xref: /linux/rust/kernel/sync/arc.rs (revision f4c2c90bb7b4ae1812dbaca15d9637eecaac2c9f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //! 5. The object in [`Arc`] is pinned implicitly.
16 //!
17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18 
19 use crate::{
20     alloc::{box_ext::BoxExt, AllocError, Flags},
21     bindings,
22     init::{self, InPlaceInit, Init, PinInit},
23     try_init,
24     types::{ForeignOwnable, Opaque},
25 };
26 use alloc::boxed::Box;
27 use core::{
28     alloc::Layout,
29     fmt,
30     marker::{PhantomData, Unsize},
31     mem::{ManuallyDrop, MaybeUninit},
32     ops::{Deref, DerefMut},
33     pin::Pin,
34     ptr::NonNull,
35 };
36 use macros::pin_data;
37 
38 mod std_vendor;
39 
40 /// A reference-counted pointer to an instance of `T`.
41 ///
42 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
43 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
44 ///
45 /// # Invariants
46 ///
47 /// The reference count on an instance of [`Arc`] is always non-zero.
48 /// The object pointed to by [`Arc`] is always pinned.
49 ///
50 /// # Examples
51 ///
52 /// ```
53 /// use kernel::sync::Arc;
54 ///
55 /// struct Example {
56 ///     a: u32,
57 ///     b: u32,
58 /// }
59 ///
60 /// // Create a refcounted instance of `Example`.
61 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
62 ///
63 /// // Get a new pointer to `obj` and increment the refcount.
64 /// let cloned = obj.clone();
65 ///
66 /// // Assert that both `obj` and `cloned` point to the same underlying object.
67 /// assert!(core::ptr::eq(&*obj, &*cloned));
68 ///
69 /// // Destroy `obj` and decrement its refcount.
70 /// drop(obj);
71 ///
72 /// // Check that the values are still accessible through `cloned`.
73 /// assert_eq!(cloned.a, 10);
74 /// assert_eq!(cloned.b, 20);
75 ///
76 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
77 /// # Ok::<(), Error>(())
78 /// ```
79 ///
80 /// Using `Arc<T>` as the type of `self`:
81 ///
82 /// ```
83 /// use kernel::sync::Arc;
84 ///
85 /// struct Example {
86 ///     a: u32,
87 ///     b: u32,
88 /// }
89 ///
90 /// impl Example {
91 ///     fn take_over(self: Arc<Self>) {
92 ///         // ...
93 ///     }
94 ///
95 ///     fn use_reference(self: &Arc<Self>) {
96 ///         // ...
97 ///     }
98 /// }
99 ///
100 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
101 /// obj.use_reference();
102 /// obj.take_over();
103 /// # Ok::<(), Error>(())
104 /// ```
105 ///
106 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
107 ///
108 /// ```
109 /// use kernel::sync::{Arc, ArcBorrow};
110 ///
111 /// trait MyTrait {
112 ///     // Trait has a function whose `self` type is `Arc<Self>`.
113 ///     fn example1(self: Arc<Self>) {}
114 ///
115 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
116 ///     fn example2(self: ArcBorrow<'_, Self>) {}
117 /// }
118 ///
119 /// struct Example;
120 /// impl MyTrait for Example {}
121 ///
122 /// // `obj` has type `Arc<Example>`.
123 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
124 ///
125 /// // `coerced` has type `Arc<dyn MyTrait>`.
126 /// let coerced: Arc<dyn MyTrait> = obj;
127 /// # Ok::<(), Error>(())
128 /// ```
129 pub struct Arc<T: ?Sized> {
130     ptr: NonNull<ArcInner<T>>,
131     _p: PhantomData<ArcInner<T>>,
132 }
133 
134 #[pin_data]
135 #[repr(C)]
136 struct ArcInner<T: ?Sized> {
137     refcount: Opaque<bindings::refcount_t>,
138     data: T,
139 }
140 
141 impl<T: ?Sized> ArcInner<T> {
142     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
143     ///
144     /// # Safety
145     ///
146     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
147     /// not yet have been destroyed.
