1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implicitly. 16 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 19 use crate::{ 20 alloc::{box_ext::BoxExt, AllocError, Flags}, 21 bindings, 22 init::{self, InPlaceInit, Init, PinInit}, 23 try_init, 24 types::{ForeignOwnable, Opaque}, 25 }; 26 use alloc::boxed::Box; 27 use core::{ 28 alloc::Layout, 29 fmt, 30 marker::{PhantomData, Unsize}, 31 mem::{ManuallyDrop, MaybeUninit}, 32 ops::{Deref, DerefMut}, 33 pin::Pin, 34 ptr::NonNull, 35 }; 36 use macros::pin_data; 37 38 mod std_vendor; 39 40 /// A reference-counted pointer to an instance of `T`. 41 /// 42 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 43 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 44 /// 45 /// # Invariants 46 /// 47 /// The reference count on an instance of [`Arc`] is always non-zero. 48 /// The object pointed to by [`Arc`] is always pinned. 49 /// 50 /// # Examples 51 /// 52 /// ``` 53 /// use kernel::sync::Arc; 54 /// 55 /// struct Example { 56 /// a: u32, 57 /// b: u32, 58 /// } 59 /// 60 /// // Create a refcounted instance of `Example`. 61 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 62 /// 63 /// // Get a new pointer to `obj` and increment the refcount. 64 /// let cloned = obj.clone(); 65 /// 66 /// // Assert that both `obj` and `cloned` point to the same underlying object. 67 /// assert!(core::ptr::eq(&*obj, &*cloned)); 68 /// 69 /// // Destroy `obj` and decrement its refcount. 70 /// drop(obj); 71 /// 72 /// // Check that the values are still accessible through `cloned`. 73 /// assert_eq!(cloned.a, 10); 74 /// assert_eq!(cloned.b, 20); 75 /// 76 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 77 /// # Ok::<(), Error>(()) 78 /// ``` 79 /// 80 /// Using `Arc<T>` as the type of `self`: 81 /// 82 /// ``` 83 /// use kernel::sync::Arc; 84 /// 85 /// struct Example { 86 /// a: u32, 87 /// b: u32, 88 /// } 89 /// 90 /// impl Example { 91 /// fn take_over(self: Arc<Self>) { 92 /// // ... 93 /// } 94 /// 95 /// fn use_reference(self: &Arc<Self>) { 96 /// // ... 97 /// } 98 /// } 99 /// 100 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 101 /// obj.use_reference(); 102 /// obj.take_over(); 103 /// # Ok::<(), Error>(()) 104 /// ``` 105 /// 106 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 107 /// 108 /// ``` 109 /// use kernel::sync::{Arc, ArcBorrow}; 110 /// 111 /// trait MyTrait { 112 /// // Trait has a function whose `self` type is `Arc<Self>`. 113 /// fn example1(self: Arc<Self>) {} 114 /// 115 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 116 /// fn example2(self: ArcBorrow<'_, Self>) {} 117 /// } 118 /// 119 /// struct Example; 120 /// impl MyTrait for Example {} 121 /// 122 /// // `obj` has type `Arc<Example>`. 123 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 124 /// 125 /// // `coerced` has type `Arc<dyn MyTrait>`. 126 /// let coerced: Arc<dyn MyTrait> = obj; 127 /// # Ok::<(), Error>(()) 128 /// ``` 129 pub struct Arc<T: ?Sized> { 130 ptr: NonNull<ArcInner<T>>, 131 _p: PhantomData<ArcInner<T>>, 132 } 133 134 #[pin_data] 135 #[repr(C)] 136 struct ArcInner<T: ?Sized> { 137 refcount: Opaque<bindings::refcount_t>, 138 data: T, 139 } 140 141 impl<T: ?Sized> ArcInner<T> { 142 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 143 /// 144 /// # Safety 145 /// 146 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 147 /// not yet have been destroyed. 148 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 149 let refcount_layout = Layout::new::<bindings::refcount_t>(); 150 // SAFETY: The caller guarantees that the pointer is valid. 151 let val_layout = Layout::for_value(unsafe { &*ptr }); 152 // SAFETY: We're computing the layout of a real struct that existed when compiling this 153 // binary, so its layout is not so large that it can trigger arithmetic overflow. 154 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 155 156 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 157 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 158 // 159 // This is documented at: 160 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 161 let ptr = ptr as *const ArcInner<T>; 162 163 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 164 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 165 // still valid. 166 let ptr = unsafe { ptr.byte_sub(val_offset) }; 167 168 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 169 // address. 170 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 171 } 172 } 173 174 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 175 // dynamically-sized type (DST) `U`. 