1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 17 18 use crate::{ 19 bindings, 20 error::{self, Error}, 21 init::{self, InPlaceInit, Init, PinInit}, 22 try_init, 23 types::{ForeignOwnable, Opaque}, 24 }; 25 use alloc::boxed::Box; 26 use core::{ 27 alloc::{AllocError, Layout}, 28 fmt, 29 marker::{PhantomData, Unsize}, 30 mem::{ManuallyDrop, MaybeUninit}, 31 ops::{Deref, DerefMut}, 32 pin::Pin, 33 ptr::{NonNull, Pointee}, 34 }; 35 use macros::pin_data; 36 37 mod std_vendor; 38 39 /// A reference-counted pointer to an instance of `T`. 40 /// 41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 43 /// 44 /// # Invariants 45 /// 46 /// The reference count on an instance of [`Arc`] is always non-zero. 47 /// The object pointed to by [`Arc`] is always pinned. 48 /// 49 /// # Examples 50 /// 51 /// ``` 52 /// use kernel::sync::Arc; 53 /// 54 /// struct Example { 55 /// a: u32, 56 /// b: u32, 57 /// } 58 /// 59 /// // Create a refcounted instance of `Example`. 60 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 61 /// 62 /// // Get a new pointer to `obj` and increment the refcount. 63 /// let cloned = obj.clone(); 64 /// 65 /// // Assert that both `obj` and `cloned` point to the same underlying object. 66 /// assert!(core::ptr::eq(&*obj, &*cloned)); 67 /// 68 /// // Destroy `obj` and decrement its refcount. 69 /// drop(obj); 70 /// 71 /// // Check that the values are still accessible through `cloned`. 72 /// assert_eq!(cloned.a, 10); 73 /// assert_eq!(cloned.b, 20); 74 /// 75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 76 /// # Ok::<(), Error>(()) 77 /// ``` 78 /// 79 /// Using `Arc<T>` as the type of `self`: 80 /// 81 /// ``` 82 /// use kernel::sync::Arc; 83 /// 84 /// struct Example { 85 /// a: u32, 86 /// b: u32, 87 /// } 88 /// 89 /// impl Example { 90 /// fn take_over(self: Arc<Self>) { 91 /// // ... 92 /// } 93 /// 94 /// fn use_reference(self: &Arc<Self>) { 95 /// // ... 96 /// } 97 /// } 98 /// 99 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 100 /// obj.use_reference(); 101 /// obj.take_over(); 102 /// # Ok::<(), Error>(()) 103 /// ``` 104 /// 105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 106 /// 107 /// ``` 108 /// use kernel::sync::{Arc, ArcBorrow}; 109 /// 110 /// trait MyTrait { 111 /// // Trait has a function whose `self` type is `Arc<Self>`. 112 /// fn example1(self: Arc<Self>) {} 113 /// 114 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 115 /// fn example2(self: ArcBorrow<'_, Self>) {} 116 /// } 117 /// 118 /// struct Example; 119 /// impl MyTrait for Example {} 120 /// 121 /// // `obj` has type `Arc<Example>`. 122 /// let obj: Arc<Example> = Arc::try_new(Example)?; 123 /// 124 /// // `coerced` has type `Arc<dyn MyTrait>`. 125 /// let coerced: Arc<dyn MyTrait> = obj; 126 /// # Ok::<(), Error>(()) 127 /// ``` 128 pub struct Arc<T: ?Sized> { 129 ptr: NonNull<ArcInner<T>>, 130 _p: PhantomData<ArcInner<T>>, 131 } 132 133 #[pin_data] 134 #[repr(C)] 135 struct ArcInner<T: ?Sized> { 136 refcount: Opaque<bindings::refcount_t>, 137 data: T, 138 } 139 140 // This is to allow [`Arc`] (and variants) to be used as the type of `self`. 141 impl<T: ?Sized> core::ops::Receiver for Arc<T> {} 142 143 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 144 // dynamically-sized type (DST) `U`. 145 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 146 147 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 148 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 149 150 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 151 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 152 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 153 // mutable reference when the reference count reaches zero and `T` is dropped. 154 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 155 156 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 157 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 158 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 159 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 160 // the reference count reaches zero and `T` is dropped. 161 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 162 163 impl<T> Arc<T> { 164 /// Constructs a new reference counted instance of `T`. 165 pub fn try_new(contents: T) -> Result<Self, AllocError> { 166 // INVARIANT: The refcount is initialised to a non-zero value. 167 let value = ArcInner { 168 // SAFETY: There are no safety requirements for this FFI call. 169 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 170 data: contents, 171 }; 172 173 let inner = Box::try_new(value)?; 174 175 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 176 // `Arc` object. 177 Ok(unsafe { Self::from_inner(Box::leak(inner).into()) }) 178 } 179 180 /// Use the given initializer to in-place initialize a `T`. 181 /// 182 /// If `T: !Unpin` it will not be able to move afterwards. 183 #[inline] 184 pub fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Self> 185 where 186 Error: From<E>, 187 { 188 UniqueArc::pin_init(init).map(|u| u.into()) 189 } 190 191 /// Use the given initializer to in-place initialize a `T`. 