12387fb2aSBoqun Feng // SPDX-License-Identifier: GPL-2.0 22387fb2aSBoqun Feng 32387fb2aSBoqun Feng //! Atomic primitives. 42387fb2aSBoqun Feng //! 52387fb2aSBoqun Feng //! These primitives have the same semantics as their C counterparts: and the precise definitions of 62387fb2aSBoqun Feng //! semantics can be found at [`LKMM`]. Note that Linux Kernel Memory (Consistency) Model is the 72387fb2aSBoqun Feng //! only model for Rust code in kernel, and Rust's own atomics should be avoided. 82387fb2aSBoqun Feng //! 92387fb2aSBoqun Feng //! # Data races 102387fb2aSBoqun Feng //! 112387fb2aSBoqun Feng //! [`LKMM`] atomics have different rules regarding data races: 122387fb2aSBoqun Feng //! 132387fb2aSBoqun Feng //! - A normal write from C side is treated as an atomic write if 142387fb2aSBoqun Feng //! CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=y. 152387fb2aSBoqun Feng //! - Mixed-size atomic accesses don't cause data races. 162387fb2aSBoqun Feng //! 172387fb2aSBoqun Feng //! [`LKMM`]: srctree/tools/memory-model/ 182387fb2aSBoqun Feng 192387fb2aSBoqun Feng mod internal; 20b638c9bcSBoqun Feng pub mod ordering; 2129c32c40SBoqun Feng mod predefine; 222387fb2aSBoqun Feng 232387fb2aSBoqun Feng pub use internal::AtomicImpl; 24b638c9bcSBoqun Feng pub use ordering::{Acquire, Full, Relaxed, Release}; 2529c32c40SBoqun Feng 2629c32c40SBoqun Feng use crate::build_error; 27*d1320543SBoqun Feng use internal::{AtomicArithmeticOps, AtomicBasicOps, AtomicExchangeOps, AtomicRepr}; 2829c32c40SBoqun Feng use ordering::OrderingType; 2929c32c40SBoqun Feng 3029c32c40SBoqun Feng /// A memory location which can be safely modified from multiple execution contexts. 3129c32c40SBoqun Feng /// 3229c32c40SBoqun Feng /// This has the same size, alignment and bit validity as the underlying type `T`. And it disables 3329c32c40SBoqun Feng /// niche optimization for the same reason as [`UnsafeCell`]. 3429c32c40SBoqun Feng /// 3529c32c40SBoqun Feng /// The atomic operations are implemented in a way that is fully compatible with the [Linux Kernel 3629c32c40SBoqun Feng /// Memory (Consistency) Model][LKMM], hence they should be modeled as the corresponding 3729c32c40SBoqun Feng /// [`LKMM`][LKMM] atomic primitives. With the help of [`Atomic::from_ptr()`] and 3829c32c40SBoqun Feng /// [`Atomic::as_ptr()`], this provides a way to interact with [C-side atomic operations] 3929c32c40SBoqun Feng /// (including those without the `atomic` prefix, e.g. `READ_ONCE()`, `WRITE_ONCE()`, 4029c32c40SBoqun Feng /// `smp_load_acquire()` and `smp_store_release()`). 4129c32c40SBoqun Feng /// 4229c32c40SBoqun Feng /// # Invariants 4329c32c40SBoqun Feng /// 4429c32c40SBoqun Feng /// `self.0` is a valid `T`. 4529c32c40SBoqun Feng /// 4629c32c40SBoqun Feng /// [`UnsafeCell`]: core::cell::UnsafeCell 4729c32c40SBoqun Feng /// [LKMM]: srctree/tools/memory-model/ 4829c32c40SBoqun Feng /// [C-side atomic operations]: srctree/Documentation/atomic_t.txt 4929c32c40SBoqun Feng #[repr(transparent)] 5029c32c40SBoqun Feng pub struct Atomic<T: AtomicType>(AtomicRepr<T::Repr>); 5129c32c40SBoqun Feng 5229c32c40SBoqun Feng // SAFETY: `Atomic<T>` is safe to share among execution contexts because all accesses are atomic. 5329c32c40SBoqun Feng unsafe impl<T: AtomicType> Sync for Atomic<T> {} 5429c32c40SBoqun Feng 5529c32c40SBoqun Feng /// Types that support basic atomic operations. 5629c32c40SBoqun Feng /// 5729c32c40SBoqun Feng /// # Round-trip transmutability 5829c32c40SBoqun Feng /// 5929c32c40SBoqun Feng /// `T` is round-trip transmutable to `U` if and only if both of these properties hold: 6029c32c40SBoqun Feng /// 6129c32c40SBoqun Feng /// - Any valid bit pattern for `T` is also a valid bit pattern for `U`. 