148     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
149         let refcount_layout = Layout::new::<bindings::refcount_t>();
150         // SAFETY: The caller guarantees that the pointer is valid.
151         let val_layout = Layout::for_value(unsafe { &*ptr });
152         // SAFETY: We're computing the layout of a real struct that existed when compiling this
153         // binary, so its layout is not so large that it can trigger arithmetic overflow.
154         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
155 
156         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
157         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
158         //
159         // This is documented at:
160         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
161         let ptr = ptr as *const ArcInner<T>;
162 
163         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
164         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
165         // still valid.
166         let ptr = unsafe { ptr.byte_sub(val_offset) };
167 
168         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
169         // address.
170         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
171     }
172 }
173 
174 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
175 // dynamically-sized type (DST) `U`.
176 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
177 
178 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
179 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
180 
181 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
182 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
183 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
184 // mutable reference when the reference count reaches zero and `T` is dropped.
185 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
186 
187 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
188 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
189 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
190 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
191 // the reference count reaches zero and `T` is dropped.
192 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
193 
194 impl<T> Arc<T> {
195     /// Constructs a new reference counted instance of `T`.
196     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
197         // INVARIANT: The refcount is initialised to a non-zero value.
198         let value = ArcInner {
199             // SAFETY: There are no safety requirements for this FFI call.
200             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
201             data: contents,
202         };
203 
204         let inner = <Box<_> as BoxExt<_>>::new(value, flags)?;
205 
206         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
207         // `Arc` object.
208         Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
209     }
210 }
211 
212 impl<T: ?Sized> Arc<T> {
213     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
214     ///
215     /// # Safety
216     ///
217     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
218     /// count, one of which will be owned by the new [`Arc`] instance.
219     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
220         // INVARIANT: By the safety requirements, the invariants hold.
221         Arc {
222             ptr: inner,
223             _p: PhantomData,
224         }
225     }
226 
227     /// Convert the [`Arc`] into a raw pointer.
228     ///
229     /// The raw pointer has ownership of the refcount that this Arc object owned.
230     pub fn into_raw(self) -> *const T {
231         let ptr = self.ptr.as_ptr();
232         core::mem::forget(self);
233         // SAFETY: The pointer is valid.
234         unsafe { core::ptr::addr_of!((*ptr).data) }
235     }
236 
237     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
238     ///
239     /// # Safety
240     ///
241     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
242     /// must not be called more than once for each previous call to [`Arc::into_raw`].
243     pub unsafe fn from_raw(ptr: *const T) -> Self {
244         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
245         // `Arc` that is still valid.
246         let ptr = unsafe { ArcInner::container_of(ptr) };
247 
248         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
249         // reference count held then will be owned by the new `Arc` object.
250         unsafe { Self::from_inner(ptr) }
251     }
252 
253     /// Returns an [`ArcBorrow`] from the given [`Arc`].
254     ///
255     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
256     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
257     #[inline]
258     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
259         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
260         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
261         // reference can be created.
262         unsafe { ArcBorrow::new(self.ptr) }
263     }
264 
265     /// Compare whether two [`Arc`] pointers reference the same underlying object.
266     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
267         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
268     }
269 
270     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
271     ///
272     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
273     /// this method will never call the destructor of the value.
274     ///
275     /// # Examples
276     ///
277     /// ```
278     /// use kernel::sync::{Arc, UniqueArc};
279     ///
280     /// let arc = Arc::new(42, GFP_KERNEL)?;
281     /// let unique_arc = arc.into_unique_or_drop();
282     ///
283     /// // The above conversion should succeed since refcount of `arc` is 1.
284     /// assert!(unique_arc.is_some());
285     ///
286     /// assert_eq!(*(unique_arc.unwrap()), 42);
287     ///
288     /// # Ok::<(), Error>(())
289     /// ```
290     ///
291     /// ```
292     /// use kernel::sync::{Arc, UniqueArc};
293     ///
294     /// let arc = Arc::new(42, GFP_KERNEL)?;
295     /// let another = arc.clone();
296     ///
297     /// let unique_arc = arc.into_unique_or_drop();
298     ///
299     /// // The above conversion should fail since refcount of `arc` is >1.
