1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A condition variable. 4 //! 5 //! This module allows Rust code to use the kernel's [`struct wait_queue_head`] as a condition 6 //! variable. 7 8 use super::{lock::Backend, lock::Guard, LockClassKey}; 9 use crate::{ 10 ffi::{c_int, c_long}, 11 init::PinInit, 12 pin_init, 13 str::CStr, 14 task::{ 15 MAX_SCHEDULE_TIMEOUT, TASK_FREEZABLE, TASK_INTERRUPTIBLE, TASK_NORMAL, TASK_UNINTERRUPTIBLE, 16 }, 17 time::Jiffies, 18 types::Opaque, 19 }; 20 use core::{marker::PhantomPinned, pin::Pin, ptr}; 21 use macros::pin_data; 22 23 /// Creates a [`CondVar`] initialiser with the given name and a newly-created lock class. 24 #[macro_export] 25 macro_rules! new_condvar { 26 ($($name:literal)?) => { 27 $crate::sync::CondVar::new($crate::optional_name!($($name)?), $crate::static_lock_class!()) 28 }; 29 } 30 pub use new_condvar; 31 32 /// A conditional variable. 33 /// 34 /// Exposes the kernel's [`struct wait_queue_head`] as a condition variable. It allows the caller to 35 /// atomically release the given lock and go to sleep. It reacquires the lock when it wakes up. And 36 /// it wakes up when notified by another thread (via [`CondVar::notify_one`] or 37 /// [`CondVar::notify_all`]) or because the thread received a signal. It may also wake up 38 /// spuriously. 39 /// 40 /// Instances of [`CondVar`] need a lock class and to be pinned. The recommended way to create such 41 /// instances is with the [`pin_init`](crate::pin_init) and [`new_condvar`] macros. 42 /// 43 /// # Examples 44 /// 45 /// The following is an example of using a condvar with a mutex: 46 /// 47 /// ``` 48 /// use kernel::sync::{new_condvar, new_mutex, CondVar, Mutex}; 49 /// 50 /// #[pin_data] 51 /// pub struct Example { 52 /// #[pin] 53 /// value: Mutex<u32>, 54 /// 55 /// #[pin] 56 /// value_changed: CondVar, 57 /// } 58 /// 59 /// /// Waits for `e.value` to become `v`. 60 /// fn wait_for_value(e: &Example, v: u32) { 61 /// let mut guard = e.value.lock(); 62 /// while *guard != v { 63 /// e.value_changed.wait(&mut guard); 64 /// } 65 /// } 66 /// 67 /// /// Increments `e.value` and notifies all potential waiters. 68 /// fn increment(e: &Example) { 69 /// *e.value.lock() += 1; 70 /// e.value_changed.notify_all(); 71 /// } 72 /// 73 /// /// Allocates a new boxed `Example`. 74 /// fn new_example() -> Result<Pin<KBox<Example>>> { 75 /// KBox::pin_init(pin_init!(Example { 76 /// value <- new_mutex!(0), 77 /// value_changed <- new_condvar!(), 78 /// }), GFP_KERNEL) 79 /// } 80 /// ``` 81 /// 82 /// [`struct wait_queue_head`]: srctree/include/linux/wait.h 83 #[pin_data] 84 pub struct CondVar { 85 #[pin] 86 pub(crate) wait_queue_head: Opaque<bindings::wait_queue_head>, 87 88 /// A condvar needs to be pinned because it contains a [`struct list_head`] that is 89 /// self-referential, so it cannot be safely moved once it is initialised. 90 /// 91 /// [`struct list_head`]: srctree/include/linux/types.h 92 #[pin] 93 _pin: PhantomPinned, 94 } 95 96 // SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on any thread. 97 unsafe impl Send for CondVar {} 98 99 // SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on multiple threads 100 // concurrently. 101 unsafe impl Sync for CondVar {} 102 103 impl CondVar { 104 /// Constructs a new condvar initialiser. 105 pub fn new(name: &'static CStr, key: Pin<&'static LockClassKey>) -> impl PinInit<Self> { 106 pin_init!(Self { 107 _pin: PhantomPinned, 108 // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have 109 // static lifetimes so they live indefinitely. 110 wait_queue_head <- Opaque::ffi_init(|slot| unsafe { 111 bindings::__init_waitqueue_head(slot, name.as_char_ptr(), key.as_ptr()) 112 }), 113 }) 114 } 115 116 fn wait_internal<T: ?Sized, B: Backend>( 117 &self, 118 wait_state: c_int, 119 guard: &mut Guard<'_, T, B>, 120 timeout_in_jiffies: c_long, 121 ) -> c_long { 122 let wait = Opaque::<bindings::wait_queue_entry>::uninit(); 123 124 // SAFETY: `wait` points to valid memory. 125 unsafe { bindings::init_wait(wait.get()) }; 126 127 // SAFETY: Both `wait` and `wait_queue_head` point to valid memory. 128 unsafe { 129 bindings::prepare_to_wait_exclusive(self.wait_queue_head.get(), wait.get(), wait_state) 130 }; 131 132 // SAFETY: Switches to another thread. The timeout can be any number. 133 let ret = guard.do_unlocked(|| unsafe { bindings::schedule_timeout(timeout_in_jiffies) }); 134 135 // SAFETY: Both `wait` and `wait_queue_head` point to valid memory. 