xref: /linux/rust/kernel/sync/atomic.rs (revision 29c32c405e53605dfd24054a4460516f7f6e3938)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Atomic primitives.
4 //!
5 //! These primitives have the same semantics as their C counterparts: and the precise definitions of
6 //! semantics can be found at [`LKMM`]. Note that Linux Kernel Memory (Consistency) Model is the
7 //! only model for Rust code in kernel, and Rust's own atomics should be avoided.
8 //!
9 //! # Data races
10 //!
11 //! [`LKMM`] atomics have different rules regarding data races:
12 //!
13 //! - A normal write from C side is treated as an atomic write if
14 //!   CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=y.
15 //! - Mixed-size atomic accesses don't cause data races.
16 //!
17 //! [`LKMM`]: srctree/tools/memory-model/
18 
19 #[allow(dead_code, unreachable_pub)]
20 mod internal;
21 pub mod ordering;
22 mod predefine;
23 
24 pub use internal::AtomicImpl;
25 pub use ordering::{Acquire, Full, Relaxed, Release};
26 
27 use crate::build_error;
28 use internal::{AtomicBasicOps, AtomicRepr};
29 use ordering::OrderingType;
30 
31 /// A memory location which can be safely modified from multiple execution contexts.
32 ///
33 /// This has the same size, alignment and bit validity as the underlying type `T`. And it disables
34 /// niche optimization for the same reason as [`UnsafeCell`].
35 ///
36 /// The atomic operations are implemented in a way that is fully compatible with the [Linux Kernel
37 /// Memory (Consistency) Model][LKMM], hence they should be modeled as the corresponding
38 /// [`LKMM`][LKMM] atomic primitives. With the help of [`Atomic::from_ptr()`] and
39 /// [`Atomic::as_ptr()`], this provides a way to interact with [C-side atomic operations]
40 /// (including those without the `atomic` prefix, e.g. `READ_ONCE()`, `WRITE_ONCE()`,
41 /// `smp_load_acquire()` and `smp_store_release()`).
42 ///
43 /// # Invariants
44 ///
45 /// `self.0` is a valid `T`.
46 ///
47 /// [`UnsafeCell`]: core::cell::UnsafeCell
48 /// [LKMM]: srctree/tools/memory-model/
49 /// [C-side atomic operations]: srctree/Documentation/atomic_t.txt
50 #[repr(transparent)]
51 pub struct Atomic<T: AtomicType>(AtomicRepr<T::Repr>);
52 
53 // SAFETY: `Atomic<T>` is safe to share among execution contexts because all accesses are atomic.
54 unsafe impl<T: AtomicType> Sync for Atomic<T> {}
55 
56 /// Types that support basic atomic operations.
57 ///
58 /// # Round-trip transmutability
59 ///
60 /// `T` is round-trip transmutable to `U` if and only if both of these properties hold:
61 ///
62 /// - Any valid bit pattern for `T` is also a valid bit pattern for `U`.
63 /// - Transmuting (e.g. using [`transmute()`]) a value of type `T` to `U` and then to `T` again
64 ///   yields a value that is in all aspects equivalent to the original value.
65 ///
66 /// # Safety
67 ///
68 /// - [`Self`] must have the same size and alignment as [`Self::Repr`].
69 /// - [`Self`] must be [round-trip transmutable] to  [`Self::Repr`].
70 ///
71 /// Note that this is more relaxed than requiring the bi-directional transmutability (i.e.
72 /// [`transmute()`] is always sound between `U` and `T`) because of the support for atomic
73 /// variables over unit-only enums, see [Examples].
74 ///
75 /// # Limitations
76 ///
77 /// Because C primitives are used to implement the atomic operations, and a C function requires a
78 /// valid object of a type to operate on (i.e. no `MaybeUninit<_>`), hence at the Rust <-> C
79 /// surface, only types with all the bits initialized can be passed. As a result, types like `(u8,
80 /// u16)` (padding bytes are uninitialized) are currently not supported.
81 ///
82 /// # Examples
83 ///
84 /// A unit-only enum that implements [`AtomicType`]:
85 ///
86 /// ```
87 /// use kernel::sync::atomic::{AtomicType, Atomic, Relaxed};
88 ///
89 /// #[derive(Clone, Copy, PartialEq, Eq)]
90 /// #[repr(i32)]
91 /// enum State {
92 ///     Uninit = 0,
93 ///     Working = 1,
94 ///     Done = 2,
95 /// };
96 ///
97 /// // SAFETY: `State` and `i32` has the same size and alignment, and it's round-trip
98 /// // transmutable to `i32`.
