xref: /linux/rust/kernel/sync/lock.rs (revision 1e0731c05c985deb68a97fa44c1adcd3305dda90)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic kernel lock and guard.
4 //!
5 //! It contains a generic Rust lock and guard that allow for different backends (e.g., mutexes,
6 //! spinlocks, raw spinlocks) to be provided with minimal effort.
7 
8 use super::LockClassKey;
9 use crate::{bindings, init::PinInit, pin_init, str::CStr, types::Opaque, types::ScopeGuard};
10 use core::{cell::UnsafeCell, marker::PhantomData, marker::PhantomPinned};
11 use macros::pin_data;
12 
13 pub mod mutex;
14 pub mod spinlock;
15 
16 /// The "backend" of a lock.
17 ///
18 /// It is the actual implementation of the lock, without the need to repeat patterns used in all
19 /// locks.
20 ///
21 /// # Safety
22 ///
23 /// - Implementers must ensure that only one thread/CPU may access the protected data once the lock
24 /// is owned, that is, between calls to `lock` and `unlock`.
25 /// - Implementers must also ensure that `relock` uses the same locking method as the original
26 /// lock operation.
27 pub unsafe trait Backend {
28     /// The state required by the lock.
29     type State;
30 
31     /// The state required to be kept between lock and unlock.
32     type GuardState;
33 
34     /// Initialises the lock.
35     ///
36     /// # Safety
37     ///
38     /// `ptr` must be valid for write for the duration of the call, while `name` and `key` must
39     /// remain valid for read indefinitely.
40     unsafe fn init(
41         ptr: *mut Self::State,
42         name: *const core::ffi::c_char,
43         key: *mut bindings::lock_class_key,
44     );
45 
46     /// Acquires the lock, making the caller its owner.
47     ///
48     /// # Safety
49     ///
50     /// Callers must ensure that [`Backend::init`] has been previously called.
51     #[must_use]
52     unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState;
53 
54     /// Releases the lock, giving up its ownership.
55     ///
56     /// # Safety
57     ///
58     /// It must only be called by the current owner of the lock.
59     unsafe fn unlock(ptr: *mut Self::State, guard_state: &Self::GuardState);
60 
61     /// Reacquires the lock, making the caller its owner.
62     ///
63     /// # Safety
64     ///
65     /// Callers must ensure that `guard_state` comes from a previous call to [`Backend::lock`] (or
66     /// variant) that has been unlocked with [`Backend::unlock`] and will be relocked now.
67     unsafe fn relock(ptr: *mut Self::State, guard_state: &mut Self::GuardState) {
68         // SAFETY: The safety requirements ensure that the lock is initialised.
69         *guard_state = unsafe { Self::lock(ptr) };
70     }
71 }
72 
73 /// A mutual exclusion primitive.
74 ///
75 /// Exposes one of the kernel locking primitives. Which one is exposed depends on the lock
76 /// [`Backend`] specified as the generic parameter `B`.
77 #[pin_data]
78 pub struct Lock<T: ?Sized, B: Backend> {
79     /// The kernel lock object.
80     #[pin]
81     state: Opaque<B::State>,
82 
83     /// Some locks are known to be self-referential (e.g., mutexes), while others are architecture
84     /// or config defined (e.g., spinlocks). So we conservatively require them to be pinned in case
85     /// some architecture uses self-references now or in the future.
86     #[pin]
87     _pin: PhantomPinned,
88 
89     /// The data protected by the lock.
90     pub(crate) data: UnsafeCell<T>,
91 }
92 
93 // SAFETY: `Lock` can be transferred across thread boundaries iff the data it protects can.
94 unsafe impl<T: ?Sized + Send, B: Backend> Send for Lock<T, B> {}
95 
96 // SAFETY: `Lock` serialises the interior mutability it provides, so it is `Sync` as long as the
97 // data it protects is `Send`.
98 unsafe impl<T: ?Sized + Send, B: Backend> Sync for Lock<T, B> {}
99 
100 impl<T, B: Backend> Lock<T, B> {
101     /// Constructs a new lock initialiser.
102     #[allow(clippy::new_ret_no_self)]
103     pub fn new(t: T, name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> {
104         pin_init!(Self {
105             data: UnsafeCell::new(t),
106             _pin: PhantomPinned,
107             // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
108             // static lifetimes so they live indefinitely.
109             state <- Opaque::ffi_init(|slot| unsafe {
110                 B::init(slot, name.as_char_ptr(), key.as_ptr())
111             }),
112         })
113     }
114 }
115 
116 impl<T: ?Sized, B: Backend> Lock<T, B> {
117     /// Acquires the lock and gives the caller access to the data protected by it.
118     pub fn lock(&self) -> Guard<'_, T, B> {
119         // SAFETY: The constructor of the type calls `init`, so the existence of the object proves
120         // that `init` was called.
121         let state = unsafe { B::lock(self.state.get()) };
122         // SAFETY: The lock was just acquired.
123         unsafe { Guard::new(self, state) }
124     }
125 }
126 
127 /// A lock guard.
128 ///
129 /// Allows mutual exclusion primitives that implement the [`Backend`] trait to automatically unlock
130 /// when a guard goes out of scope. It also provides a safe and convenient way to access the data
131 /// protected by the lock.
132 #[must_use = "the lock unlocks immediately when the guard is unused"]
133 pub struct Guard<'a, T: ?Sized, B: Backend> {
134     pub(crate) lock: &'a Lock<T, B>,
135     pub(crate) state: B::GuardState,
136     _not_send: PhantomData<*mut ()>,
137 }
138 
139 // SAFETY: `Guard` is sync when the data protected by the lock is also sync.
140 unsafe impl<T: Sync + ?Sized, B: Backend> Sync for Guard<'_, T, B> {}
141 
142 impl<T: ?Sized, B: Backend> Guard<'_, T, B> {
143     pub(crate) fn do_unlocked(&mut self, cb: impl FnOnce()) {
144         // SAFETY: The caller owns the lock, so it is safe to unlock it.
145         unsafe { B::unlock(self.lock.state.get(), &self.state) };
146 
147         // SAFETY: The lock was just unlocked above and is being relocked now.
148         let _relock =
149             ScopeGuard::new(|| unsafe { B::relock(self.lock.state.get(), &mut self.state) });
150 
151         cb();
152     }
153 }
154 
155 impl<T: ?Sized, B: Backend> core::ops::Deref for Guard<'_, T, B> {
156     type Target = T;
157 
158     fn deref(&self) -> &Self::Target {
159         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
160         unsafe { &*self.lock.data.get() }
161     }
162 }
163 
164 impl<T: ?Sized, B: Backend> core::ops::DerefMut for Guard<'_, T, B> {
165     fn deref_mut(&mut self) -> &mut Self::Target {
166         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
167         unsafe { &mut *self.lock.data.get() }
168     }
169 }
170 
171 impl<T: ?Sized, B: Backend> Drop for Guard<'_, T, B> {
172     fn drop(&mut self) {
173         // SAFETY: The caller owns the lock, so it is safe to unlock it.
174         unsafe { B::unlock(self.lock.state.get(), &self.state) };
175     }
176 }
177 
178 impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B> {
179     /// Constructs a new immutable lock guard.
180     ///
181     /// # Safety
182     ///
183     /// The caller must ensure that it owns the lock.
184     pub(crate) unsafe fn new(lock: &'a Lock<T, B>, state: B::GuardState) -> Self {
185         Self {
186             lock,
187             state,
188             _not_send: PhantomData,
189         }
190     }
191 }
192