6229c32c40SBoqun Feng /// - Transmuting (e.g. using [`transmute()`]) a value of type `T` to `U` and then to `T` again 6329c32c40SBoqun Feng /// yields a value that is in all aspects equivalent to the original value. 6429c32c40SBoqun Feng /// 6529c32c40SBoqun Feng /// # Safety 6629c32c40SBoqun Feng /// 6729c32c40SBoqun Feng /// - [`Self`] must have the same size and alignment as [`Self::Repr`]. 6829c32c40SBoqun Feng /// - [`Self`] must be [round-trip transmutable] to [`Self::Repr`]. 6929c32c40SBoqun Feng /// 7029c32c40SBoqun Feng /// Note that this is more relaxed than requiring the bi-directional transmutability (i.e. 7129c32c40SBoqun Feng /// [`transmute()`] is always sound between `U` and `T`) because of the support for atomic 7229c32c40SBoqun Feng /// variables over unit-only enums, see [Examples]. 7329c32c40SBoqun Feng /// 7429c32c40SBoqun Feng /// # Limitations 7529c32c40SBoqun Feng /// 7629c32c40SBoqun Feng /// Because C primitives are used to implement the atomic operations, and a C function requires a 7729c32c40SBoqun Feng /// valid object of a type to operate on (i.e. no `MaybeUninit<_>`), hence at the Rust <-> C 7829c32c40SBoqun Feng /// surface, only types with all the bits initialized can be passed. As a result, types like `(u8, 7929c32c40SBoqun Feng /// u16)` (padding bytes are uninitialized) are currently not supported. 8029c32c40SBoqun Feng /// 8129c32c40SBoqun Feng /// # Examples 8229c32c40SBoqun Feng /// 8329c32c40SBoqun Feng /// A unit-only enum that implements [`AtomicType`]: 8429c32c40SBoqun Feng /// 8529c32c40SBoqun Feng /// ``` 8629c32c40SBoqun Feng /// use kernel::sync::atomic::{AtomicType, Atomic, Relaxed}; 8729c32c40SBoqun Feng /// 8829c32c40SBoqun Feng /// #[derive(Clone, Copy, PartialEq, Eq)] 8929c32c40SBoqun Feng /// #[repr(i32)] 9029c32c40SBoqun Feng /// enum State { 9129c32c40SBoqun Feng /// Uninit = 0, 9229c32c40SBoqun Feng /// Working = 1, 9329c32c40SBoqun Feng /// Done = 2, 9429c32c40SBoqun Feng /// }; 9529c32c40SBoqun Feng /// 9629c32c40SBoqun Feng /// // SAFETY: `State` and `i32` has the same size and alignment, and it's round-trip 9729c32c40SBoqun Feng /// // transmutable to `i32`. 9829c32c40SBoqun Feng /// unsafe impl AtomicType for State { 9929c32c40SBoqun Feng /// type Repr = i32; 10029c32c40SBoqun Feng /// } 10129c32c40SBoqun Feng /// 10229c32c40SBoqun Feng /// let s = Atomic::new(State::Uninit); 10329c32c40SBoqun Feng /// 10429c32c40SBoqun Feng /// assert_eq!(State::Uninit, s.load(Relaxed)); 10529c32c40SBoqun Feng /// ``` 10629c32c40SBoqun Feng /// [`transmute()`]: core::mem::transmute 10729c32c40SBoqun Feng /// [round-trip transmutable]: AtomicType#round-trip-transmutability 10829c32c40SBoqun Feng /// [Examples]: AtomicType#examples 10929c32c40SBoqun Feng pub unsafe trait AtomicType: Sized + Send + Copy { 11029c32c40SBoqun Feng /// The backing atomic implementation type. 11129c32c40SBoqun Feng type Repr: AtomicImpl; 11229c32c40SBoqun Feng } 11329c32c40SBoqun Feng 114*d1320543SBoqun Feng /// Types that support atomic add operations. 115*d1320543SBoqun Feng /// 116*d1320543SBoqun Feng /// # Safety 117*d1320543SBoqun Feng /// 118*d1320543SBoqun Feng // TODO: Properly defines `wrapping_add` in the following comment. 119*d1320543SBoqun Feng /// `wrapping_add` any value of type `Self::Repr::Delta` obtained by [`Self::rhs_into_delta()`] to 120*d1320543SBoqun Feng /// any value of type `Self::Repr` obtained through transmuting a value of type `Self` to must 121*d1320543SBoqun Feng /// yield a value with a bit pattern also valid for `Self`. 122*d1320543SBoqun Feng pub unsafe trait AtomicAdd<Rhs = Self>: AtomicType { 123*d1320543SBoqun Feng /// Converts `Rhs` into the `Delta` type of the atomic implementation. 