176 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 177 178 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 179 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 180 181 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 182 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 183 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 184 // mutable reference when the reference count reaches zero and `T` is dropped. 185 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 186 187 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 188 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 189 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 190 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 191 // the reference count reaches zero and `T` is dropped. 192 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 193 194 impl<T> Arc<T> { 195 /// Constructs a new reference counted instance of `T`. 196 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 197 // INVARIANT: The refcount is initialised to a non-zero value. 198 let value = ArcInner { 199 // SAFETY: There are no safety requirements for this FFI call. 200 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 201 data: contents, 202 }; 203 204 let inner = <Box<_> as BoxExt<_>>::new(value, flags)?; 205 206 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 207 // `Arc` object. 208 Ok(unsafe { Self::from_inner(Box::leak(inner).into()) }) 209 } 210 } 211 212 impl<T: ?Sized> Arc<T> { 213 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 214 /// 215 /// # Safety 216 /// 217 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 218 /// count, one of which will be owned by the new [`Arc`] instance. 219 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 220 // INVARIANT: By the safety requirements, the invariants hold. 221 Arc { 222 ptr: inner, 223 _p: PhantomData, 224 } 225 } 226 227 /// Convert the [`Arc`] into a raw pointer. 228 /// 229 /// The raw pointer has ownership of the refcount that this Arc object owned. 230 pub fn into_raw(self) -> *const T { 231 let ptr = self.ptr.as_ptr(); 232 core::mem::forget(self); 233 // SAFETY: The pointer is valid. 234 unsafe { core::ptr::addr_of!((*ptr).data) } 235 } 236 237 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 238 /// 239 /// # Safety 240 /// 241 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 242 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 243 pub unsafe fn from_raw(ptr: *const T) -> Self { 244 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 245 // `Arc` that is still valid. 246 let ptr = unsafe { ArcInner::container_of(ptr) }; 247 248 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 249 // reference count held then will be owned by the new `Arc` object. 250 unsafe { Self::from_inner(ptr) } 251 } 252 253 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 254 /// 255 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 256 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 257 #[inline] 258 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 259 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 260 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 261 // reference can be created. 262 unsafe { ArcBorrow::new(self.ptr) } 263 } 264 265 /// Compare whether two [`Arc`] pointers reference the same underlying object. 266 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 267 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 268 } 269 270 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 271 /// 272 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 273 /// this method will never call the destructor of the value. 274 /// 275 /// # Examples 276 /// 277 /// ``` 278 /// use kernel::sync::{Arc, UniqueArc}; 279 /// 280 /// let arc = Arc::new(42, GFP_KERNEL)?; 281 /// let unique_arc = arc.into_unique_or_drop(); 282 /// 283 /// // The above conversion should succeed since refcount of `arc` is 1. 284 /// assert!(unique_arc.is_some()); 285 /// 286 /// assert_eq!(*(unique_arc.unwrap()), 42); 287 /// 288 /// # Ok::<(), Error>(()) 289 /// ``` 290 /// 291 /// ``` 292 /// use kernel::sync::{Arc, UniqueArc}; 293 /// 294 /// let arc = Arc::new(42, GFP_KERNEL)?; 295 /// let another = arc.clone(); 296 /// 297 /// let unique_arc = arc.into_unique_or_drop(); 298 /// 299 /// // The above conversion should fail since refcount of `arc` is >1. 300 /// assert!(unique_arc.is_none()); 301 /// 302 /// # Ok::<(), Error>(()) 303 /// ``` 304 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> { 305 // We will manually manage the refcount in this method, so we disable the destructor. 306 let me = ManuallyDrop::new(self); 307 // SAFETY: We own a refcount, so the pointer is still valid. 