136 unsafe { bindings::finish_wait(self.wait_queue_head.get(), wait.get()) }; 137 138 ret 139 } 140 141 /// Releases the lock and waits for a notification in uninterruptible mode. 142 /// 143 /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the 144 /// thread to sleep, reacquiring the lock on wake up. It wakes up when notified by 145 /// [`CondVar::notify_one`] or [`CondVar::notify_all`]. Note that it may also wake up 146 /// spuriously. 147 pub fn wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) { 148 self.wait_internal(TASK_UNINTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT); 149 } 150 151 /// Releases the lock and waits for a notification in interruptible mode. 152 /// 153 /// Similar to [`CondVar::wait`], except that the wait is interruptible. That is, the thread may 154 /// wake up due to signals. It may also wake up spuriously. 155 /// 156 /// Returns whether there is a signal pending. 157 #[must_use = "wait_interruptible returns if a signal is pending, so the caller must check the return value"] 158 pub fn wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool { 159 self.wait_internal(TASK_INTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT); 160 crate::current!().signal_pending() 161 } 162 163 /// Releases the lock and waits for a notification in interruptible and freezable mode. 164 /// 165 /// The process is allowed to be frozen during this sleep. No lock should be held when calling 166 /// this function, and there is a lockdep assertion for this. Freezing a task that holds a lock 167 /// can trivially deadlock vs another task that needs that lock to complete before it too can 168 /// hit freezable. 169 #[must_use = "wait_interruptible_freezable returns if a signal is pending, so the caller must check the return value"] 170 pub fn wait_interruptible_freezable<T: ?Sized, B: Backend>( 171 &self, 172 guard: &mut Guard<'_, T, B>, 173 ) -> bool { 174 self.wait_internal( 175 TASK_INTERRUPTIBLE | TASK_FREEZABLE, 176 guard, 177 MAX_SCHEDULE_TIMEOUT, 178 ); 179 crate::current!().signal_pending() 180 } 181 182 /// Releases the lock and waits for a notification in interruptible mode. 183 /// 184 /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the 185 /// thread to sleep. It wakes up when notified by [`CondVar::notify_one`] or 186 /// [`CondVar::notify_all`], or when a timeout occurs, or when the thread receives a signal. 187 #[must_use = "wait_interruptible_timeout returns if a signal is pending, so the caller must check the return value"] 188 pub fn wait_interruptible_timeout<T: ?Sized, B: Backend>( 189 &self, 190 guard: &mut Guard<'_, T, B>, 191 jiffies: Jiffies, 192 ) -> CondVarTimeoutResult { 193 let jiffies = jiffies.try_into().unwrap_or(MAX_SCHEDULE_TIMEOUT); 194 let res = self.wait_internal(TASK_INTERRUPTIBLE, guard, jiffies); 195 196 match (res as Jiffies, crate::current!().signal_pending()) { 197 (jiffies, true) => CondVarTimeoutResult::Signal { jiffies }, 198 (0, false) => CondVarTimeoutResult::Timeout, 199 (jiffies, false) => CondVarTimeoutResult::Woken { jiffies }, 200 } 201 } 202 203 /// Calls the kernel function to notify the appropriate number of threads. 204 fn notify(&self, count: c_int) { 205 // SAFETY: `wait_queue_head` points to valid memory. 206 unsafe { 207 bindings::__wake_up( 208 self.wait_queue_head.get(), 209 TASK_NORMAL, 210 count, 211 ptr::null_mut(), 212 ) 213 }; 214 } 215 216 /// Calls the kernel function to notify one thread synchronously. 217 /// 218 /// This method behaves like `notify_one`, except that it hints to the scheduler that the 219 /// current thread is about to go to sleep, so it should schedule the target thread on the same 220 /// CPU. 221 pub fn notify_sync(&self) { 222 // SAFETY: `wait_queue_head` points to valid memory. 223 unsafe { bindings::__wake_up_sync(self.wait_queue_head.get(), TASK_NORMAL) }; 224 } 225 226 /// Wakes a single waiter up, if any. 227 /// 228 /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost 229 /// completely (as opposed to automatically waking up the next waiter). 230 pub fn notify_one(&self) { 231 self.notify(1); 232 } 233 234 /// Wakes all waiters up, if any. 235 /// 236 /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost 237 /// completely (as opposed to automatically waking up the next waiter). 238 pub fn notify_all(&self) { 239 self.notify(0); 240 } 241 } 242 243 /// The return type of `wait_timeout`. 244 pub enum CondVarTimeoutResult { 245 /// The timeout was reached. 246 Timeout, 247 /// Somebody woke us up. 248 Woken { 249 /// Remaining sleep duration. 250 jiffies: Jiffies, 251 }, 252 /// A signal occurred. 253 Signal { 254 /// Remaining sleep duration. 255 jiffies: Jiffies, 256 }, 257 } 258