124*d1320543SBoqun Feng fn rhs_into_delta(rhs: Rhs) -> <Self::Repr as AtomicImpl>::Delta; 125*d1320543SBoqun Feng } 126*d1320543SBoqun Feng 12729c32c40SBoqun Feng #[inline(always)] 12829c32c40SBoqun Feng const fn into_repr<T: AtomicType>(v: T) -> T::Repr { 12929c32c40SBoqun Feng // SAFETY: Per the safety requirement of `AtomicType`, `T` is round-trip transmutable to 13029c32c40SBoqun Feng // `T::Repr`, therefore the transmute operation is sound. 13129c32c40SBoqun Feng unsafe { core::mem::transmute_copy(&v) } 13229c32c40SBoqun Feng } 13329c32c40SBoqun Feng 13429c32c40SBoqun Feng /// # Safety 13529c32c40SBoqun Feng /// 13629c32c40SBoqun Feng /// `r` must be a valid bit pattern of `T`. 13729c32c40SBoqun Feng #[inline(always)] 13829c32c40SBoqun Feng const unsafe fn from_repr<T: AtomicType>(r: T::Repr) -> T { 13929c32c40SBoqun Feng // SAFETY: Per the safety requirement of the function, the transmute operation is sound. 14029c32c40SBoqun Feng unsafe { core::mem::transmute_copy(&r) } 14129c32c40SBoqun Feng } 14229c32c40SBoqun Feng 14329c32c40SBoqun Feng impl<T: AtomicType> Atomic<T> { 14429c32c40SBoqun Feng /// Creates a new atomic `T`. 14529c32c40SBoqun Feng pub const fn new(v: T) -> Self { 14629c32c40SBoqun Feng // INVARIANT: Per the safety requirement of `AtomicType`, `into_repr(v)` is a valid `T`. 14729c32c40SBoqun Feng Self(AtomicRepr::new(into_repr(v))) 14829c32c40SBoqun Feng } 14929c32c40SBoqun Feng 15029c32c40SBoqun Feng /// Creates a reference to an atomic `T` from a pointer of `T`. 15129c32c40SBoqun Feng /// 15229c32c40SBoqun Feng /// This usually is used when communicating with C side or manipulating a C struct, see 15329c32c40SBoqun Feng /// examples below. 15429c32c40SBoqun Feng /// 15529c32c40SBoqun Feng /// # Safety 15629c32c40SBoqun Feng /// 15729c32c40SBoqun Feng /// - `ptr` is aligned to `align_of::<T>()`. 15829c32c40SBoqun Feng /// - `ptr` is valid for reads and writes for `'a`. 15929c32c40SBoqun Feng /// - For the duration of `'a`, other accesses to `*ptr` must not cause data races (defined 16029c32c40SBoqun Feng /// by [`LKMM`]) against atomic operations on the returned reference. Note that if all other 16129c32c40SBoqun Feng /// accesses are atomic, then this safety requirement is trivially fulfilled. 16229c32c40SBoqun Feng /// 16329c32c40SBoqun Feng /// [`LKMM`]: srctree/tools/memory-model 16429c32c40SBoqun Feng /// 16529c32c40SBoqun Feng /// # Examples 16629c32c40SBoqun Feng /// 16729c32c40SBoqun Feng /// Using [`Atomic::from_ptr()`] combined with [`Atomic::load()`] or [`Atomic::store()`] can 16829c32c40SBoqun Feng /// achieve the same functionality as `READ_ONCE()`/`smp_load_acquire()` or 16929c32c40SBoqun Feng /// `WRITE_ONCE()`/`smp_store_release()` in C side: 17029c32c40SBoqun Feng /// 17129c32c40SBoqun Feng /// ``` 17229c32c40SBoqun Feng /// # use kernel::types::Opaque; 17329c32c40SBoqun Feng /// use kernel::sync::atomic::{Atomic, Relaxed, Release}; 17429c32c40SBoqun Feng /// 17529c32c40SBoqun Feng /// // Assume there is a C struct `foo`. 17629c32c40SBoqun Feng /// mod cbindings { 17729c32c40SBoqun Feng /// #[repr(C)] 17829c32c40SBoqun Feng /// pub(crate) struct foo { 17929c32c40SBoqun Feng /// pub(crate) a: i32, 18029c32c40SBoqun Feng /// pub(crate) b: i32 18129c32c40SBoqun Feng /// } 18229c32c40SBoqun Feng /// } 18329c32c40SBoqun Feng /// 18429c32c40SBoqun Feng /// let tmp = Opaque::new(cbindings::foo { a: 1, b: 2 }); 18529c32c40SBoqun Feng /// 18629c32c40SBoqun Feng /// // struct foo *foo_ptr = ..; 18729c32c40SBoqun Feng /// let foo_ptr = tmp.get(); 18829c32c40SBoqun Feng /// 18929c32c40SBoqun Feng /// // SAFETY: `foo_ptr` is valid, and `.a` is in bounds. 