     /// # Safety
86     ///
87     /// Callers must ensure that `guard_state` comes from a previous call to [`Backend::lock`] (or
88     /// variant) that has been unlocked with [`Backend::unlock`] and will be relocked now.
89     unsafe fn relock(ptr: *mut Self::State, guard_state: &mut Self::GuardState) {
90         // SAFETY: The safety requirements ensure that the lock is initialised.
91         *guard_state = unsafe { Self::lock(ptr) };
92     }
93 
94     /// Asserts that the lock is held using lockdep.
95     ///
96     /// # Safety
97     ///
98     /// Callers must ensure that [`Backend::init`] has been previously called.
99     unsafe fn assert_is_held(ptr: *mut Self::State);
100 }
101 
102 /// A mutual exclusion primitive.
103 ///
104 /// Exposes one of the kernel locking primitives. Which one is exposed depends on the lock
105 /// [`Backend`] specified as the generic parameter `B`.
106 #[repr(C)]
107 #[pin_data]
108 pub struct Lock<T: ?Sized, B: Backend> {
109     /// The kernel lock object.
110     #[pin]
111     state: Opaque<B::State>,
112 
113     /// Some locks are known to be self-referential (e.g., mutexes), while others are architecture
114     /// or config defined (e.g., spinlocks). So we conservatively require them to be pinned in case
115     /// some architecture uses self-references now or in the future.
116     #[pin]
117     _pin: PhantomPinned,
118 
119     /// The data protected by the lock.
120     pub(crate) data: UnsafeCell<T>,
121 }
122 
123 // SAFETY: `Lock` can be transferred across thread boundaries iff the data it protects can.
124 unsafe impl<T: ?Sized + Send, B: Backend> Send for Lock<T, B> {}
125 
126 // SAFETY: `Lock` serialises the interior mutability it provides, so it is `Sync` as long as the
127 // data it protects is `Send`.
128 unsafe impl<T: ?Sized + Send, B: Backend> Sync for Lock<T, B> {}
129 
130 impl<T, B: Backend> Lock<T, B> {
131     /// Constructs a new lock initialiser.
132     pub fn new(t: T, name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> {
133         pin_init!(Self {
134             data: UnsafeCell::new(t),
135             _pin: PhantomPinned,
136             // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
137             // static lifetimes so they live indefinitely.
138             state <- Opaque::ffi_init(|slot| unsafe {
139                 B::init(slot, name.as_char_ptr(), key.as_ptr())
140             }),
141         })
142     }
143 }
144 
145 impl<B: Backend> Lock<(), B> {
146     /// Constructs a [`Lock`] from a raw pointer.
147     ///
148     /// This can be useful for interacting with a lock which was initialised outside of Rust.
149     ///
150     /// # Safety
151     ///
152     /// The caller promises that `ptr` points to a valid initialised instance of [`State`] during
153     /// the whole lifetime of `'a`.
154     ///
155     /// [`State`]: Backend::State
156     pub unsafe fn from_raw<'a>(ptr: *mut B::State) -> &'a Self {
157         // SAFETY:
158         // - By the safety contract `ptr` must point to a valid initialised instance of `B::State`
159         // - Since the lock data type is `()` which is a ZST, `state` is the only non-ZST member of
160         //   the struct
161         // - Combined with `#[repr(C)]`, this guarantees `Self` has an equivalent data layout to
162         //   `B::State`.
163         unsafe { &*ptr.cast() }
164     }
165 }
166 
167 impl<T: ?Sized, B: Backend> Lock<T, B> {
168     /// Acquires the lock and gives the caller access to the data protected by it.
169     pub fn lock(&self) -> Guard<'_, T, B> {
170         // SAFETY: The constructor of the type calls `init`, so the existence of the object proves
171         // that `init` was called.
172         let state = unsafe { B::lock(self.state.get()) };
173         // SAFETY: The lock was just acquired.
174         unsafe { Guard::new(self, state) }
175     }
176 
177     /// Tries to acquire the lock.
178     ///
179     /// Returns a guard that can be used to access the data protected by the lock if successful.
180     pub fn try_lock(&self) -> Option<Guard<'_, T, B>> {
181         // SAFETY: The constructor of the type calls `init`, so the existence of the object proves
182         // that `init` was called.
183         unsafe { B::try_lock(self.state.get()).map(|state| Guard::new(self, state)) }
184     }
185 }
186 
187 /// A lock guard.
188 ///
189 /// Allows mutual exclusion primitives that implement the [`Backend`] trait to automatically unlock
190 /// when a guard goes out of scope. It also provides a safe and convenient way to access the data
191 /// protected by the lock.
192 #[must_use = "the lock unlocks immediately when the guard is unused"]
193 pub struct Guard<'a, T: ?Sized, B: Backend> {
194     pub(crate) lock: &'a Lock<T, B>,
195     pub(crate) state: B::GuardState,
196     _not_send: NotThreadSafe,
197 }
198 
199 // SAFETY: `Guard` is sync when the data protected by the lock is also sync.
200 unsafe impl<T: Sync + ?Sized, B: Backend> Sync for Guard<'_, T, B> {}
201 
202 impl<T: ?Sized, B: Backend> Guard<'_, T, B> {
203     pub(crate) fn do_unlocked<U>(&mut self, cb: impl FnOnce() -> U) -> U {
204         // SAFETY: The caller owns the lock, so it is safe to unlock it.
205         unsafe { B::unlock(self.lock.state.get(), &self.state) };
206 
207         let _relock = ScopeGuard::new(||
208                 // SAFETY: The lock was just unlocked above and is being relocked now.
209                 unsafe { B::relock(self.lock.state.get(), &mut self.state) });
210 
211         cb()
212     }
213 }
214 
215 impl<T: ?Sized, B: Backend> core::ops::Deref for Guard<'_, T, B> {
216     type Target = T;
217 
218     fn deref(&self) -> &Self::Target {
219         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
220         unsafe { &*self.lock.data.get() }
221     }
222 }
223 
224 impl<T: ?Sized, B: Backend> core::ops::DerefMut for Guard<'_, T, B> {
225     fn deref_mut(&mut self) -> &mut Self::Target {
226         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
227         unsafe { &mut *self.lock.data.get() }
228     }
229 }
230 
231 impl<T: ?Sized, B: Backend> Drop for Guard<'_, T, B> {
232     fn drop(&mut self) {
233         // SAFETY: The caller owns the lock, so it is safe to unlock it.
234         unsafe { B::unlock(self.lock.state.get(), &self.state) };
235     }
236 }
237 
238 impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B> {
239     /// Constructs a new immutable lock guard.
240     ///
241     /// # Safety
242     ///
243     /// The caller must ensure that it owns the lock.
244     pub unsafe fn new(lock: &'a Lock<T, B>, state: B::GuardState) -> Self {
245         // SAFETY: The caller can only hold the lock if `Backend::init` has already been called.
246         unsafe { B::assert_is_held(lock.state.get()) };
247 
248         Self {
249             lock,
250             state,
251             _not_send: NotThreadSafe,
252         }
253     }
254 }
255