192 /// 193 /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned. 194 #[inline] 195 pub fn init<E>(init: impl Init<T, E>) -> error::Result<Self> 196 where 197 Error: From<E>, 198 { 199 UniqueArc::init(init).map(|u| u.into()) 200 } 201 } 202 203 impl<T: ?Sized> Arc<T> { 204 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 205 /// 206 /// # Safety 207 /// 208 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 209 /// count, one of which will be owned by the new [`Arc`] instance. 210 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 211 // INVARIANT: By the safety requirements, the invariants hold. 212 Arc { 213 ptr: inner, 214 _p: PhantomData, 215 } 216 } 217 218 /// Convert the [`Arc`] into a raw pointer. 219 /// 220 /// The raw pointer has ownership of the refcount that this Arc object owned. 221 pub fn into_raw(self) -> *const T { 222 let ptr = self.ptr.as_ptr(); 223 core::mem::forget(self); 224 // SAFETY: The pointer is valid. 225 unsafe { core::ptr::addr_of!((*ptr).data) } 226 } 227 228 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 229 /// 230 /// # Safety 231 /// 232 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 233 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 234 pub unsafe fn from_raw(ptr: *const T) -> Self { 235 let refcount_layout = Layout::new::<bindings::refcount_t>(); 236 // SAFETY: The caller guarantees that the pointer is valid. 237 let val_layout = Layout::for_value(unsafe { &*ptr }); 238 // SAFETY: We're computing the layout of a real struct that existed when compiling this 239 // binary, so its layout is not so large that it can trigger arithmetic overflow. 240 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 241 242 let metadata: <T as Pointee>::Metadata = core::ptr::metadata(ptr); 243 // SAFETY: The metadata of `T` and `ArcInner<T>` is the same because `ArcInner` is a struct 244 // with `T` as its last field. 245 // 246 // This is documented at: 247 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 248 let metadata: <ArcInner<T> as Pointee>::Metadata = 249 unsafe { core::mem::transmute_copy(&metadata) }; 250 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 251 // pointer, since it originates from a previous call to `Arc::into_raw` and is still valid. 252 let ptr = unsafe { (ptr as *mut u8).sub(val_offset) as *mut () }; 253 let ptr = core::ptr::from_raw_parts_mut(ptr, metadata); 254 255 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 256 // reference count held then will be owned by the new `Arc` object. 257 unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) } 258 } 259 260 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 261 /// 262 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 263 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 264 #[inline] 265 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 266 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 267 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 268 // reference can be created. 269 unsafe { ArcBorrow::new(self.ptr) } 270 } 271 272 /// Compare whether two [`Arc`] pointers reference the same underlying object. 273 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 274 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 275 } 276 } 277 278 impl<T: 'static> ForeignOwnable for Arc<T> { 279 type Borrowed<'a> = ArcBorrow<'a, T>; 280 281 fn into_foreign(self) -> *const core::ffi::c_void { 282 ManuallyDrop::new(self).ptr.as_ptr() as _ 283 } 284 285 unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> { 286 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 287 // a previous call to `Arc::into_foreign`. 288 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 289 290 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 291 // for the lifetime of the returned value. 292 unsafe { ArcBorrow::new(inner) } 293 } 294 295 unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self { 296 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 297 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 298 // holds a reference count increment that is transferrable to us. 299 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 300 } 301 } 302 303 impl<T: ?Sized> Deref for Arc<T> { 304 type Target = T; 305 306 fn deref(&self) -> &Self::Target { 307 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 308 // safe to dereference it. 309 unsafe { &self.ptr.as_ref().data } 310 } 311 } 312 313 impl<T: ?Sized> AsRef<T> for Arc<T> { 314 fn as_ref(&self) -> &T { 315 self.deref() 316 } 317 } 318 319 impl<T: ?Sized> Clone for Arc<T> { 320 fn clone(&self) -> Self { 321 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 322 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 323 // safe to increment the refcount. 324 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 325 326 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 327 unsafe { Self::from_inner(self.ptr) } 328 } 329 } 330 331 impl<T: ?Sized> Drop for Arc<T> { 332 fn drop(&mut self) { 333 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 334 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 335 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 336 // freed/invalid memory as long as it is never dereferenced. 