xref: /linux/rust/kernel/sync/arc.rs (revision e8fa0481ea15ba1d40a836fa5dbfc1f49680fba8)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //! 5. The object in [`Arc`] is pinned implicitly.
16 //!
17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18 
19 use crate::{
20     alloc::{AllocError, Flags, KBox},
21     bindings,
22     init::InPlaceInit,
23     try_init,
24     types::{ForeignOwnable, Opaque},
25 };
26 use core::{
27     alloc::Layout,
28     borrow::{Borrow, BorrowMut},
29     fmt,
30     marker::PhantomData,
31     mem::{ManuallyDrop, MaybeUninit},
32     ops::{Deref, DerefMut},
33     pin::Pin,
34     ptr::NonNull,
35 };
36 use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit};
37 
38 mod std_vendor;
39 
40 /// A reference-counted pointer to an instance of `T`.
41 ///
42 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
43 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
44 ///
45 /// # Invariants
46 ///
47 /// The reference count on an instance of [`Arc`] is always non-zero.
48 /// The object pointed to by [`Arc`] is always pinned.
49 ///
50 /// # Examples
51 ///
52 /// ```
53 /// use kernel::sync::Arc;
54 ///
55 /// struct Example {
56 ///     a: u32,
57 ///     b: u32,
58 /// }
59 ///
60 /// // Create a refcounted instance of `Example`.
61 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
62 ///
63 /// // Get a new pointer to `obj` and increment the refcount.
64 /// let cloned = obj.clone();
65 ///
66 /// // Assert that both `obj` and `cloned` point to the same underlying object.
67 /// assert!(core::ptr::eq(&*obj, &*cloned));
68 ///
69 /// // Destroy `obj` and decrement its refcount.
70 /// drop(obj);
71 ///
72 /// // Check that the values are still accessible through `cloned`.
73 /// assert_eq!(cloned.a, 10);
74 /// assert_eq!(cloned.b, 20);
75 ///
76 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
77 /// # Ok::<(), Error>(())
78 /// ```
79 ///
80 /// Using `Arc<T>` as the type of `self`:
81 ///
82 /// ```
83 /// use kernel::sync::Arc;
84 ///
85 /// struct Example {
86 ///     a: u32,
87 ///     b: u32,
88 /// }
89 ///
90 /// impl Example {
91 ///     fn take_over(self: Arc<Self>) {
92 ///         // ...
93 ///     }
94 ///
95 ///     fn use_reference(self: &Arc<Self>) {
96 ///         // ...
97 ///     }
98 /// }
99 ///
100 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
101 /// obj.use_reference();
102 /// obj.take_over();
103 /// # Ok::<(), Error>(())
104 /// ```
105 ///
106 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
107 ///
108 /// ```
109 /// use kernel::sync::{Arc, ArcBorrow};
110 ///
111 /// trait MyTrait {
112 ///     // Trait has a function whose `self` type is `Arc<Self>`.
113 ///     fn example1(self: Arc<Self>) {}
114 ///
115 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
116 ///     fn example2(self: ArcBorrow<'_, Self>) {}
117 /// }
118 ///
119 /// struct Example;
120 /// impl MyTrait for Example {}
121 ///
122 /// // `obj` has type `Arc<Example>`.
123 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
124 ///
125 /// // `coerced` has type `Arc<dyn MyTrait>`.
126 /// let coerced: Arc<dyn MyTrait> = obj;
127 /// # Ok::<(), Error>(())
128 /// ```
129 #[repr(transparent)]
130 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
131 pub struct Arc<T: ?Sized> {
132     ptr: NonNull<ArcInner<T>>,
133     // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as
134     // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in
135     // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently
136     // meaningful with respect to dropck - but this may change in the future so this is left here
137     // out of an abundance of caution.
138     //
139     // See <https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking>
140     // for more detail on the semantics of dropck in the presence of `PhantomData`.
141     _p: PhantomData<ArcInner<T>>,
142 }
143 
144 #[doc(hidden)]
145 #[pin_data]
146 #[repr(C)]
147 pub struct ArcInner<T: ?Sized> {
148     refcount: Opaque<bindings::refcount_t>,
149     data: T,
150 }
151 
152 impl<T: ?Sized> ArcInner<T> {
153     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
154     ///
155     /// # Safety
156     ///
157     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
158     /// not yet have been destroyed.
