xref: /linux/rust/kernel/sync/arc.rs (revision fa8a4d3659d0c1ad73d5f59b2e0a6d408de5b317)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //!
16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
17 
18 use crate::{
19     alloc::{box_ext::BoxExt, AllocError, Flags},
20     error::{self, Error},
21     init::{self, InPlaceInit, Init, PinInit},
22     try_init,
23     types::{ForeignOwnable, Opaque},
24 };
25 use alloc::boxed::Box;
26 use core::{
27     alloc::Layout,
28     fmt,
29     marker::{PhantomData, Unsize},
30     mem::{ManuallyDrop, MaybeUninit},
31     ops::{Deref, DerefMut},
32     pin::Pin,
33     ptr::NonNull,
34 };
35 use macros::pin_data;
36 
37 mod std_vendor;
38 
39 /// A reference-counted pointer to an instance of `T`.
40 ///
41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43 ///
44 /// # Invariants
45 ///
46 /// The reference count on an instance of [`Arc`] is always non-zero.
47 /// The object pointed to by [`Arc`] is always pinned.
48 ///
49 /// # Examples
50 ///
51 /// ```
52 /// use kernel::sync::Arc;
53 ///
54 /// struct Example {
55 ///     a: u32,
56 ///     b: u32,
57 /// }
58 ///
59 /// // Create a refcounted instance of `Example`.
60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
61 ///
62 /// // Get a new pointer to `obj` and increment the refcount.
63 /// let cloned = obj.clone();
64 ///
65 /// // Assert that both `obj` and `cloned` point to the same underlying object.
66 /// assert!(core::ptr::eq(&*obj, &*cloned));
67 ///
68 /// // Destroy `obj` and decrement its refcount.
69 /// drop(obj);
70 ///
71 /// // Check that the values are still accessible through `cloned`.
72 /// assert_eq!(cloned.a, 10);
73 /// assert_eq!(cloned.b, 20);
74 ///
75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76 /// # Ok::<(), Error>(())
77 /// ```
78 ///
79 /// Using `Arc<T>` as the type of `self`:
80 ///
81 /// ```
82 /// use kernel::sync::Arc;
83 ///
84 /// struct Example {
85 ///     a: u32,
86 ///     b: u32,
87 /// }
88 ///
89 /// impl Example {
90 ///     fn take_over(self: Arc<Self>) {
91 ///         // ...
92 ///     }
93 ///
94 ///     fn use_reference(self: &Arc<Self>) {
95 ///         // ...
96 ///     }
97 /// }
98 ///
99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
100 /// obj.use_reference();
101 /// obj.take_over();
102 /// # Ok::<(), Error>(())
103 /// ```
104 ///
105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106 ///
107 /// ```
108 /// use kernel::sync::{Arc, ArcBorrow};
109 ///
110 /// trait MyTrait {
111 ///     // Trait has a function whose `self` type is `Arc<Self>`.
112 ///     fn example1(self: Arc<Self>) {}
113 ///
114 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115 ///     fn example2(self: ArcBorrow<'_, Self>) {}
116 /// }
117 ///
118 /// struct Example;
119 /// impl MyTrait for Example {}
120 ///
121 /// // `obj` has type `Arc<Example>`.
122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
123 ///
124 /// // `coerced` has type `Arc<dyn MyTrait>`.
125 /// let coerced: Arc<dyn MyTrait> = obj;
126 /// # Ok::<(), Error>(())
127 /// ```
128 pub struct Arc<T: ?Sized> {
129     ptr: NonNull<ArcInner<T>>,
130     _p: PhantomData<ArcInner<T>>,
131 }
132 
133 #[pin_data]
134 #[repr(C)]
135 struct ArcInner<T: ?Sized> {
136     refcount: Opaque<bindings::refcount_t>,
137     data: T,
138 }
139 
140 impl<T: ?Sized> ArcInner<T> {
141     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
142     ///
143     /// # Safety
144     ///
145     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
146     /// not yet have been destroyed.
147     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
148         let refcount_layout = Layout::new::<bindings::refcount_t>();
149         // SAFETY: The caller guarantees that the pointer is valid.