300     /// assert!(unique_arc.is_none());
301     ///
302     /// # Ok::<(), Error>(())
303     /// ```
304     pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
305         // We will manually manage the refcount in this method, so we disable the destructor.
306         let me = ManuallyDrop::new(self);
307         // SAFETY: We own a refcount, so the pointer is still valid.
308         let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
309 
310         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
311         // return without further touching the `Arc`. If the refcount reaches zero, then there are
312         // no other arcs, and we can create a `UniqueArc`.
313         //
314         // SAFETY: We own a refcount, so the pointer is not dangling.
315         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
316         if is_zero {
317             // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
318             // accesses to the refcount.
319             unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
320 
321             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
322             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
323             // their values.
324             Some(Pin::from(UniqueArc {
325                 inner: ManuallyDrop::into_inner(me),
326             }))
327         } else {
328             None
329         }
330     }
331 }
332 
333 impl<T: 'static> ForeignOwnable for Arc<T> {
334     type Borrowed<'a> = ArcBorrow<'a, T>;
335 
336     fn into_foreign(self) -> *const core::ffi::c_void {
337         ManuallyDrop::new(self).ptr.as_ptr() as _
338     }
339 
340     unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
341         // By the safety requirement of this function, we know that `ptr` came from
342         // a previous call to `Arc::into_foreign`.
343         let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
344 
345         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
346         // for the lifetime of the returned value.
347         unsafe { ArcBorrow::new(inner) }
348     }
349 
350     unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
351         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
352         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
353         // holds a reference count increment that is transferrable to us.
354         unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
355     }
356 }
357 
358 impl<T: ?Sized> Deref for Arc<T> {
359     type Target = T;
360 
361     fn deref(&self) -> &Self::Target {
362         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
363         // safe to dereference it.
364         unsafe { &self.ptr.as_ref().data }
365     }
366 }
367 
368 impl<T: ?Sized> AsRef<T> for Arc<T> {
369     fn as_ref(&self) -> &T {
370         self.deref()
371     }
372 }
373 
374 impl<T: ?Sized> Clone for Arc<T> {
375     fn clone(&self) -> Self {
376         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
377         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
378         // safe to increment the refcount.
379         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
380 
381         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
382         unsafe { Self::from_inner(self.ptr) }
383     }
384 }
385 
386 impl<T: ?Sized> Drop for Arc<T> {
387     fn drop(&mut self) {
388         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
389         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
390         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
391         // freed/invalid memory as long as it is never dereferenced.
392         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
393 
394         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
395         // this instance is being dropped, so the broken invariant is not observable.
396         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
397         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
398         if is_zero {
399             // The count reached zero, we must free the memory.
400             //
401             // SAFETY: The pointer was initialised from the result of `Box::leak`.
402             unsafe { drop(Box::from_raw(self.ptr.as_ptr())) };
403         }
404     }
405 }
406 
407 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
408     fn from(item: UniqueArc<T>) -> Self {
409         item.inner
410     }
411 }
412 
413 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
414     fn from(item: Pin<UniqueArc<T>>) -> Self {
415         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
416         unsafe { Pin::into_inner_unchecked(item).inner }
417     }
418 }
419 
420 /// A borrowed reference to an [`Arc`] instance.
421 ///
422 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
423 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
424 ///
425 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
426 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
427 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
428 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
429 /// needed.
430 ///
431 /// # Invariants
432 ///
433 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
434 /// lifetime of the [`ArcBorrow`] instance.
435 ///
436 /// # Example
437 ///
438 /// ```
439 /// use kernel::sync::{Arc, ArcBorrow};
440 ///
441 /// struct Example;
442 ///
443 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
444 ///     e.into()
445 /// }
446 ///
447 /// let obj = Arc::new(Example, GFP_KERNEL)?;
448 /// let cloned = do_something(obj.as_arc_borrow());
449 ///
450 /// // Assert that both `obj` and `cloned` point to the same underlying object.