19029c32c40SBoqun Feng /// let foo_a_ptr = unsafe { &raw mut (*foo_ptr).a }; 19129c32c40SBoqun Feng /// 19229c32c40SBoqun Feng /// // a = READ_ONCE(foo_ptr->a); 19329c32c40SBoqun Feng /// // 19429c32c40SBoqun Feng /// // SAFETY: `foo_a_ptr` is valid for read, and all other accesses on it is atomic, so no 19529c32c40SBoqun Feng /// // data race. 19629c32c40SBoqun Feng /// let a = unsafe { Atomic::from_ptr(foo_a_ptr) }.load(Relaxed); 19729c32c40SBoqun Feng /// # assert_eq!(a, 1); 19829c32c40SBoqun Feng /// 19929c32c40SBoqun Feng /// // smp_store_release(&foo_ptr->a, 2); 20029c32c40SBoqun Feng /// // 20129c32c40SBoqun Feng /// // SAFETY: `foo_a_ptr` is valid for writes, and all other accesses on it is atomic, so 20229c32c40SBoqun Feng /// // no data race. 20329c32c40SBoqun Feng /// unsafe { Atomic::from_ptr(foo_a_ptr) }.store(2, Release); 20429c32c40SBoqun Feng /// ``` 20529c32c40SBoqun Feng pub unsafe fn from_ptr<'a>(ptr: *mut T) -> &'a Self 20629c32c40SBoqun Feng where 20729c32c40SBoqun Feng T: Sync, 20829c32c40SBoqun Feng { 20929c32c40SBoqun Feng // CAST: `T` and `Atomic<T>` have the same size, alignment and bit validity. 21029c32c40SBoqun Feng // SAFETY: Per function safety requirement, `ptr` is a valid pointer and the object will 21129c32c40SBoqun Feng // live long enough. It's safe to return a `&Atomic<T>` because function safety requirement 21229c32c40SBoqun Feng // guarantees other accesses won't cause data races. 21329c32c40SBoqun Feng unsafe { &*ptr.cast::<Self>() } 21429c32c40SBoqun Feng } 21529c32c40SBoqun Feng 21629c32c40SBoqun Feng /// Returns a pointer to the underlying atomic `T`. 21729c32c40SBoqun Feng /// 21829c32c40SBoqun Feng /// Note that use of the return pointer must not cause data races defined by [`LKMM`]. 21929c32c40SBoqun Feng /// 22029c32c40SBoqun Feng /// # Guarantees 22129c32c40SBoqun Feng /// 22229c32c40SBoqun Feng /// The returned pointer is valid and properly aligned (i.e. aligned to [`align_of::<T>()`]). 22329c32c40SBoqun Feng /// 22429c32c40SBoqun Feng /// [`LKMM`]: srctree/tools/memory-model 22529c32c40SBoqun Feng /// [`align_of::<T>()`]: core::mem::align_of 22629c32c40SBoqun Feng pub const fn as_ptr(&self) -> *mut T { 22729c32c40SBoqun Feng // GUARANTEE: Per the function guarantee of `AtomicRepr::as_ptr()`, the `self.0.as_ptr()` 22829c32c40SBoqun Feng // must be a valid and properly aligned pointer for `T::Repr`, and per the safety guarantee 22929c32c40SBoqun Feng // of `AtomicType`, it's a valid and properly aligned pointer of `T`. 23029c32c40SBoqun Feng self.0.as_ptr().cast() 23129c32c40SBoqun Feng } 23229c32c40SBoqun Feng 23329c32c40SBoqun Feng /// Returns a mutable reference to the underlying atomic `T`. 23429c32c40SBoqun Feng /// 23529c32c40SBoqun Feng /// This is safe because the mutable reference of the atomic `T` guarantees exclusive access. 23629c32c40SBoqun Feng pub fn get_mut(&mut self) -> &mut T { 23729c32c40SBoqun Feng // CAST: `T` and `T::Repr` has the same size and alignment per the safety requirement of 23829c32c40SBoqun Feng // `AtomicType`, and per the type invariants `self.0` is a valid `T`, therefore the casting 23929c32c40SBoqun Feng // result is a valid pointer of `T`. 24029c32c40SBoqun Feng // SAFETY: The pointer is valid per the CAST comment above, and the mutable reference 24129c32c40SBoqun Feng // guarantees exclusive access. 24229c32c40SBoqun Feng unsafe { &mut *self.0.as_ptr().cast() } 24329c32c40SBoqun Feng } 24429c32c40SBoqun Feng } 24529c32c40SBoqun Feng 24629c32c40SBoqun Feng impl<T: AtomicType> Atomic<T> 24729c32c40SBoqun Feng where 24829c32c40SBoqun Feng T::Repr: AtomicBasicOps, 24929c32c40SBoqun Feng { 25029c32c40SBoqun Feng /// Loads the value from the atomic `T`. 25129c32c40SBoqun Feng /// 25229c32c40SBoqun Feng /// # Examples 25329c32c40SBoqun Feng /// 25429c32c40SBoqun Feng /// ``` 25529c32c40SBoqun Feng /// use kernel::sync::atomic::{Atomic, Relaxed}; 25629c32c40SBoqun Feng /// 25729c32c40SBoqun Feng /// let x = Atomic::new(42i32); 25829c32c40SBoqun Feng /// 25929c32c40SBoqun Feng /// assert_eq!