150         let val_layout = Layout::for_value(unsafe { &*ptr });
151         // SAFETY: We're computing the layout of a real struct that existed when compiling this
152         // binary, so its layout is not so large that it can trigger arithmetic overflow.
153         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
154 
155         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
156         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
157         //
158         // This is documented at:
159         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
160         let ptr = ptr as *const ArcInner<T>;
161 
162         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
163         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
164         // still valid.
165         let ptr = unsafe { ptr.byte_sub(val_offset) };
166 
167         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
168         // address.
169         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
170     }
171 }
172 
173 // This is to allow [`Arc`] (and variants) to be used as the type of `self`.
174 impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
175 
176 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
177 // dynamically-sized type (DST) `U`.
178 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
179 
180 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
181 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
182 
183 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
184 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
185 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
186 // mutable reference when the reference count reaches zero and `T` is dropped.
187 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
188 
189 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
190 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
191 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
192 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
193 // the reference count reaches zero and `T` is dropped.
194 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
195 
196 impl<T> Arc<T> {
197     /// Constructs a new reference counted instance of `T`.
198     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
199         // INVARIANT: The refcount is initialised to a non-zero value.
200         let value = ArcInner {
201             // SAFETY: There are no safety requirements for this FFI call.
202             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
203             data: contents,
204         };
205 
206         let inner = <Box<_> as BoxExt<_>>::new(value, flags)?;
207 
208         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
209         // `Arc` object.
210         Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
211     }
212 
213     /// Use the given initializer to in-place initialize a `T`.
214     ///
215     /// If `T: !Unpin` it will not be able to move afterwards.
216     #[inline]
217     pub fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self>
218     where
219         Error: From<E>,
220     {
221         UniqueArc::pin_init(init, flags).map(|u| u.into())
222     }
223 
224     /// Use the given initializer to in-place initialize a `T`.
225     ///
226     /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned.
227     #[inline]
228     pub fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self>
229     where
230         Error: From<E>,
231     {
232         UniqueArc::init(init, flags).map(|u| u.into())
233     }
234 }
235 
236 impl<T: ?Sized> Arc<T> {
237     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
238     ///
239     /// # Safety
240     ///
241     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
242     /// count, one of which will be owned by the new [`Arc`] instance.
243     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
244         // INVARIANT: By the safety requirements, the invariants hold.
245         Arc {
246             ptr: inner,
247             _p: PhantomData,
248         }
249     }
250 
251     /// Convert the [`Arc`] into a raw pointer.
252     ///
253     /// The raw pointer has ownership of the refcount that this Arc object owned.
254     pub fn into_raw(self) -> *const T {
255         let ptr = self.ptr.as_ptr();
256         core::mem::forget(self);
257         // SAFETY: The pointer is valid.
258         unsafe { core::ptr::addr_of!((*ptr).data) }
259     }
260 
261     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
262     ///
263     /// # Safety
264     ///
265     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
266     /// must not be called more than once for each previous call to [`Arc::into_raw`].
267     pub unsafe fn from_raw(ptr: *const T) -> Self {
268         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
269         // `Arc` that is still valid.
270         let ptr = unsafe { ArcInner::container_of(ptr) };
271 
272         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
273         // reference count held then will be owned by the new `Arc` object.
274         unsafe { Self::from_inner(ptr) }
275     }
276 
277     /// Returns an [`ArcBorrow`] from the given [`Arc`].
278     ///
279     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
280     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
281     #[inline]
282     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
283         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
284         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
285         // reference can be created.
286         unsafe { ArcBorrow::new(self.ptr) }
287     }
288 
289     /// Compare whether two [`Arc`] pointers reference the same underlying object.
290     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
291         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
292     }
293 
294     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
295     ///
296     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
297     /// this method will never call the destructor of the value.
298     ///
299     /// # Examples
300     ///
301     /// ```
302     /// use kernel::sync::{Arc, UniqueArc};
303     ///
304     /// let arc = Arc::new(42, GFP_KERNEL)?;
305     /// let unique_arc = arc.into_unique_or_drop();
306     ///
307     /// // The above conversion should succeed since refcount of `arc` is 1.
