xref: /linux/rust/kernel/sync/condvar.rs (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A condition variable.
4 //!
5 //! This module allows Rust code to use the kernel's [`struct wait_queue_head`] as a condition
6 //! variable.
7 
8 use super::{lock::Backend, lock::Guard, LockClassKey};
9 use crate::{
10     bindings,
11     init::PinInit,
12     pin_init,
13     str::CStr,
14     task::{MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE, TASK_NORMAL, TASK_UNINTERRUPTIBLE},
15     time::Jiffies,
16     types::Opaque,
17 };
18 use core::ffi::{c_int, c_long};
19 use core::marker::PhantomPinned;
20 use core::ptr;
21 use macros::pin_data;
22 
23 /// Creates a [`CondVar`] initialiser with the given name and a newly-created lock class.
24 #[macro_export]
25 macro_rules! new_condvar {
26     ($($name:literal)?) => {
27         $crate::sync::CondVar::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
28     };
29 }
30 pub use new_condvar;
31 
32 /// A conditional variable.
33 ///
34 /// Exposes the kernel's [`struct wait_queue_head`] as a condition variable. It allows the caller to
35 /// atomically release the given lock and go to sleep. It reacquires the lock when it wakes up. And
36 /// it wakes up when notified by another thread (via [`CondVar::notify_one`] or
37 /// [`CondVar::notify_all`]) or because the thread received a signal. It may also wake up
38 /// spuriously.
39 ///
40 /// Instances of [`CondVar`] need a lock class and to be pinned. The recommended way to create such
41 /// instances is with the [`pin_init`](crate::pin_init) and [`new_condvar`] macros.
42 ///
43 /// # Examples
44 ///
45 /// The following is an example of using a condvar with a mutex:
46 ///
47 /// ```
48 /// use kernel::sync::{new_condvar, new_mutex, CondVar, Mutex};
49 ///
50 /// #[pin_data]
51 /// pub struct Example {
52 ///     #[pin]
53 ///     value: Mutex<u32>,
54 ///
55 ///     #[pin]
56 ///     value_changed: CondVar,
57 /// }
58 ///
59 /// /// Waits for `e.value` to become `v`.
60 /// fn wait_for_value(e: &Example, v: u32) {
61 ///     let mut guard = e.value.lock();
62 ///     while *guard != v {
63 ///         e.value_changed.wait(&mut guard);
64 ///     }
65 /// }
66 ///
67 /// /// Increments `e.value` and notifies all potential waiters.
68 /// fn increment(e: &Example) {
69 ///     *e.value.lock() += 1;
70 ///     e.value_changed.notify_all();
71 /// }
72 ///
73 /// /// Allocates a new boxed `Example`.
74 /// fn new_example() -> Result<Pin<Box<Example>>> {
75 ///     Box::pin_init(pin_init!(Example {
76 ///         value <- new_mutex!(0),
77 ///         value_changed <- new_condvar!(),
78 ///     }))
79 /// }
80 /// ```
81 ///
82 /// [`struct wait_queue_head`]: srctree/include/linux/wait.h
83 #[pin_data]
84 pub struct CondVar {
85     #[pin]
86     pub(crate) wait_queue_head: Opaque<bindings::wait_queue_head>,
87 
88     /// A condvar needs to be pinned because it contains a [`struct list_head`] that is
89     /// self-referential, so it cannot be safely moved once it is initialised.
90     ///
91     /// [`struct list_head`]: srctree/include/linux/types.h
92     #[pin]
93     _pin: PhantomPinned,
94 }
95 
96 // SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on any thread.
97 #[allow(clippy::non_send_fields_in_send_ty)]
98 unsafe impl Send for CondVar {}
99 
100 // SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on multiple threads
101 // concurrently.
102 unsafe impl Sync for CondVar {}
103 
104 impl CondVar {
105     /// Constructs a new condvar initialiser.
106     pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> {
107         pin_init!(Self {
108             _pin: PhantomPinned,
109             // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
110             // static lifetimes so they live indefinitely.
111             wait_queue_head <- Opaque::ffi_init(|slot| unsafe {
112                 bindings::__init_waitqueue_head(slot, name.as_char_ptr(), key.as_ptr())
113             }),
114         })
115     }
116 
117     fn wait_internal<T: ?Sized, B: Backend>(
118         &self,
119         wait_state: c_int,
120         guard: &mut Guard<'_, T, B>,
121         timeout_in_jiffies: c_long,
122     ) -> c_long {
123         let wait = Opaque::<bindings::wait_queue_entry>::uninit();
124 
125         // SAFETY: `wait` points to valid memory.