337 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 338 339 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 340 // this instance is being dropped, so the broken invariant is not observable. 341 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 342 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 343 if is_zero { 344 // The count reached zero, we must free the memory. 345 // 346 // SAFETY: The pointer was initialised from the result of `Box::leak`. 347 unsafe { drop(Box::from_raw(self.ptr.as_ptr())) }; 348 } 349 } 350 } 351 352 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 353 fn from(item: UniqueArc<T>) -> Self { 354 item.inner 355 } 356 } 357 358 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 359 fn from(item: Pin<UniqueArc<T>>) -> Self { 360 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 361 unsafe { Pin::into_inner_unchecked(item).inner } 362 } 363 } 364 365 /// A borrowed reference to an [`Arc`] instance. 366 /// 367 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 368 /// to use just `&T`, which we can trivially get from an `Arc<T>` instance. 369 /// 370 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 371 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 372 /// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double 373 /// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if 374 /// needed. 375 /// 376 /// # Invariants 377 /// 378 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 379 /// lifetime of the [`ArcBorrow`] instance. 380 /// 381 /// # Example 382 /// 383 /// ``` 384 /// use kernel::sync::{Arc, ArcBorrow}; 385 /// 386 /// struct Example; 387 /// 388 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 389 /// e.into() 390 /// } 391 /// 392 /// let obj = Arc::try_new(Example)?; 393 /// let cloned = do_something(obj.as_arc_borrow()); 394 /// 395 /// // Assert that both `obj` and `cloned` point to the same underlying object. 396 /// assert!(core::ptr::eq(&*obj, &*cloned)); 397 /// # Ok::<(), Error>(()) 398 /// ``` 399 /// 400 /// Using `ArcBorrow<T>` as the type of `self`: 401 /// 402 /// ``` 403 /// use kernel::sync::{Arc, ArcBorrow}; 404 /// 405 /// struct Example { 406 /// a: u32, 407 /// b: u32, 408 /// } 409 /// 410 /// impl Example { 411 /// fn use_reference(self: ArcBorrow<'_, Self>) { 412 /// // ... 413 /// } 414 /// } 415 /// 416 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 417 /// obj.as_arc_borrow().use_reference(); 418 /// # Ok::<(), Error>(()) 419 /// ``` 420 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 421 inner: NonNull<ArcInner<T>>, 422 _p: PhantomData<&'a ()>, 423 } 424 425 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`. 426 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {} 427 428 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 429 // `ArcBorrow<U>`. 430 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 431 for ArcBorrow<'_, T> 432 { 433 } 434 435 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 436 fn clone(&self) -> Self { 437 *self 438 } 439 } 440 441 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 442 443 impl<T: ?Sized> ArcBorrow<'_, T> { 444 /// Creates a new [`ArcBorrow`] instance. 445 /// 446 /// # Safety 447 /// 448 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 449 /// 1. That `inner` remains valid; 450 /// 2. That no mutable references to `inner` are created. 451 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 452 // INVARIANT: The safety requirements guarantee the invariants. 453 Self { 454 inner, 455 _p: PhantomData, 456 } 457 } 458 } 459 460 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 461 fn from(b: ArcBorrow<'_, T>) -> Self { 462 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 463 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 464 // increment. 465 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 466 .deref() 467 .clone() 468 } 469 } 470 471 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 472 type Target = T; 473 474 fn deref(&self) -> &Self::Target { 475 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 476 // references to it, so it is safe to create a shared reference. 477 unsafe { &self.inner.as_ref().data } 478 } 479 } 480 481 /// A refcounted object that is known to have a refcount of 1. 482 /// 483 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 484 /// 485 /// # Invariants 486 /// 487 /// `inner` always has a reference count of 1. 488 /// 489 /// # Examples 490 /// 491 /// In the following example, we make changes to the inner object before turning it into an 492 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 493 /// cannot fail. 494 /// 495 /// ``` 496 /// use kernel::sync::{Arc, UniqueArc}; 497 /// 498 /// struct Example { 499 /// a: u32, 500 /// b: u32, 501 /// } 502 /// 503 /// fn test() -> Result<Arc<Example>> { 504 /// let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?; 505 /// x.a += 1; 506 /// x.b += 1; 507 /// Ok(x.into()) 508 /// } 509 /// 510 /// # test().unwrap(); 511 /// ``` 512 /// 513 /// In the following example we first allocate memory for a refcounted `Example` but we don't 514 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 515 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 516 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 517 /// 518 /// ``` 519 /// use kernel::sync::{Arc, UniqueArc}; 520 /// 521 /// struct Example { 522 /// a: u32, 523 /// b: u32, 524 /// } 525 /// 526 /// fn test() -> Result<Arc<Example>> { 527 /// let x = UniqueArc::try_new_uninit()?; 528 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 529 /// } 530 /// 531 /// # test().unwrap(); 532 /// ``` 533 /// 534 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 535 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 536 /// initialisation, for example, when initialising fields that are wrapped in locks. 