308     /// assert!(unique_arc.is_some());
309     ///
310     /// assert_eq!(*(unique_arc.unwrap()), 42);
311     ///
312     /// # Ok::<(), Error>(())
313     /// ```
314     ///
315     /// ```
316     /// use kernel::sync::{Arc, UniqueArc};
317     ///
318     /// let arc = Arc::new(42, GFP_KERNEL)?;
319     /// let another = arc.clone();
320     ///
321     /// let unique_arc = arc.into_unique_or_drop();
322     ///
323     /// // The above conversion should fail since refcount of `arc` is >1.
324     /// assert!(unique_arc.is_none());
325     ///
326     /// # Ok::<(), Error>(())
327     /// ```
328     pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
329         // We will manually manage the refcount in this method, so we disable the destructor.
330         let me = ManuallyDrop::new(self);
331         // SAFETY: We own a refcount, so the pointer is still valid.
332         let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
333 
334         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
335         // return without further touching the `Arc`. If the refcount reaches zero, then there are
336         // no other arcs, and we can create a `UniqueArc`.
337         //
338         // SAFETY: We own a refcount, so the pointer is not dangling.
339         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
340         if is_zero {
341             // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
342             // accesses to the refcount.
343             unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
344 
345             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
346             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
347             // their values.
348             Some(Pin::from(UniqueArc {
349                 inner: ManuallyDrop::into_inner(me),
350             }))
351         } else {
352             None
353         }
354     }
355 }
356 
357 impl<T: 'static> ForeignOwnable for Arc<T> {
358     type Borrowed<'a> = ArcBorrow<'a, T>;
359 
360     fn into_foreign(self) -> *const core::ffi::c_void {
361         ManuallyDrop::new(self).ptr.as_ptr() as _
362     }
363 
364     unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
365         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
366         // a previous call to `Arc::into_foreign`.
367         let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
368 
369         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
370         // for the lifetime of the returned value.
371         unsafe { ArcBorrow::new(inner) }
372     }
373 
374     unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
375         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
376         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
377         // holds a reference count increment that is transferrable to us.
378         unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
379     }
380 }
381 
382 impl<T: ?Sized> Deref for Arc<T> {
383     type Target = T;
384 
385     fn deref(&self) -> &Self::Target {
386         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
387         // safe to dereference it.
388         unsafe { &self.ptr.as_ref().data }
389     }
390 }
391 
392 impl<T: ?Sized> AsRef<T> for Arc<T> {
393     fn as_ref(&self) -> &T {
394         self.deref()
395     }
396 }
397 
398 impl<T: ?Sized> Clone for Arc<T> {
399     fn clone(&self) -> Self {
400         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
401         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
402         // safe to increment the refcount.
403         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
404 
405         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
406         unsafe { Self::from_inner(self.ptr) }
407     }
408 }
409 
410 impl<T: ?Sized> Drop for Arc<T> {
411     fn drop(&mut self) {
412         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
413         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
414         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
415         // freed/invalid memory as long as it is never dereferenced.
416         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
417 
418         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
419         // this instance is being dropped, so the broken invariant is not observable.
420         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
421         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
422         if is_zero {
423             // The count reached zero, we must free the memory.
424             //
425             // SAFETY: The pointer was initialised from the result of `Box::leak`.
426             unsafe { drop(Box::from_raw(self.ptr.as_ptr())) };
427         }
428     }
429 }
430 
431 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
432     fn from(item: UniqueArc<T>) -> Self {
433         item.inner
434     }
435 }
436 
437 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
438     fn from(item: Pin<UniqueArc<T>>) -> Self {
439         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
440         unsafe { Pin::into_inner_unchecked(item).inner }
441     }
442 }
443 
444 /// A borrowed reference to an [`Arc`] instance.
445 ///
446 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
447 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
448 ///
449 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
450 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
451 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
452 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
453 /// needed.
454 ///
455 /// # Invariants
456 ///
457 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
458 /// lifetime of the [`ArcBorrow`] instance.
459 ///
460 /// # Example
461 ///
462 /// ```
463 /// use kernel::sync::{Arc, ArcBorrow};
464 ///
465 /// struct Example;
466 ///
467 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
468 ///     e.into()
469 /// }
470 ///
471 /// let obj = Arc::new(Example, GFP_KERNEL)?;
472 /// let cloned = do_something(obj.as_arc_borrow());
473 ///
474 /// // Assert that both `obj` and `cloned` point to the same underlying object.