(42, x.load(Relaxed)); 26029c32c40SBoqun Feng /// 26129c32c40SBoqun Feng /// let x = Atomic::new(42i64); 26229c32c40SBoqun Feng /// 26329c32c40SBoqun Feng /// assert_eq!(42, x.load(Relaxed)); 26429c32c40SBoqun Feng /// ``` 26529c32c40SBoqun Feng #[doc(alias("atomic_read", "atomic64_read"))] 26629c32c40SBoqun Feng #[inline(always)] 26729c32c40SBoqun Feng pub fn load<Ordering: ordering::AcquireOrRelaxed>(&self, _: Ordering) -> T { 26829c32c40SBoqun Feng let v = { 26929c32c40SBoqun Feng match Ordering::TYPE { 27029c32c40SBoqun Feng OrderingType::Relaxed => T::Repr::atomic_read(&self.0), 27129c32c40SBoqun Feng OrderingType::Acquire => T::Repr::atomic_read_acquire(&self.0), 27229c32c40SBoqun Feng _ => build_error!("Wrong ordering"), 27329c32c40SBoqun Feng } 27429c32c40SBoqun Feng }; 27529c32c40SBoqun Feng 27629c32c40SBoqun Feng // SAFETY: `v` comes from reading `self.0`, which is a valid `T` per the type invariants. 27729c32c40SBoqun Feng unsafe { from_repr(v) } 27829c32c40SBoqun Feng } 27929c32c40SBoqun Feng 28029c32c40SBoqun Feng /// Stores a value to the atomic `T`. 28129c32c40SBoqun Feng /// 28229c32c40SBoqun Feng /// # Examples 28329c32c40SBoqun Feng /// 28429c32c40SBoqun Feng /// ``` 28529c32c40SBoqun Feng /// use kernel::sync::atomic::{Atomic, Relaxed}; 28629c32c40SBoqun Feng /// 28729c32c40SBoqun Feng /// let x = Atomic::new(42i32); 28829c32c40SBoqun Feng /// 28929c32c40SBoqun Feng /// assert_eq!(42, x.load(Relaxed)); 29029c32c40SBoqun Feng /// 29129c32c40SBoqun Feng /// x.store(43, Relaxed); 29229c32c40SBoqun Feng /// 29329c32c40SBoqun Feng /// assert_eq!(43, x.load(Relaxed)); 29429c32c40SBoqun Feng /// ``` 29529c32c40SBoqun Feng #[doc(alias("atomic_set", "atomic64_set"))] 29629c32c40SBoqun Feng #[inline(always)] 29729c32c40SBoqun Feng pub fn store<Ordering: ordering::ReleaseOrRelaxed>(&self, v: T, _: Ordering) { 29829c32c40SBoqun Feng let v = into_repr(v); 29929c32c40SBoqun Feng 30029c32c40SBoqun Feng // INVARIANT: `v` is a valid `T`, and is stored to `self.0` by `atomic_set*()`. 30129c32c40SBoqun Feng match Ordering::TYPE { 30229c32c40SBoqun Feng OrderingType::Relaxed => T::Repr::atomic_set(&self.0, v), 30329c32c40SBoqun Feng OrderingType::Release => T::Repr::atomic_set_release(&self.0, v), 30429c32c40SBoqun Feng _ => build_error!("Wrong ordering"), 30529c32c40SBoqun Feng } 30629c32c40SBoqun Feng } 30729c32c40SBoqun Feng } 308b606a532SBoqun Feng 309b606a532SBoqun Feng impl<T: AtomicType> Atomic<T> 310b606a532SBoqun Feng where 311b606a532SBoqun Feng T::Repr: AtomicExchangeOps, 312b606a532SBoqun Feng { 313b606a532SBoqun Feng /// Atomic exchange. 314b606a532SBoqun Feng /// 315b606a532SBoqun Feng /// Atomically updates `*self` to `v` and returns the old value of `*self`. 316b606a532SBoqun Feng /// 317b606a532SBoqun Feng /// # Examples 318b606a532SBoqun Feng /// 319b606a532SBoqun Feng /// ``` 320b606a532SBoqun Feng /// use kernel::sync::atomic::{Atomic, Acquire, Relaxed}; 321b606a532SBoqun Feng /// 322b606a532SBoqun Feng /// let x = Atomic::new(42); 323b606a532SBoqun Feng /// 324b606a532SBoqun Feng /// assert_eq!(42, x.xchg(52, Acquire)); 325b606a532SBoqun Feng /// assert_eq!(52, x.load(Relaxed)); 326b606a532SBoqun Feng /// ``` 327b606a532SBoqun Feng #[doc(alias("atomic_xchg", "atomic64_xchg", "swap"))] 328b606a532SBoqun Feng #[inline(always)] 329b606a532SBoqun Feng pub fn xchg<Ordering: ordering::Ordering>(&self, v: T, _: Ordering) -> T { 330b606a532SBoqun Feng let v = into_repr(v); 331b606a532SBoqun Feng 332b606a532SBoqun Feng // INVARIANT: `self.0` is a valid `T` after `atomic_xchg*()` because `v` is transmutable to 333b606a532SBoqun Feng // `T`. 