308 let refcount = unsafe { me.ptr.as_ref() }.refcount.get(); 309 310 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 311 // return without further touching the `Arc`. If the refcount reaches zero, then there are 312 // no other arcs, and we can create a `UniqueArc`. 313 // 314 // SAFETY: We own a refcount, so the pointer is not dangling. 315 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 316 if is_zero { 317 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized 318 // accesses to the refcount. 319 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) }; 320 321 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 322 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 323 // their values. 324 Some(Pin::from(UniqueArc { 325 inner: ManuallyDrop::into_inner(me), 326 })) 327 } else { 328 None 329 } 330 } 331 } 332 333 impl<T: 'static> ForeignOwnable for Arc<T> { 334 type Borrowed<'a> = ArcBorrow<'a, T>; 335 336 fn into_foreign(self) -> *const core::ffi::c_void { 337 ManuallyDrop::new(self).ptr.as_ptr() as _ 338 } 339 340 unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> { 341 // By the safety requirement of this function, we know that `ptr` came from 342 // a previous call to `Arc::into_foreign`. 343 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 344 345 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 346 // for the lifetime of the returned value. 347 unsafe { ArcBorrow::new(inner) } 348 } 349 350 unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self { 351 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 352 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 353 // holds a reference count increment that is transferrable to us. 354 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 355 } 356 } 357 358 impl<T: ?Sized> Deref for Arc<T> { 359 type Target = T; 360 361 fn deref(&self) -> &Self::Target { 362 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 363 // safe to dereference it. 364 unsafe { &self.ptr.as_ref().data } 365 } 366 } 367 368 impl<T: ?Sized> AsRef<T> for Arc<T> { 369 fn as_ref(&self) -> &T { 370 self.deref() 371 } 372 } 373 374 impl<T: ?Sized> Clone for Arc<T> { 375 fn clone(&self) -> Self { 376 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 377 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 378 // safe to increment the refcount. 379 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 380 381 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 382 unsafe { Self::from_inner(self.ptr) } 383 } 384 } 385 386 impl<T: ?Sized> Drop for Arc<T> { 387 fn drop(&mut self) { 388 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 389 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 390 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 391 // freed/invalid memory as long as it is never dereferenced. 392 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 393 394 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 395 // this instance is being dropped, so the broken invariant is not observable. 396 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 397 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 398 if is_zero { 399 // The count reached zero, we must free the memory. 400 // 401 // SAFETY: The pointer was initialised from the result of `Box::leak`. 402 unsafe { drop(Box::from_raw(self.ptr.as_ptr())) }; 403 } 404 } 405 } 406 407 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 408 fn from(item: UniqueArc<T>) -> Self { 409 item.inner 410 } 411 } 412 413 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 414 fn from(item: Pin<UniqueArc<T>>) -> Self { 415 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 416 unsafe { Pin::into_inner_unchecked(item).inner } 417 } 418 } 419 420 /// A borrowed reference to an [`Arc`] instance. 421 /// 422 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 423 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 424 /// 425 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 426 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 427 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 428 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 429 /// needed. 430 /// 431 /// # Invariants 432 /// 433 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 434 /// lifetime of the [`ArcBorrow`] instance. 435 /// 436 /// # Example 437 /// 438 /// ``` 439 /// use kernel::sync::{Arc, ArcBorrow}; 440 /// 441 /// struct Example; 442 /// 443 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 444 /// e.into() 445 /// } 446 /// 447 /// let obj = Arc::new(Example, GFP_KERNEL)?; 448 /// let cloned = do_something(obj.as_arc_borrow()); 449 /// 450 /// // Assert that both `obj` and `cloned` point to the same underlying object. 