99 /// unsafe impl AtomicType for State {
100 ///     type Repr = i32;
101 /// }
102 ///
103 /// let s = Atomic::new(State::Uninit);
104 ///
105 /// assert_eq!(State::Uninit, s.load(Relaxed));
106 /// ```
107 /// [`transmute()`]: core::mem::transmute
108 /// [round-trip transmutable]: AtomicType#round-trip-transmutability
109 /// [Examples]: AtomicType#examples
110 pub unsafe trait AtomicType: Sized + Send + Copy {
111     /// The backing atomic implementation type.
112     type Repr: AtomicImpl;
113 }
114 
115 #[inline(always)]
116 const fn into_repr<T: AtomicType>(v: T) -> T::Repr {
117     // SAFETY: Per the safety requirement of `AtomicType`, `T` is round-trip transmutable to
118     // `T::Repr`, therefore the transmute operation is sound.
119     unsafe { core::mem::transmute_copy(&v) }
120 }
121 
122 /// # Safety
123 ///
124 /// `r` must be a valid bit pattern of `T`.
125 #[inline(always)]
126 const unsafe fn from_repr<T: AtomicType>(r: T::Repr) -> T {
127     // SAFETY: Per the safety requirement of the function, the transmute operation is sound.
128     unsafe { core::mem::transmute_copy(&r) }
129 }
130 
131 impl<T: AtomicType> Atomic<T> {
132     /// Creates a new atomic `T`.
133     pub const fn new(v: T) -> Self {
134         // INVARIANT: Per the safety requirement of `AtomicType`, `into_repr(v)` is a valid `T`.
135         Self(AtomicRepr::new(into_repr(v)))
136     }
137 
138     /// Creates a reference to an atomic `T` from a pointer of `T`.
139     ///
140     /// This usually is used when communicating with C side or manipulating a C struct, see
141     /// examples below.
142     ///
143     /// # Safety
144     ///
145     /// - `ptr` is aligned to `align_of::<T>()`.
146     /// - `ptr` is valid for reads and writes for `'a`.
147     /// - For the duration of `'a`, other accesses to `*ptr` must not cause data races (defined
148     ///   by [`LKMM`]) against atomic operations on the returned reference. Note that if all other
149     ///   accesses are atomic, then this safety requirement is trivially fulfilled.
150     ///
151     /// [`LKMM`]: srctree/tools/memory-model
152     ///
153     /// # Examples
154     ///
155     /// Using [`Atomic::from_ptr()`] combined with [`Atomic::load()`] or [`Atomic::store()`] can
156     /// achieve the same functionality as `READ_ONCE()`/`smp_load_acquire()` or
157     /// `WRITE_ONCE()`/`smp_store_release()` in C side:
158     ///
159     /// ```
160     /// # use kernel::types::Opaque;
161     /// use kernel::sync::atomic::{Atomic, Relaxed, Release};
162     ///
163     /// // Assume there is a C struct `foo`.
164     /// mod cbindings {
165     ///     #[repr(C)]
166     ///     pub(crate) struct foo {
167     ///         pub(crate) a: i32,
168     ///         pub(crate) b: i32
169     ///     }
170     /// }
171     ///
172     /// let tmp = Opaque::new(cbindings::foo { a: 1, b: 2 });
173     ///
174     /// // struct foo *foo_ptr = ..;
175     /// let foo_ptr = tmp.get();
176     ///
177     /// // SAFETY: `foo_ptr` is valid, and `.a` is in bounds.
178     /// let foo_a_ptr = unsafe { &raw mut (*foo_ptr).a };
179     ///
180     /// // a = READ_ONCE(foo_ptr->a);
181     /// //
182     /// // SAFETY: `foo_a_ptr` is valid for read, and all other accesses on it is atomic, so no
183     /// // data race.
184     /// let a = unsafe { Atomic::from_ptr(foo_a_ptr) }.load(Relaxed);
185     /// # assert_eq!(a, 1);
186     ///
187     /// // smp_store_release(&foo_ptr->a, 2);
188     /// //
189     /// // SAFETY: `foo_a_ptr` is valid for writes, and all other accesses on it is atomic, so
190     /// // no data race.