334b606a532SBoqun Feng let ret = { 335b606a532SBoqun Feng match Ordering::TYPE { 336b606a532SBoqun Feng OrderingType::Full => T::Repr::atomic_xchg(&self.0, v), 337b606a532SBoqun Feng OrderingType::Acquire => T::Repr::atomic_xchg_acquire(&self.0, v), 338b606a532SBoqun Feng OrderingType::Release => T::Repr::atomic_xchg_release(&self.0, v), 339b606a532SBoqun Feng OrderingType::Relaxed => T::Repr::atomic_xchg_relaxed(&self.0, v), 340b606a532SBoqun Feng } 341b606a532SBoqun Feng }; 342b606a532SBoqun Feng 343b606a532SBoqun Feng // SAFETY: `ret` comes from reading `*self`, which is a valid `T` per type invariants. 344b606a532SBoqun Feng unsafe { from_repr(ret) } 345b606a532SBoqun Feng } 346b606a532SBoqun Feng 347b606a532SBoqun Feng /// Atomic compare and exchange. 348b606a532SBoqun Feng /// 349b606a532SBoqun Feng /// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not 350b606a532SBoqun Feng /// modified. 351b606a532SBoqun Feng /// 352b606a532SBoqun Feng /// Compare: The comparison is done via the byte level comparison between `*self` and `old`. 353b606a532SBoqun Feng /// 354b606a532SBoqun Feng /// Ordering: When succeeds, provides the corresponding ordering as the `Ordering` type 355b606a532SBoqun Feng /// parameter indicates, and a failed one doesn't provide any ordering, the load part of a 356b606a532SBoqun Feng /// failed cmpxchg is a [`Relaxed`] load. 357b606a532SBoqun Feng /// 358b606a532SBoqun Feng /// Returns `Ok(value)` if cmpxchg succeeds, and `value` is guaranteed to be equal to `old`, 359b606a532SBoqun Feng /// otherwise returns `Err(value)`, and `value` is the current value of `*self`. 360b606a532SBoqun Feng /// 361b606a532SBoqun Feng /// # Examples 362b606a532SBoqun Feng /// 363b606a532SBoqun Feng /// ``` 364b606a532SBoqun Feng /// use kernel::sync::atomic::{Atomic, Full, Relaxed}; 365b606a532SBoqun Feng /// 366b606a532SBoqun Feng /// let x = Atomic::new(42); 367b606a532SBoqun Feng /// 368b606a532SBoqun Feng /// // Checks whether cmpxchg succeeded. 369b606a532SBoqun Feng /// let success = x.cmpxchg(52, 64, Relaxed).is_ok(); 370b606a532SBoqun Feng /// # assert!(!success); 371b606a532SBoqun Feng /// 372b606a532SBoqun Feng /// // Checks whether cmpxchg failed. 373b606a532SBoqun Feng /// let failure = x.cmpxchg(52, 64, Relaxed).is_err(); 374b606a532SBoqun Feng /// # assert!(failure); 375b606a532SBoqun Feng /// 376b606a532SBoqun Feng /// // Uses the old value if failed, probably re-try cmpxchg. 377b606a532SBoqun Feng /// match x.cmpxchg(52, 64, Relaxed) { 378b606a532SBoqun Feng /// Ok(_) => { }, 379b606a532SBoqun Feng /// Err(old) => { 380b606a532SBoqun Feng /// // do something with `old`. 381b606a532SBoqun Feng /// # assert_eq!(old, 42); 382b606a532SBoqun Feng /// } 383b606a532SBoqun Feng /// } 384b606a532SBoqun Feng /// 385b606a532SBoqun Feng /// // Uses the latest value regardlessly, same as atomic_cmpxchg() in C. 386b606a532SBoqun Feng /// let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old); 387b606a532SBoqun Feng /// # assert_eq!(42, latest); 388b606a532SBoqun Feng /// assert_eq!(64, x.load(Relaxed)); 389b606a532SBoqun Feng /// ``` 390b606a532SBoqun Feng /// 391b606a532SBoqun Feng /// [`Relaxed`]: ordering::Relaxed 392b606a532SBoqun Feng #[doc(alias( 393b606a532SBoqun Feng "atomic_cmpxchg", 394b606a532SBoqun Feng "atomic64_cmpxchg", 395b606a532SBoqun Feng "atomic_try_cmpxchg", 396b606a532SBoqun Feng "atomic64_try_cmpxchg", 397b606a532SBoqun Feng "compare_exchange" 398b606a532SBoqun Feng ))] 399b606a532SBoqun Feng #[inline(always)] 400b606a532SBoqun Feng pub fn cmpxchg<Ordering: ordering::Ordering>( 401b606a532SBoqun Feng &self, 402b606a532SBoqun Feng mut old: T, 403b606a532SBoqun Feng new: T, 404b606a532SBoqun Feng o: Ordering, 405b606a532SBoqun Feng ) -> Result<T, T> { 406b606a532SBoqun