451 /// assert!(core::ptr::eq(&*obj, &*cloned)); 452 /// # Ok::<(), Error>(()) 453 /// ``` 454 /// 455 /// Using `ArcBorrow<T>` as the type of `self`: 456 /// 457 /// ``` 458 /// use kernel::sync::{Arc, ArcBorrow}; 459 /// 460 /// struct Example { 461 /// a: u32, 462 /// b: u32, 463 /// } 464 /// 465 /// impl Example { 466 /// fn use_reference(self: ArcBorrow<'_, Self>) { 467 /// // ... 468 /// } 469 /// } 470 /// 471 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 472 /// obj.as_arc_borrow().use_reference(); 473 /// # Ok::<(), Error>(()) 474 /// ``` 475 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 476 inner: NonNull<ArcInner<T>>, 477 _p: PhantomData<&'a ()>, 478 } 479 480 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 481 // `ArcBorrow<U>`. 482 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 483 for ArcBorrow<'_, T> 484 { 485 } 486 487 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 488 fn clone(&self) -> Self { 489 *self 490 } 491 } 492 493 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 494 495 impl<T: ?Sized> ArcBorrow<'_, T> { 496 /// Creates a new [`ArcBorrow`] instance. 497 /// 498 /// # Safety 499 /// 500 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 501 /// 1. That `inner` remains valid; 502 /// 2. That no mutable references to `inner` are created. 503 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 504 // INVARIANT: The safety requirements guarantee the invariants. 505 Self { 506 inner, 507 _p: PhantomData, 508 } 509 } 510 511 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 512 /// [`Arc::into_raw`]. 513 /// 514 /// # Safety 515 /// 516 /// * The provided pointer must originate from a call to [`Arc::into_raw`]. 517 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 518 /// not hit zero. 519 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 520 /// [`UniqueArc`] reference to this value. 521 pub unsafe fn from_raw(ptr: *const T) -> Self { 522 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 523 // `Arc` that is still valid. 524 let ptr = unsafe { ArcInner::container_of(ptr) }; 525 526 // SAFETY: The caller promises that the value remains valid since the reference count must 527 // not hit zero, and no mutable reference will be created since that would involve a 528 // `UniqueArc`. 529 unsafe { Self::new(ptr) } 530 } 531 } 532 533 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 534 fn from(b: ArcBorrow<'_, T>) -> Self { 535 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 536 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 537 // increment. 538 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 539 .deref() 540 .clone() 541 } 542 } 543 544 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 545 type Target = T; 546 547 fn deref(&self) -> &Self::Target { 548 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 549 // references to it, so it is safe to create a shared reference. 550 unsafe { &self.inner.as_ref().data } 551 } 552 } 553 554 /// A refcounted object that is known to have a refcount of 1. 555 /// 556 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 557 /// 558 /// # Invariants 559 /// 560 /// `inner` always has a reference count of 1. 561 /// 562 /// # Examples 563 /// 564 /// In the following example, we make changes to the inner object before turning it into an 565 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 566 /// cannot fail. 567 /// 568 /// ``` 569 /// use kernel::sync::{Arc, UniqueArc}; 570 /// 571 /// struct Example { 572 /// a: u32, 573 /// b: u32, 574 /// } 575 /// 576 /// fn test() -> Result<Arc<Example>> { 577 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 578 /// x.a += 1; 579 /// x.b += 1; 580 /// Ok(x.into()) 581 /// } 582 /// 583 /// # test().unwrap(); 584 /// ``` 585 /// 586 /// In the following example we first allocate memory for a refcounted `Example` but we don't 587 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 588 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 589 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 590 /// 591 /// ``` 592 /// use kernel::sync::{Arc, UniqueArc}; 593 /// 594 /// struct Example { 595 /// a: u32, 596 /// b: u32, 597 /// } 598 /// 599 /// fn test() -> Result<Arc<Example>> { 600 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 601 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 602 /// } 603 /// 604 /// # test().unwrap(); 605 /// ``` 606 /// 607 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 608 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 609 /// initialisation, for example, when initialising fields that are wrapped in locks. 