191     /// unsafe { Atomic::from_ptr(foo_a_ptr) }.store(2, Release);
192     /// ```
193     pub unsafe fn from_ptr<'a>(ptr: *mut T) -> &'a Self
194     where
195         T: Sync,
196     {
197         // CAST: `T` and `Atomic<T>` have the same size, alignment and bit validity.
198         // SAFETY: Per function safety requirement, `ptr` is a valid pointer and the object will
199         // live long enough. It's safe to return a `&Atomic<T>` because function safety requirement
200         // guarantees other accesses won't cause data races.
201         unsafe { &*ptr.cast::<Self>() }
202     }
203 
204     /// Returns a pointer to the underlying atomic `T`.
205     ///
206     /// Note that use of the return pointer must not cause data races defined by [`LKMM`].
207     ///
208     /// # Guarantees
209     ///
210     /// The returned pointer is valid and properly aligned (i.e. aligned to [`align_of::<T>()`]).
211     ///
212     /// [`LKMM`]: srctree/tools/memory-model
213     /// [`align_of::<T>()`]: core::mem::align_of
214     pub const fn as_ptr(&self) -> *mut T {
215         // GUARANTEE: Per the function guarantee of `AtomicRepr::as_ptr()`, the `self.0.as_ptr()`
216         // must be a valid and properly aligned pointer for `T::Repr`, and per the safety guarantee
217         // of `AtomicType`, it's a valid and properly aligned pointer of `T`.
218         self.0.as_ptr().cast()
219     }
220 
221     /// Returns a mutable reference to the underlying atomic `T`.
222     ///
223     /// This is safe because the mutable reference of the atomic `T` guarantees exclusive access.
224     pub fn get_mut(&mut self) -> &mut T {
225         // CAST: `T` and `T::Repr` has the same size and alignment per the safety requirement of
226         // `AtomicType`, and per the type invariants `self.0` is a valid `T`, therefore the casting
227         // result is a valid pointer of `T`.
228         // SAFETY: The pointer is valid per the CAST comment above, and the mutable reference
229         // guarantees exclusive access.
230         unsafe { &mut *self.0.as_ptr().cast() }
231     }
232 }
233 
234 impl<T: AtomicType> Atomic<T>
235 where
236     T::Repr: AtomicBasicOps,
237 {
238     /// Loads the value from the atomic `T`.
239     ///
240     /// # Examples
241     ///
242     /// ```
243     /// use kernel::sync::atomic::{Atomic, Relaxed};
244     ///
245     /// let x = Atomic::new(42i32);
246     ///
247     /// assert_eq!(42, x.load(Relaxed));
248     ///
249     /// let x = Atomic::new(42i64);
250     ///
251     /// assert_eq!(42, x.load(Relaxed));
252     /// ```
253     #[doc(alias("atomic_read", "atomic64_read"))]
254     #[inline(always)]
255     pub fn load<Ordering: ordering::AcquireOrRelaxed>(&self, _: Ordering) -> T {
256         let v = {
257             match Ordering::TYPE {
258                 OrderingType::Relaxed => T::Repr::atomic_read(&self.0),
259                 OrderingType::Acquire => T::Repr::atomic_read_acquire(&self.0),
260                 _ => build_error!("Wrong ordering"),
261             }
262         };
263 
264         // SAFETY: `v` comes from reading `self.0`, which is a valid `T` per the type invariants.
265         unsafe { from_repr(v) }
266     }
267 
268     /// Stores a value to the atomic `T`.
269     ///
270     /// # Examples
271     ///
272     /// ```
273     /// use kernel::sync::atomic::{Atomic, Relaxed};
274     ///
275     /// let x = Atomic::new(42i32);
276     ///
277     /// assert_eq!(42, x.load(Relaxed));
278     ///
279     /// x.store(43, Relaxed);
280     ///
281     /// assert_eq!(43, x.load(Relaxed));
282     /// ```
283     #[doc(alias("atomic_set", "atomic64_set"))]
284     #[inline(always)]
285     pub fn store<Ordering: ordering::ReleaseOrRelaxed>(&self, v: T, _: Ordering) {
286         let v = into_repr(v);
287 
288         // INVARIANT: `v` is a valid `T`, and is stored to `self.0` by `atomic_set*()`.
289         match Ordering::TYPE {
290             OrderingType::Relaxed => T::Repr::atomic_set(&self.0, v),
291             OrderingType::Release => T::Repr::atomic_set_release(&self.0, v),
292             _ => build_error!("Wrong ordering"),
293         }
294     }
295 }
296