xref: /linux/rust/kernel/sync/lock.rs (revision 4c799d1dc89b5287f82c7d7bdc5039928980b1bd)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic kernel lock and guard.
4 //!
5 //! It contains a generic Rust lock and guard that allow for different backends (e.g., mutexes,
6 //! spinlocks, raw spinlocks) to be provided with minimal effort.
7 
8 use super::LockClassKey;
9 use crate::{bindings, init::PinInit, pin_init, str::CStr, types::Opaque, types::ScopeGuard};
10 use core::{cell::UnsafeCell, marker::PhantomData, marker::PhantomPinned};
11 use macros::pin_data;
12 
13 pub mod mutex;
14 pub mod spinlock;
15 
16 /// The "backend" of a lock.
17 ///
18 /// It is the actual implementation of the lock, without the need to repeat patterns used in all
19 /// locks.
20 ///
21 /// # Safety
22 ///
23 /// - Implementers must ensure that only one thread/CPU may access the protected data once the lock
24 ///   is owned, that is, between calls to [`lock`] and [`unlock`].
25 /// - Implementers must also ensure that [`relock`] uses the same locking method as the original
26 ///   lock operation.
27 ///
28 /// [`lock`]: Backend::lock
29 /// [`unlock`]: Backend::unlock
30 /// [`relock`]: Backend::relock
31 pub unsafe trait Backend {
32     /// The state required by the lock.
33     type State;
34 
35     /// The state required to be kept between [`lock`] and [`unlock`].
36     ///
37     /// [`lock`]: Backend::lock
38     /// [`unlock`]: Backend::unlock
39     type GuardState;
40 
41     /// Initialises the lock.
42     ///
43     /// # Safety
44     ///
45     /// `ptr` must be valid for write for the duration of the call, while `name` and `key` must
46     /// remain valid for read indefinitely.
47     unsafe fn init(
48         ptr: *mut Self::State,
49         name: *const core::ffi::c_char,
50         key: *mut bindings::lock_class_key,
51     );
52 
53     /// Acquires the lock, making the caller its owner.
54     ///
55     /// # Safety
56     ///
57     /// Callers must ensure that [`Backend::init`] has been previously called.
58     #[must_use]
59     unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState;
60 
61     /// Releases the lock, giving up its ownership.
62     ///
63     /// # Safety
64     ///
65     /// It must only be called by the current owner of the lock.
66     unsafe fn unlock(ptr: *mut Self::State, guard_state: &Self::GuardState);
67 
68     /// Reacquires the lock, making the caller its owner.
69     ///
70     /// # Safety
71     ///
72     /// Callers must ensure that `guard_state` comes from a previous call to [`Backend::lock`] (or
73     /// variant) that has been unlocked with [`Backend::unlock`] and will be relocked now.
74     unsafe fn relock(ptr: *mut Self::State, guard_state: &mut Self::GuardState) {
75         // SAFETY: The safety requirements ensure that the lock is initialised.
76         *guard_state = unsafe { Self::lock(ptr) };
77     }
78 }
79 
80 /// A mutual exclusion primitive.
81 ///
82 /// Exposes one of the kernel locking primitives. Which one is exposed depends on the lock
83 /// [`Backend`] specified as the generic parameter `B`.
84 #[pin_data]
85 pub struct Lock<T: ?Sized, B: Backend> {
86     /// The kernel lock object.
87     #[pin]
88     state: Opaque<B::State>,
89 
90     /// Some locks are known to be self-referential (e.g., mutexes), while others are architecture
91     /// or config defined (e.g., spinlocks). So we conservatively require them to be pinned in case
92     /// some architecture uses self-references now or in the future.
93     #[pin]
94     _pin: PhantomPinned,
95 
96     /// The data protected by the lock.
97     pub(crate) data: UnsafeCell<T>,
98 }
99 
100 // SAFETY: `Lock` can be transferred across thread boundaries iff the data it protects can.