Feng // Note on code generation: 407b606a532SBoqun Feng // 408b606a532SBoqun Feng // try_cmpxchg() is used to implement cmpxchg(), and if the helper functions are inlined, 409b606a532SBoqun Feng // the compiler is able to figure out that branch is not needed if the users don't care 410b606a532SBoqun Feng // about whether the operation succeeds or not. One exception is on x86, due to commit 411b606a532SBoqun Feng // 44fe84459faf ("locking/atomic: Fix atomic_try_cmpxchg() semantics"), the 412b606a532SBoqun Feng // atomic_try_cmpxchg() on x86 has a branch even if the caller doesn't care about the 413b606a532SBoqun Feng // success of cmpxchg and only wants to use the old value. For example, for code like: 414b606a532SBoqun Feng // 415b606a532SBoqun Feng // let latest = x.cmpxchg(42, 64, Full).unwrap_or_else(|old| old); 416b606a532SBoqun Feng // 417b606a532SBoqun Feng // It will still generate code: 418b606a532SBoqun Feng // 419b606a532SBoqun Feng // movl $0x40, %ecx 420b606a532SBoqun Feng // movl $0x34, %eax 421b606a532SBoqun Feng // lock 422b606a532SBoqun Feng // cmpxchgl %ecx, 0x4(%rsp) 423b606a532SBoqun Feng // jne 1f 424b606a532SBoqun Feng // 2: 425b606a532SBoqun Feng // ... 426b606a532SBoqun Feng // 1: movl %eax, %ecx 427b606a532SBoqun Feng // jmp 2b 428b606a532SBoqun Feng // 429b606a532SBoqun Feng // This might be "fixed" by introducing a try_cmpxchg_exclusive() that knows the "*old" 430b606a532SBoqun Feng // location in the C function is always safe to write. 431b606a532SBoqun Feng if self.try_cmpxchg(&mut old, new, o) { 432b606a532SBoqun Feng Ok(old) 433b606a532SBoqun Feng } else { 434b606a532SBoqun Feng Err(old) 435b606a532SBoqun Feng } 436b606a532SBoqun Feng } 437b606a532SBoqun Feng 438b606a532SBoqun Feng /// Atomic compare and exchange and returns whether the operation succeeds. 439b606a532SBoqun Feng /// 440b606a532SBoqun Feng /// If `*self` == `old`, atomically updates `*self` to `new`. Otherwise, `*self` is not 441b606a532SBoqun Feng /// modified, `*old` is updated to the current value of `*self`. 442b606a532SBoqun Feng /// 443b606a532SBoqun Feng /// "Compare" and "Ordering" part are the same as [`Atomic::cmpxchg()`]. 444b606a532SBoqun Feng /// 445b606a532SBoqun Feng /// Returns `true` means the cmpxchg succeeds otherwise returns `false`. 446b606a532SBoqun Feng #[inline(always)] 447b606a532SBoqun Feng fn try_cmpxchg<Ordering: ordering::Ordering>(&self, old: &mut T, new: T, _: Ordering) -> bool { 448b606a532SBoqun Feng let mut tmp = into_repr(*old); 449b606a532SBoqun Feng let new = into_repr(new); 450b606a532SBoqun Feng 451b606a532SBoqun Feng // INVARIANT: `self.0` is a valid `T` after `atomic_try_cmpxchg*()` because `new` is 452b606a532SBoqun Feng // transmutable to `T`. 453b606a532SBoqun Feng let ret = { 454b606a532SBoqun Feng match Ordering::TYPE { 455b606a532SBoqun Feng OrderingType::Full => T::Repr::atomic_try_cmpxchg(&self.0, &mut tmp, new), 456b606a532SBoqun Feng OrderingType::Acquire => { 457b606a532SBoqun Feng T::Repr::atomic_try_cmpxchg_acquire(&self.0, &mut tmp, new) 458b606a532SBoqun Feng } 459b606a532SBoqun Feng OrderingType::Release => { 460b606a532SBoqun Feng T::Repr::atomic_try_cmpxchg_release(&self.0, &mut tmp, new) 461b606a532SBoqun Feng } 462b606a532SBoqun Feng OrderingType::Relaxed => { 463b606a532SBoqun Feng T::Repr::atomic_try_cmpxchg_relaxed(&self.0, &mut tmp, new) 464b606a532SBoqun Feng } 465b606a532SBoqun Feng } 466b606a532SBoqun Feng }; 467b606a532SBoqun Feng 468b606a532SBoqun Feng // SAFETY: `tmp` comes from reading `*self`, which is a valid `T` per type invariants. 