451 /// assert!(core::ptr::eq(&*obj, &*cloned));
452 /// # Ok::<(), Error>(())
453 /// ```
454 ///
455 /// Using `ArcBorrow<T>` as the type of `self`:
456 ///
457 /// ```
458 /// use kernel::sync::{Arc, ArcBorrow};
459 ///
460 /// struct Example {
461 ///     a: u32,
462 ///     b: u32,
463 /// }
464 ///
465 /// impl Example {
466 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
467 ///         // ...
468 ///     }
469 /// }
470 ///
471 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
472 /// obj.as_arc_borrow().use_reference();
473 /// # Ok::<(), Error>(())
474 /// ```
475 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
476     inner: NonNull<ArcInner<T>>,
477     _p: PhantomData<&'a ()>,
478 }
479 
480 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
481 // `ArcBorrow<U>`.
482 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
483     for ArcBorrow<'_, T>
484 {
485 }
486 
487 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
488     fn clone(&self) -> Self {
489         *self
490     }
491 }
492 
493 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
494 
495 impl<T: ?Sized> ArcBorrow<'_, T> {
496     /// Creates a new [`ArcBorrow`] instance.
497     ///
498     /// # Safety
499     ///
500     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
501     /// 1. That `inner` remains valid;
502     /// 2. That no mutable references to `inner` are created.
503     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
504         // INVARIANT: The safety requirements guarantee the invariants.
505         Self {
506             inner,
507             _p: PhantomData,
508         }
509     }
510 
511     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
512     /// [`Arc::into_raw`].
513     ///
514     /// # Safety
515     ///
516     /// * The provided pointer must originate from a call to [`Arc::into_raw`].
517     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
518     ///   not hit zero.
519     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
520     ///   [`UniqueArc`] reference to this value.
521     pub unsafe fn from_raw(ptr: *const T) -> Self {
522         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
523         // `Arc` that is still valid.
524         let ptr = unsafe { ArcInner::container_of(ptr) };
525 
526         // SAFETY: The caller promises that the value remains valid since the reference count must
527         // not hit zero, and no mutable reference will be created since that would involve a
528         // `UniqueArc`.
529         unsafe { Self::new(ptr) }
530     }
531 }
532 
533 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
534     fn from(b: ArcBorrow<'_, T>) -> Self {
535         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
536         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
537         // increment.
538         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
539             .deref()
540             .clone()
541     }
542 }
543 
544 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
545     type Target = T;
546 
547     fn deref(&self) -> &Self::Target {
548         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
549         // references to it, so it is safe to create a shared reference.
550         unsafe { &self.inner.as_ref().data }
551     }
552 }
553 
554 /// A refcounted object that is known to have a refcount of 1.
555 ///
556 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
557 ///
558 /// # Invariants
559 ///
560 /// `inner` always has a reference count of 1.
561 ///
562 /// # Examples
563 ///
564 /// In the following example, we make changes to the inner object before turning it into an
565 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
566 /// cannot fail.
567 ///
568 /// ```
569 /// use kernel::sync::{Arc, UniqueArc};
570 ///
571 /// struct Example {
572 ///     a: u32,
573 ///     b: u32,
574 /// }
575 ///
576 /// fn test() -> Result<Arc<Example>> {
577 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
578 ///     x.a += 1;
579 ///     x.b += 1;
580 ///     Ok(x.into())
581 /// }
582 ///
583 /// # test().unwrap();
584 /// ```
585 ///
586 /// In the following example we first allocate memory for a refcounted `Example` but we don't
587 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
588 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
589 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
590 ///
591 /// ```
592 /// use kernel::sync::{Arc, UniqueArc};
593 ///
594 /// struct Example {
595 ///     a: u32,
596 ///     b: u32,
597 /// }
598 ///
599 /// fn test() -> Result<Arc<Example>> {
600 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
601 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
602 /// }
603 ///
604 /// # test().unwrap();
605 /// ```
606 ///
607 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
608 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
609 /// initialisation, for example, when initialising fields that are wrapped in locks.