537 /// 538 /// ``` 539 /// use kernel::sync::{Arc, UniqueArc}; 540 /// 541 /// struct Example { 542 /// a: u32, 543 /// b: u32, 544 /// } 545 /// 546 /// fn test() -> Result<Arc<Example>> { 547 /// let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?); 548 /// // We can modify `pinned` because it is `Unpin`. 549 /// pinned.as_mut().a += 1; 550 /// Ok(pinned.into()) 551 /// } 552 /// 553 /// # test().unwrap(); 554 /// ``` 555 pub struct UniqueArc<T: ?Sized> { 556 inner: Arc<T>, 557 } 558 559 impl<T> UniqueArc<T> { 560 /// Tries to allocate a new [`UniqueArc`] instance. 561 pub fn try_new(value: T) -> Result<Self, AllocError> { 562 Ok(Self { 563 // INVARIANT: The newly-created object has a refcount of 1. 564 inner: Arc::try_new(value)?, 565 }) 566 } 567 568 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 569 pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 570 // INVARIANT: The refcount is initialised to a non-zero value. 571 let inner = Box::try_init::<AllocError>(try_init!(ArcInner { 572 // SAFETY: There are no safety requirements for this FFI call. 573 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 574 data <- init::uninit::<T, AllocError>(), 575 }? AllocError))?; 576 Ok(UniqueArc { 577 // INVARIANT: The newly-created object has a refcount of 1. 578 // SAFETY: The pointer from the `Box` is valid. 579 inner: unsafe { Arc::from_inner(Box::leak(inner).into()) }, 580 }) 581 } 582 } 583 584 impl<T> UniqueArc<MaybeUninit<T>> { 585 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 586 pub fn write(mut self, value: T) -> UniqueArc<T> { 587 self.deref_mut().write(value); 588 // SAFETY: We just wrote the value to be initialized. 589 unsafe { self.assume_init() } 590 } 591 592 /// Unsafely assume that `self` is initialized. 593 /// 594 /// # Safety 595 /// 596 /// The caller guarantees that the value behind this pointer has been initialized. It is 597 /// *immediate* UB to call this when the value is not initialized. 598 pub unsafe fn assume_init(self) -> UniqueArc<T> { 599 let inner = ManuallyDrop::new(self).inner.ptr; 600 UniqueArc { 601 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 602 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 603 inner: unsafe { Arc::from_inner(inner.cast()) }, 604 } 605 } 606 607 /// Initialize `self` using the given initializer. 608 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 609 // SAFETY: The supplied pointer is valid for initialization. 610 match unsafe { init.__init(self.as_mut_ptr()) } { 611 // SAFETY: Initialization completed successfully. 612 Ok(()) => Ok(unsafe { self.assume_init() }), 613 Err(err) => Err(err), 614 } 615 } 616 617 /// Pin-initialize `self` using the given pin-initializer. 618 pub fn pin_init_with<E>( 619 mut self, 620 init: impl PinInit<T, E>, 621 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 622 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 623 // to ensure it does not move. 624 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 625 // SAFETY: Initialization completed successfully. 626 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 627 Err(err) => Err(err), 628 } 629 } 630 } 631 632 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 633 fn from(obj: UniqueArc<T>) -> Self { 634 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 635 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 636 unsafe { Pin::new_unchecked(obj) } 637 } 638 } 639 640 impl<T: ?Sized> Deref for UniqueArc<T> { 641 type Target = T; 642 643 fn deref(&self) -> &Self::Target { 644 self.inner.deref() 645 } 646 } 647 648 impl<T: ?Sized> DerefMut for UniqueArc<T> { 649 fn deref_mut(&mut self) -> &mut Self::Target { 650 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 651 // it is safe to dereference it. Additionally, we know there is only one reference when 652 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 653 unsafe { &mut self.inner.ptr.as_mut().data } 654 } 655 } 656 657 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 658 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 659 fmt::Display::fmt(self.deref(), f) 660 } 661 } 662 663 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 664 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 665 fmt::Display::fmt(self.deref(), f) 666 } 667 } 668 669 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 670 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 671 fmt::Debug::fmt(self.deref(), f) 672 } 673 } 674 675 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 676 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 677 fmt::Debug::fmt(self.deref(), f) 678 } 679 } 680