469b606a532SBoqun Feng *old = unsafe { from_repr(tmp) }; 470b606a532SBoqun Feng 471b606a532SBoqun Feng ret 472b606a532SBoqun Feng } 473b606a532SBoqun Feng } 474*d1320543SBoqun Feng 475*d1320543SBoqun Feng impl<T: AtomicType> Atomic<T> 476*d1320543SBoqun Feng where 477*d1320543SBoqun Feng T::Repr: AtomicArithmeticOps, 478*d1320543SBoqun Feng { 479*d1320543SBoqun Feng /// Atomic add. 480*d1320543SBoqun Feng /// 481*d1320543SBoqun Feng /// Atomically updates `*self` to `(*self).wrapping_add(v)`. 482*d1320543SBoqun Feng /// 483*d1320543SBoqun Feng /// # Examples 484*d1320543SBoqun Feng /// 485*d1320543SBoqun Feng /// ``` 486*d1320543SBoqun Feng /// use kernel::sync::atomic::{Atomic, Relaxed}; 487*d1320543SBoqun Feng /// 488*d1320543SBoqun Feng /// let x = Atomic::new(42); 489*d1320543SBoqun Feng /// 490*d1320543SBoqun Feng /// assert_eq!(42, x.load(Relaxed)); 491*d1320543SBoqun Feng /// 492*d1320543SBoqun Feng /// x.add(12, Relaxed); 493*d1320543SBoqun Feng /// 494*d1320543SBoqun Feng /// assert_eq!(54, x.load(Relaxed)); 495*d1320543SBoqun Feng /// ``` 496*d1320543SBoqun Feng #[inline(always)] 497*d1320543SBoqun Feng pub fn add<Rhs>(&self, v: Rhs, _: ordering::Relaxed) 498*d1320543SBoqun Feng where 499*d1320543SBoqun Feng T: AtomicAdd<Rhs>, 500*d1320543SBoqun Feng { 501*d1320543SBoqun Feng let v = T::rhs_into_delta(v); 502*d1320543SBoqun Feng 503*d1320543SBoqun Feng // INVARIANT: `self.0` is a valid `T` after `atomic_add()` due to safety requirement of 504*d1320543SBoqun Feng // `AtomicAdd`. 505*d1320543SBoqun Feng T::Repr::atomic_add(&self.0, v); 506*d1320543SBoqun Feng } 507*d1320543SBoqun Feng 508*d1320543SBoqun Feng /// Atomic fetch and add. 509*d1320543SBoqun Feng /// 510*d1320543SBoqun Feng /// Atomically updates `*self` to `(*self).wrapping_add(v)`, and returns the value of `*self` 511*d1320543SBoqun Feng /// before the update. 512*d1320543SBoqun Feng /// 513*d1320543SBoqun Feng /// # Examples 514*d1320543SBoqun Feng /// 515*d1320543SBoqun Feng /// ``` 516*d1320543SBoqun Feng /// use kernel::sync::atomic::{Atomic, Acquire, Full, Relaxed}; 517*d1320543SBoqun Feng /// 518*d1320543SBoqun Feng /// let x = Atomic::new(42); 519*d1320543SBoqun Feng /// 520*d1320543SBoqun Feng /// assert_eq!(42, x.load(Relaxed)); 521*d1320543SBoqun Feng /// 522*d1320543SBoqun Feng /// assert_eq!(54, { x.fetch_add(12, Acquire); x.load(Relaxed) }); 523*d1320543SBoqun Feng /// 524*d1320543SBoqun Feng /// let x = Atomic::new(42); 525*d1320543SBoqun Feng /// 526*d1320543SBoqun Feng /// assert_eq!(42, x.load(Relaxed)); 527*d1320543SBoqun Feng /// 528*d1320543SBoqun Feng /// assert_eq!(54, { x.fetch_add(12, Full); x.load(Relaxed) } ); 529*d1320543SBoqun Feng /// ``` 530*d1320543SBoqun Feng #[inline(always)] 531*d1320543SBoqun Feng pub fn fetch_add<Rhs, Ordering: ordering::Ordering>(&self, v: Rhs, _: Ordering) -> T 532*d1320543SBoqun Feng where 533*d1320543SBoqun Feng T: AtomicAdd<Rhs>, 534*d1320543SBoqun Feng { 535*d1320543SBoqun Feng let v = T::rhs_into_delta(v); 536*d1320543SBoqun Feng 537*d1320543SBoqun Feng // INVARIANT: `self.0` is a valid `T` after `atomic_fetch_add*()` due to safety requirement 538*d1320543SBoqun Feng // of `AtomicAdd`. 539*d1320543SBoqun Feng let ret = { 540*d1320543SBoqun Feng match Ordering::TYPE { 541*d1320543SBoqun Feng OrderingType::Full => T::Repr::atomic_fetch_add(&self.0, v), 542*d1320543SBoqun Feng OrderingType::Acquire => T::Repr::atomic_fetch_add_acquire(&self.0, v), 543*d1320543SBoqun Feng OrderingType::Release => T::Repr::atomic_fetch_add_release(&self.0, v), 544*d1320543SBoqun Feng OrderingType::Relaxed => T::Repr::atomic_fetch_add_relaxed(&self.0, v), 545*d1320543SBoqun Feng } 546*d1320543SBoqun Feng }; 547*d1320543SBoqun Feng 548*d1320543SBoqun Feng // SAFETY: `ret` comes from reading `self.0`, which is a valid `T` per type invariants. 549*d1320543SBoqun Feng unsafe { from_repr(ret) } 550*d1320543SBoqun Feng } 551*d1320543SBoqun Feng } 552