1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A condition variable. 4 //! 5 //! This module allows Rust code to use the kernel's [`struct wait_queue_head`] as a condition 6 //! variable. 7 8 use super::{lock::Backend, lock::Guard, LockClassKey}; 9 use crate::{ 10 ffi::{c_int, c_long}, 11 str::CStr, 12 task::{MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE, TASK_NORMAL, TASK_UNINTERRUPTIBLE}, 13 time::Jiffies, 14 types::Opaque, 15 }; 16 use core::marker::PhantomPinned; 17 use core::ptr; 18 use pin_init::{pin_data, pin_init, PinInit}; 19 20 /// Creates a [`CondVar`] initialiser with the given name and a newly-created lock class. 21 #[macro_export] 22 macro_rules! new_condvar { 23 ($($name:literal)?) => { 24 $crate::sync::CondVar::new($crate::optional_name!($($name)?), $crate::static_lock_class!()) 25 }; 26 } 27 pub use new_condvar; 28 29 /// A conditional variable. 30 /// 31 /// Exposes the kernel's [`struct wait_queue_head`] as a condition variable. It allows the caller to 32 /// atomically release the given lock and go to sleep. It reacquires the lock when it wakes up. And 33 /// it wakes up when notified by another thread (via [`CondVar::notify_one`] or 34 /// [`CondVar::notify_all`]) or because the thread received a signal. It may also wake up 35 /// spuriously. 36 /// 37 /// Instances of [`CondVar`] need a lock class and to be pinned. The recommended way to create such 38 /// instances is with the [`pin_init`](crate::pin_init!) and [`new_condvar`] macros. 39 /// 40 /// # Examples 41 /// 42 /// The following is an example of using a condvar with a mutex: 43 /// 44 /// ``` 45 /// use kernel::sync::{new_condvar, new_mutex, CondVar, Mutex}; 46 /// 47 /// #[pin_data] 48 /// pub struct Example { 49 /// #[pin] 50 /// value: Mutex<u32>, 51 /// 52 /// #[pin] 53 /// value_changed: CondVar, 54 /// } 55 /// 56 /// /// Waits for `e.value` to become `v`. 57 /// fn wait_for_value(e: &Example, v: u32) { 58 /// let mut guard = e.value.lock(); 59 /// while *guard != v { 60 /// e.value_changed.wait(&mut guard); 61 /// } 62 /// } 63 /// 64 /// /// Increments `e.value` and notifies all potential waiters. 65 /// fn increment(e: &Example) { 66 /// *e.value.lock() += 1; 67 /// e.value_changed.notify_all(); 68 /// } 69 /// 70 /// /// Allocates a new boxed `Example`. 71 /// fn new_example() -> Result<Pin<KBox<Example>>> { 72 /// KBox::pin_init(pin_init!(Example { 73 /// value <- new_mutex!(0), 74 /// value_changed <- new_condvar!(), 75 /// }), GFP_KERNEL) 76 /// } 77 /// ``` 78 /// 79 /// [`struct wait_queue_head`]: srctree/include/linux/wait.h 80 #[pin_data] 81 pub struct CondVar { 82 #[pin] 83 pub(crate) wait_queue_head: Opaque<bindings::wait_queue_head>, 84 85 /// A condvar needs to be pinned because it contains a [`struct list_head`] that is 86 /// self-referential, so it cannot be safely moved once it is initialised. 87 /// 88 /// [`struct list_head`]: srctree/include/linux/types.h 89 #[pin] 90 _pin: PhantomPinned, 91 } 92 93 // SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on any thread. 94 unsafe impl Send for CondVar {} 95 96 // SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on multiple threads 97 // concurrently. 98 unsafe impl Sync for CondVar {} 99 100 impl CondVar { 101 /// Constructs a new condvar initialiser. 102 pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> { 103 pin_init!(Self { 104 _pin: PhantomPinned, 105 // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have 106 // static lifetimes so they live indefinitely. 107 wait_queue_head <- Opaque::ffi_init(|slot| unsafe { 108 bindings::__init_waitqueue_head(slot, name.as_char_ptr(), key.as_ptr()) 109 }), 110 }) 111 } 112 113 fn wait_internal<T: ?Sized, B: Backend>( 114 &self, 115 wait_state: c_int, 116 guard: &mut Guard<'_, T, B>, 117 timeout_in_jiffies: c_long, 118 ) -> c_long { 119 let wait = Opaque::<bindings::wait_queue_entry>::uninit(); 120 121 // SAFETY: `wait` points to valid memory. 122 unsafe { bindings::init_wait(wait.get()) }; 123 124 // SAFETY: Both `wait` and `wait_queue_head` point to valid memory. 