475 /// assert!(core::ptr::eq(&*obj, &*cloned));
476 /// # Ok::<(), Error>(())
477 /// ```
478 ///
479 /// Using `ArcBorrow<T>` as the type of `self`:
480 ///
481 /// ```
482 /// use kernel::sync::{Arc, ArcBorrow};
483 ///
484 /// struct Example {
485 ///     a: u32,
486 ///     b: u32,
487 /// }
488 ///
489 /// impl Example {
490 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
491 ///         // ...
492 ///     }
493 /// }
494 ///
495 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
496 /// obj.as_arc_borrow().use_reference();
497 /// # Ok::<(), Error>(())
498 /// ```
499 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
500     inner: NonNull<ArcInner<T>>,
501     _p: PhantomData<&'a ()>,
502 }
503 
504 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`.
505 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {}
506 
507 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
508 // `ArcBorrow<U>`.
509 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
510     for ArcBorrow<'_, T>
511 {
512 }
513 
514 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
515     fn clone(&self) -> Self {
516         *self
517     }
518 }
519 
520 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
521 
522 impl<T: ?Sized> ArcBorrow<'_, T> {
523     /// Creates a new [`ArcBorrow`] instance.
524     ///
525     /// # Safety
526     ///
527     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
528     /// 1. That `inner` remains valid;
529     /// 2. That no mutable references to `inner` are created.
530     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
531         // INVARIANT: The safety requirements guarantee the invariants.
532         Self {
533             inner,
534             _p: PhantomData,
535         }
536     }
537 
538     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
539     /// [`Arc::into_raw`].
540     ///
541     /// # Safety
542     ///
543     /// * The provided pointer must originate from a call to [`Arc::into_raw`].
544     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
545     ///   not hit zero.
546     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
547     ///   [`UniqueArc`] reference to this value.
548     pub unsafe fn from_raw(ptr: *const T) -> Self {
549         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
550         // `Arc` that is still valid.
551         let ptr = unsafe { ArcInner::container_of(ptr) };
552 
553         // SAFETY: The caller promises that the value remains valid since the reference count must
554         // not hit zero, and no mutable reference will be created since that would involve a
555         // `UniqueArc`.
556         unsafe { Self::new(ptr) }
557     }
558 }
559 
560 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
561     fn from(b: ArcBorrow<'_, T>) -> Self {
562         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
563         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
564         // increment.
565         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
566             .deref()
567             .clone()
568     }
569 }
570 
571 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
572     type Target = T;
573 
574     fn deref(&self) -> &Self::Target {
575         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
576         // references to it, so it is safe to create a shared reference.
577         unsafe { &self.inner.as_ref().data }
578     }
579 }
580 
581 /// A refcounted object that is known to have a refcount of 1.
582 ///
583 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
584 ///
585 /// # Invariants
586 ///
587 /// `inner` always has a reference count of 1.
588 ///
589 /// # Examples
590 ///
591 /// In the following example, we make changes to the inner object before turning it into an
592 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
593 /// cannot fail.
594 ///
595 /// ```
596 /// use kernel::sync::{Arc, UniqueArc};
597 ///
598 /// struct Example {
599 ///     a: u32,
600 ///     b: u32,
601 /// }
602 ///
603 /// fn test() -> Result<Arc<Example>> {
604 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
605 ///     x.a += 1;
606 ///     x.b += 1;
607 ///     Ok(x.into())
608 /// }
609 ///
610 /// # test().unwrap();
611 /// ```
612 ///
613 /// In the following example we first allocate memory for a refcounted `Example` but we don't
614 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
615 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
616 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
617 ///
618 /// ```
619 /// use kernel::sync::{Arc, UniqueArc};
620 ///
621 /// struct Example {
622 ///     a: u32,
623 ///     b: u32,
624 /// }
625 ///
626 /// fn test() -> Result<Arc<Example>> {
627 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
628 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
629 /// }
630 ///
631 /// # test().unwrap();
632 /// ```
633 ///
634 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
635 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
636 /// initialisation, for example, when initialising fields that are wrapped in locks.