610 /// 611 /// ``` 612 /// use kernel::sync::{Arc, UniqueArc}; 613 /// 614 /// struct Example { 615 /// a: u32, 616 /// b: u32, 617 /// } 618 /// 619 /// fn test() -> Result<Arc<Example>> { 620 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 621 /// // We can modify `pinned` because it is `Unpin`. 622 /// pinned.as_mut().a += 1; 623 /// Ok(pinned.into()) 624 /// } 625 /// 626 /// # test().unwrap(); 627 /// ``` 628 pub struct UniqueArc<T: ?Sized> { 629 inner: Arc<T>, 630 } 631 632 impl<T> UniqueArc<T> { 633 /// Tries to allocate a new [`UniqueArc`] instance. 634 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 635 Ok(Self { 636 // INVARIANT: The newly-created object has a refcount of 1. 637 inner: Arc::new(value, flags)?, 638 }) 639 } 640 641 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 642 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 643 // INVARIANT: The refcount is initialised to a non-zero value. 644 let inner = Box::try_init::<AllocError>( 645 try_init!(ArcInner { 646 // SAFETY: There are no safety requirements for this FFI call. 647 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 648 data <- init::uninit::<T, AllocError>(), 649 }? AllocError), 650 flags, 651 )?; 652 Ok(UniqueArc { 653 // INVARIANT: The newly-created object has a refcount of 1. 654 // SAFETY: The pointer from the `Box` is valid. 655 inner: unsafe { Arc::from_inner(Box::leak(inner).into()) }, 656 }) 657 } 658 } 659 660 impl<T> UniqueArc<MaybeUninit<T>> { 661 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 662 pub fn write(mut self, value: T) -> UniqueArc<T> { 663 self.deref_mut().write(value); 664 // SAFETY: We just wrote the value to be initialized. 665 unsafe { self.assume_init() } 666 } 667 668 /// Unsafely assume that `self` is initialized. 669 /// 670 /// # Safety 671 /// 672 /// The caller guarantees that the value behind this pointer has been initialized. It is 673 /// *immediate* UB to call this when the value is not initialized. 674 pub unsafe fn assume_init(self) -> UniqueArc<T> { 675 let inner = ManuallyDrop::new(self).inner.ptr; 676 UniqueArc { 677 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 678 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 679 inner: unsafe { Arc::from_inner(inner.cast()) }, 680 } 681 } 682 683 /// Initialize `self` using the given initializer. 684 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 685 // SAFETY: The supplied pointer is valid for initialization. 686 match unsafe { init.__init(self.as_mut_ptr()) } { 687 // SAFETY: Initialization completed successfully. 688 Ok(()) => Ok(unsafe { self.assume_init() }), 689 Err(err) => Err(err), 690 } 691 } 692 693 /// Pin-initialize `self` using the given pin-initializer. 694 pub fn pin_init_with<E>( 695 mut self, 696 init: impl PinInit<T, E>, 697 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 698 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 699 // to ensure it does not move. 700 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 701 // SAFETY: Initialization completed successfully. 702 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 703 Err(err) => Err(err), 704 } 705 } 706 } 707 708 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 709 fn from(obj: UniqueArc<T>) -> Self { 710 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 711 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 712 unsafe { Pin::new_unchecked(obj) } 713 } 714 } 715 716 impl<T: ?Sized> Deref for UniqueArc<T> { 717 type Target = T; 718 719 fn deref(&self) -> &Self::Target { 720 self.inner.deref() 721 } 722 } 723 724 impl<T: ?Sized> DerefMut for UniqueArc<T> { 725 fn deref_mut(&mut self) -> &mut Self::Target { 726 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 727 // it is safe to dereference it. Additionally, we know there is only one reference when 728 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 729 unsafe { &mut self.inner.ptr.as_mut().data } 730 } 731 } 732 733 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 734 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 735 fmt::Display::fmt(self.deref(), f) 736 } 737 } 738 739 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 740 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 741 fmt::Display::fmt(self.deref(), f) 742 } 743 } 744 745 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 746 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 747 fmt::Debug::fmt(self.deref(), f) 748 } 749 } 750 751 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 752 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 753 fmt::Debug::fmt(self.deref(), f) 754 } 755 } 756