125 unsafe { 126 bindings::prepare_to_wait_exclusive(self.wait_queue_head.get(), wait.get(), wait_state) 127 }; 128 129 // SAFETY: Switches to another thread. The timeout can be any number. 130 let ret = guard.do_unlocked(|| unsafe { bindings::schedule_timeout(timeout_in_jiffies) }); 131 132 // SAFETY: Both `wait` and `wait_queue_head` point to valid memory. 133 unsafe { bindings::finish_wait(self.wait_queue_head.get(), wait.get()) }; 134 135 ret 136 } 137 138 /// Releases the lock and waits for a notification in uninterruptible mode. 139 /// 140 /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the 141 /// thread to sleep, reacquiring the lock on wake up. It wakes up when notified by 142 /// [`CondVar::notify_one`] or [`CondVar::notify_all`]. Note that it may also wake up 143 /// spuriously. 144 pub fn wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) { 145 self.wait_internal(TASK_UNINTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT); 146 } 147 148 /// Releases the lock and waits for a notification in interruptible mode. 149 /// 150 /// Similar to [`CondVar::wait`], except that the wait is interruptible. That is, the thread may 151 /// wake up due to signals. It may also wake up spuriously. 152 /// 153 /// Returns whether there is a signal pending. 154 #[must_use = "wait_interruptible returns if a signal is pending, so the caller must check the return value"] 155 pub fn wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool { 156 self.wait_internal(TASK_INTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT); 157 crate::current!().signal_pending() 158 } 159 160 /// Releases the lock and waits for a notification in interruptible mode. 161 /// 162 /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the 163 /// thread to sleep. It wakes up when notified by [`CondVar::notify_one`] or 164 /// [`CondVar::notify_all`], or when a timeout occurs, or when the thread receives a signal. 165 #[must_use = "wait_interruptible_timeout returns if a signal is pending, so the caller must check the return value"] 166 pub fn wait_interruptible_timeout<T: ?Sized, B: Backend>( 167 &self, 168 guard: &mut Guard<'_, T, B>, 169 jiffies: Jiffies, 170 ) -> CondVarTimeoutResult { 171 let jiffies = jiffies.try_into().unwrap_or(MAX_SCHEDULE_TIMEOUT); 172 let res = self.wait_internal(TASK_INTERRUPTIBLE, guard, jiffies); 173 174 match (res as Jiffies, crate::current!().signal_pending()) { 175 (jiffies, true) => CondVarTimeoutResult::Signal { jiffies }, 176 (0, false) => CondVarTimeoutResult::Timeout, 177 (jiffies, false) => CondVarTimeoutResult::Woken { jiffies }, 178 } 179 } 180 181 /// Calls the kernel function to notify the appropriate number of threads. 182 fn notify(&self, count: c_int) { 183 // SAFETY: `wait_queue_head` points to valid memory. 184 unsafe { 185 bindings::__wake_up( 186 self.wait_queue_head.get(), 187 TASK_NORMAL, 188 count, 189 ptr::null_mut(), 190 ) 191 }; 192 } 193 194 /// Calls the kernel function to notify one thread synchronously. 195 /// 196 /// This method behaves like `notify_one`, except that it hints to the scheduler that the 197 /// current thread is about to go to sleep, so it should schedule the target thread on the same 198 /// CPU. 199 pub fn notify_sync(&self) { 200 // SAFETY: `wait_queue_head` points to valid memory. 201 unsafe { bindings::__wake_up_sync(self.wait_queue_head.get(), TASK_NORMAL) }; 202 } 203 204 /// Wakes a single waiter up, if any. 205 /// 206 /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost 207 /// completely (as opposed to automatically waking up the next waiter). 208 pub fn notify_one(&self) { 209 self.notify(1); 210 } 211 212 /// Wakes all waiters up, if any. 213 /// 214 /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost 215 /// completely (as opposed to automatically waking up the next waiter). 216 pub fn notify_all(&self) { 217 self.notify(0); 218 } 219 } 220 221 /// The return type of `wait_timeout`. 222 pub enum CondVarTimeoutResult { 223 /// The timeout was reached. 224 Timeout, 225 /// Somebody woke us up. 226 Woken { 227 /// Remaining sleep duration. 228 jiffies: Jiffies, 229 }, 230 /// A signal occurred. 231 Signal { 232 /// Remaining sleep duration. 233 jiffies: Jiffies, 234 }, 235 } 236