637 ///
638 /// ```
639 /// use kernel::sync::{Arc, UniqueArc};
640 ///
641 /// struct Example {
642 ///     a: u32,
643 ///     b: u32,
644 /// }
645 ///
646 /// fn test() -> Result<Arc<Example>> {
647 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
648 ///     // We can modify `pinned` because it is `Unpin`.
649 ///     pinned.as_mut().a += 1;
650 ///     Ok(pinned.into())
651 /// }
652 ///
653 /// # test().unwrap();
654 /// ```
655 pub struct UniqueArc<T: ?Sized> {
656     inner: Arc<T>,
657 }
658 
659 impl<T> UniqueArc<T> {
660     /// Tries to allocate a new [`UniqueArc`] instance.
661     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
662         Ok(Self {
663             // INVARIANT: The newly-created object has a refcount of 1.
664             inner: Arc::new(value, flags)?,
665         })
666     }
667 
668     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
669     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
670         // INVARIANT: The refcount is initialised to a non-zero value.
671         let inner = Box::try_init::<AllocError>(
672             try_init!(ArcInner {
673                 // SAFETY: There are no safety requirements for this FFI call.
674                 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
675                 data <- init::uninit::<T, AllocError>(),
676             }? AllocError),
677             flags,
678         )?;
679         Ok(UniqueArc {
680             // INVARIANT: The newly-created object has a refcount of 1.
681             // SAFETY: The pointer from the `Box` is valid.
682             inner: unsafe { Arc::from_inner(Box::leak(inner).into()) },
683         })
684     }
685 }
686 
687 impl<T> UniqueArc<MaybeUninit<T>> {
688     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
689     pub fn write(mut self, value: T) -> UniqueArc<T> {
690         self.deref_mut().write(value);
691         // SAFETY: We just wrote the value to be initialized.
692         unsafe { self.assume_init() }
693     }
694 
695     /// Unsafely assume that `self` is initialized.
696     ///
697     /// # Safety
698     ///
699     /// The caller guarantees that the value behind this pointer has been initialized. It is
700     /// *immediate* UB to call this when the value is not initialized.
701     pub unsafe fn assume_init(self) -> UniqueArc<T> {
702         let inner = ManuallyDrop::new(self).inner.ptr;
703         UniqueArc {
704             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
705             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
706             inner: unsafe { Arc::from_inner(inner.cast()) },
707         }
708     }
709 
710     /// Initialize `self` using the given initializer.
711     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
712         // SAFETY: The supplied pointer is valid for initialization.
713         match unsafe { init.__init(self.as_mut_ptr()) } {
714             // SAFETY: Initialization completed successfully.
715             Ok(()) => Ok(unsafe { self.assume_init() }),
716             Err(err) => Err(err),
717         }
718     }
719 
720     /// Pin-initialize `self` using the given pin-initializer.
721     pub fn pin_init_with<E>(
722         mut self,
723         init: impl PinInit<T, E>,
724     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
725         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
726         // to ensure it does not move.
727         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
728             // SAFETY: Initialization completed successfully.
729             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
730             Err(err) => Err(err),
731         }
732     }
733 }
734 
735 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
736     fn from(obj: UniqueArc<T>) -> Self {
737         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
738         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
739         unsafe { Pin::new_unchecked(obj) }
740     }
741 }
742 
743 impl<T: ?Sized> Deref for UniqueArc<T> {
744     type Target = T;
745 
746     fn deref(&self) -> &Self::Target {
747         self.inner.deref()
748     }
749 }
750 
751 impl<T: ?Sized> DerefMut for UniqueArc<T> {
752     fn deref_mut(&mut self) -> &mut Self::Target {
753         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
754         // it is safe to dereference it. Additionally, we know there is only one reference when
755         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
756         unsafe { &mut self.inner.ptr.as_mut().data }
757     }
758 }
759 
760 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
761     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
762         fmt::Display::fmt(self.deref(), f)
763     }
764 }
765 
766 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
767     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
768         fmt::Display::fmt(self.deref(), f)
769     }
770 }
771 
772 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
773     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
774         fmt::Debug::fmt(self.deref(), f)
775     }
776 }
777 
778 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
779     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
780         fmt::Debug::fmt(self.deref(), f)
781     }
782 }
783