126         unsafe { bindings::init_wait(wait.get()) };
127 
128         // SAFETY: Both `wait` and `wait_queue_head` point to valid memory.
129         unsafe {
130             bindings::prepare_to_wait_exclusive(self.wait_queue_head.get(), wait.get(), wait_state)
131         };
132 
133         // SAFETY: Switches to another thread. The timeout can be any number.
134         let ret = guard.do_unlocked(|| unsafe { bindings::schedule_timeout(timeout_in_jiffies) });
135 
136         // SAFETY: Both `wait` and `wait_queue_head` point to valid memory.
137         unsafe { bindings::finish_wait(self.wait_queue_head.get(), wait.get()) };
138 
139         ret
140     }
141 
142     /// Releases the lock and waits for a notification in uninterruptible mode.
143     ///
144     /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
145     /// thread to sleep, reacquiring the lock on wake up. It wakes up when notified by
146     /// [`CondVar::notify_one`] or [`CondVar::notify_all`]. Note that it may also wake up
147     /// spuriously.
148     pub fn wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) {
149         self.wait_internal(TASK_UNINTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT);
150     }
151 
152     /// Releases the lock and waits for a notification in interruptible mode.
153     ///
154     /// Similar to [`CondVar::wait`], except that the wait is interruptible. That is, the thread may
155     /// wake up due to signals. It may also wake up spuriously.
156     ///
157     /// Returns whether there is a signal pending.
158     #[must_use = "wait_interruptible returns if a signal is pending, so the caller must check the return value"]
159     pub fn wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool {
160         self.wait_internal(TASK_INTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT);
161         crate::current!().signal_pending()
162     }
163 
164     /// Releases the lock and waits for a notification in interruptible mode.
165     ///
166     /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
167     /// thread to sleep. It wakes up when notified by [`CondVar::notify_one`] or
168     /// [`CondVar::notify_all`], or when a timeout occurs, or when the thread receives a signal.
169     #[must_use = "wait_interruptible_timeout returns if a signal is pending, so the caller must check the return value"]
170     pub fn wait_interruptible_timeout<T: ?Sized, B: Backend>(
171         &self,
172         guard: &mut Guard<'_, T, B>,
173         jiffies: Jiffies,
174     ) -> CondVarTimeoutResult {
175         let jiffies = jiffies.try_into().unwrap_or(MAX_SCHEDULE_TIMEOUT);
176         let res = self.wait_internal(TASK_INTERRUPTIBLE, guard, jiffies);
177 
178         match (res as Jiffies, crate::current!().signal_pending()) {
179             (jiffies, true) => CondVarTimeoutResult::Signal { jiffies },
180             (0, false) => CondVarTimeoutResult::Timeout,
181             (jiffies, false) => CondVarTimeoutResult::Woken { jiffies },
182         }
183     }
184 
185     /// Calls the kernel function to notify the appropriate number of threads.
186     fn notify(&self, count: c_int) {
187         // SAFETY: `wait_queue_head` points to valid memory.
188         unsafe {
189             bindings::__wake_up(
190                 self.wait_queue_head.get(),
191                 TASK_NORMAL,
192                 count,
193                 ptr::null_mut(),
194             )
195         };
196     }
197 
198     /// Calls the kernel function to notify one thread synchronously.
199     ///
200     /// This method behaves like `notify_one`, except that it hints to the scheduler that the
201     /// current thread is about to go to sleep, so it should schedule the target thread on the same
202     /// CPU.
203     pub fn notify_sync(&self) {
204         // SAFETY: `wait_queue_head` points to valid memory.
205         unsafe { bindings::__wake_up_sync(self.wait_queue_head.get(), TASK_NORMAL) };
206     }
207 
208     /// Wakes a single waiter up, if any.
209     ///
210     /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost
211     /// completely (as opposed to automatically waking up the next waiter).
212     pub fn notify_one(&self) {
213         self.notify(1);
214     }
215 
216     /// Wakes all waiters up, if any.
217     ///
218     /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost
219     /// completely (as opposed to automatically waking up the next waiter).
220     pub fn notify_all(&self) {
221         self.notify(0);
222     }
223 }
224 
225 /// The return type of `wait_timeout`.
226 pub enum CondVarTimeoutResult {
227     /// The timeout was reached.
228     Timeout,
229     /// Somebody woke us up.
230     Woken {
231         /// Remaining sleep duration.
232         jiffies: Jiffies,
233     },
234     /// A signal occurred.
235     Signal {
236         /// Remaining sleep duration.
237         jiffies: Jiffies,
238     },
239 }
240