610 ///
611 /// ```
612 /// use kernel::sync::{Arc, UniqueArc};
613 ///
614 /// struct Example {
615 ///     a: u32,
616 ///     b: u32,
617 /// }
618 ///
619 /// fn test() -> Result<Arc<Example>> {
620 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
621 ///     // We can modify `pinned` because it is `Unpin`.
622 ///     pinned.as_mut().a += 1;
623 ///     Ok(pinned.into())
624 /// }
625 ///
626 /// # test().unwrap();
627 /// ```
628 pub struct UniqueArc<T: ?Sized> {
629     inner: Arc<T>,
630 }
631 
632 impl<T> UniqueArc<T> {
633     /// Tries to allocate a new [`UniqueArc`] instance.
634     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
635         Ok(Self {
636             // INVARIANT: The newly-created object has a refcount of 1.
637             inner: Arc::new(value, flags)?,
638         })
639     }
640 
641     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
642     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
643         // INVARIANT: The refcount is initialised to a non-zero value.
644         let inner = Box::try_init::<AllocError>(
645             try_init!(ArcInner {
646                 // SAFETY: There are no safety requirements for this FFI call.
647                 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
648                 data <- init::uninit::<T, AllocError>(),
649             }? AllocError),
650             flags,
651         )?;
652         Ok(UniqueArc {
653             // INVARIANT: The newly-created object has a refcount of 1.
654             // SAFETY: The pointer from the `Box` is valid.
655             inner: unsafe { Arc::from_inner(Box::leak(inner).into()) },
656         })
657     }
658 }
659 
660 impl<T> UniqueArc<MaybeUninit<T>> {
661     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
662     pub fn write(mut self, value: T) -> UniqueArc<T> {
663         self.deref_mut().write(value);
664         // SAFETY: We just wrote the value to be initialized.
665         unsafe { self.assume_init() }
666     }
667 
668     /// Unsafely assume that `self` is initialized.
669     ///
670     /// # Safety
671     ///
672     /// The caller guarantees that the value behind this pointer has been initialized. It is
673     /// *immediate* UB to call this when the value is not initialized.
674     pub unsafe fn assume_init(self) -> UniqueArc<T> {
675         let inner = ManuallyDrop::new(self).inner.ptr;
676         UniqueArc {
677             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
678             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
679             inner: unsafe { Arc::from_inner(inner.cast()) },
680         }
681     }
682 
683     /// Initialize `self` using the given initializer.
684     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
685         // SAFETY: The supplied pointer is valid for initialization.
686         match unsafe { init.__init(self.as_mut_ptr()) } {
687             // SAFETY: Initialization completed successfully.
688             Ok(()) => Ok(unsafe { self.assume_init() }),
689             Err(err) => Err(err),
690         }
691     }
692 
693     /// Pin-initialize `self` using the given pin-initializer.
694     pub fn pin_init_with<E>(
695         mut self,
696         init: impl PinInit<T, E>,
697     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
698         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
699         // to ensure it does not move.
700         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
701             // SAFETY: Initialization completed successfully.
702             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
703             Err(err) => Err(err),
704         }
705     }
706 }
707 
708 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
709     fn from(obj: UniqueArc<T>) -> Self {
710         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
711         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
712         unsafe { Pin::new_unchecked(obj) }
713     }
714 }
715 
716 impl<T: ?Sized> Deref for UniqueArc<T> {
717     type Target = T;
718 
719     fn deref(&self) -> &Self::Target {
720         self.inner.deref()
721     }
722 }
723 
724 impl<T: ?Sized> DerefMut for UniqueArc<T> {
725     fn deref_mut(&mut self) -> &mut Self::Target {
726         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
727         // it is safe to dereference it. Additionally, we know there is only one reference when
728         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
729         unsafe { &mut self.inner.ptr.as_mut().data }
730     }
731 }
732 
733 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
734     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
735         fmt::Display::fmt(self.deref(), f)
736     }
737 }
738 
739 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
740     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
741         fmt::Display::fmt(self.deref(), f)
742     }
743 }
744 
745 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
746     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
747         fmt::Debug::fmt(self.deref(), f)
748     }
749 }
750 
751 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
752     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
753         fmt::Debug::fmt(self.deref(), f)
754     }
755 }
756