101 unsafe impl<T: ?Sized + Send, B: Backend> Send for Lock<T, B> {}
102 
103 // SAFETY: `Lock` serialises the interior mutability it provides, so it is `Sync` as long as the
104 // data it protects is `Send`.
105 unsafe impl<T: ?Sized + Send, B: Backend> Sync for Lock<T, B> {}
106 
107 impl<T, B: Backend> Lock<T, B> {
108     /// Constructs a new lock initialiser.
109     pub fn new(t: T, name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> {
110         pin_init!(Self {
111             data: UnsafeCell::new(t),
112             _pin: PhantomPinned,
113             // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
114             // static lifetimes so they live indefinitely.
115             state <- Opaque::ffi_init(|slot| unsafe {
116                 B::init(slot, name.as_char_ptr(), key.as_ptr())
117             }),
118         })
119     }
120 }
121 
122 impl<T: ?Sized, B: Backend> Lock<T, B> {
123     /// Acquires the lock and gives the caller access to the data protected by it.
124     pub fn lock(&self) -> Guard<'_, T, B> {
125         // SAFETY: The constructor of the type calls `init`, so the existence of the object proves
126         // that `init` was called.
127         let state = unsafe { B::lock(self.state.get()) };
128         // SAFETY: The lock was just acquired.
129         unsafe { Guard::new(self, state) }
130     }
131 }
132 
133 /// A lock guard.
134 ///
135 /// Allows mutual exclusion primitives that implement the [`Backend`] trait to automatically unlock
136 /// when a guard goes out of scope. It also provides a safe and convenient way to access the data
137 /// protected by the lock.
138 #[must_use = "the lock unlocks immediately when the guard is unused"]
139 pub struct Guard<'a, T: ?Sized, B: Backend> {
140     pub(crate) lock: &'a Lock<T, B>,
141     pub(crate) state: B::GuardState,
142     _not_send: PhantomData<*mut ()>,
143 }
144 
145 // SAFETY: `Guard` is sync when the data protected by the lock is also sync.
146 unsafe impl<T: Sync + ?Sized, B: Backend> Sync for Guard<'_, T, B> {}
147 
148 impl<T: ?Sized, B: Backend> Guard<'_, T, B> {
149     pub(crate) fn do_unlocked<U>(&mut self, cb: impl FnOnce() -> U) -> U {
150         // SAFETY: The caller owns the lock, so it is safe to unlock it.
151         unsafe { B::unlock(self.lock.state.get(), &self.state) };
152 
153         // SAFETY: The lock was just unlocked above and is being relocked now.
154         let _relock =
155             ScopeGuard::new(|| unsafe { B::relock(self.lock.state.get(), &mut self.state) });
156 
157         cb()
158     }
159 }
160 
161 impl<T: ?Sized, B: Backend> core::ops::Deref for Guard<'_, T, B> {
162     type Target = T;
163 
164     fn deref(&self) -> &Self::Target {
165         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
166         unsafe { &*self.lock.data.get() }
167     }
168 }
169 
170 impl<T: ?Sized, B: Backend> core::ops::DerefMut for Guard<'_, T, B> {
171     fn deref_mut(&mut self) -> &mut Self::Target {
172         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
173         unsafe { &mut *self.lock.data.get() }
174     }
175 }
176 
177 impl<T: ?Sized, B: Backend> Drop for Guard<'_, T, B> {
178     fn drop(&mut self) {
179         // SAFETY: The caller owns the lock, so it is safe to unlock it.
180         unsafe { B::unlock(self.lock.state.get(), &self.state) };
181     }
182 }
183 
184 impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B> {
185     /// Constructs a new immutable lock guard.
186     ///
187     /// # Safety
188     ///
189     /// The caller must ensure that it owns the lock.
190     pub(crate) unsafe fn new(lock: &'a Lock<T, B>, state: B::GuardState) -> Self {
191         Self {
192             lock,
193             state,
194             _not_send: PhantomData,
195         }
196     }
197 }
198