159     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
160         let refcount_layout = Layout::new::<bindings::refcount_t>();
161         // SAFETY: The caller guarantees that the pointer is valid.
162         let val_layout = Layout::for_value(unsafe { &*ptr });
163         // SAFETY: We're computing the layout of a real struct that existed when compiling this
164         // binary, so its layout is not so large that it can trigger arithmetic overflow.
165         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
166 
167         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
168         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
169         //
170         // This is documented at:
171         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
172         let ptr = ptr as *const ArcInner<T>;
173 
174         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
175         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
176         // still valid.
177         let ptr = unsafe { ptr.byte_sub(val_offset) };
178 
179         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
180         // address.
181         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
182     }
183 }
184 
185 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
186 // dynamically-sized type (DST) `U`.
187 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
188 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
189 
190 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
191 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
192 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
193 
194 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
195 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
196 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
197 // mutable reference when the reference count reaches zero and `T` is dropped.
198 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
199 
200 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
201 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
202 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
203 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
204 // the reference count reaches zero and `T` is dropped.
205 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
206 
207 impl<T> InPlaceInit<T> for Arc<T> {
208     type PinnedSelf = Self;
209 
210     #[inline]
211     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
212     where
213         E: From<AllocError>,
214     {
215         UniqueArc::try_pin_init(init, flags).map(|u| u.into())
216     }
217 
218     #[inline]
219     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
220     where
221         E: From<AllocError>,
222     {
223         UniqueArc::try_init(init, flags).map(|u| u.into())
224     }
225 }
226 
227 impl<T> Arc<T> {
228     /// Constructs a new reference counted instance of `T`.
229     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
230         // INVARIANT: The refcount is initialised to a non-zero value.
231         let value = ArcInner {
232             // SAFETY: There are no safety requirements for this FFI call.
233             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
234             data: contents,
235         };
236 
237         let inner = KBox::new(value, flags)?;
238         let inner = KBox::leak(inner).into();
239 
240         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
241         // `Arc` object.
242         Ok(unsafe { Self::from_inner(inner) })
243     }
244 }
245 
246 impl<T: ?Sized> Arc<T> {
247     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
248     ///
249     /// # Safety
250     ///
251     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
252     /// count, one of which will be owned by the new [`Arc`] instance.
253     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
254         // INVARIANT: By the safety requirements, the invariants hold.
255         Arc {
256             ptr: inner,
257             _p: PhantomData,
258         }
259     }
260 
261     /// Convert the [`Arc`] into a raw pointer.
262     ///
263     /// The raw pointer has ownership of the refcount that this Arc object owned.
264     pub fn into_raw(self) -> *const T {
265         let ptr = self.ptr.as_ptr();
266         core::mem::forget(self);
267         // SAFETY: The pointer is valid.
268         unsafe { core::ptr::addr_of!((*ptr).data) }
269     }
270 
271     /// Return a raw pointer to the data in this arc.
272     pub fn as_ptr(this: &Self) -> *const T {
273         let ptr = this.ptr.as_ptr();
274 
275         // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`,
276         // field projection to `data`is within bounds of the allocation.
277         unsafe { core::ptr::addr_of!((*ptr).data) }
278     }
279 
280     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
281     ///
282     /// # Safety
283     ///
284     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
285     /// must not be called more than once for each previous call to [`Arc::into_raw`].
286     pub unsafe fn from_raw(ptr: *const T) -> Self {
287         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
288         // `Arc` that is still valid.
289         let ptr = unsafe { ArcInner::container_of(ptr) };
290 
291         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
292         // reference count held then will be owned by the new `Arc` object.
293         unsafe { Self::from_inner(ptr) }
294     }
295 
296     /// Returns an [`ArcBorrow`] from the given [`Arc`].
297     ///
298     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
299     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
300     #[inline]
301     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
302         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
303         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
304         // reference can be created.
305         unsafe { ArcBorrow::new(self.ptr) }
306     }
307 
308     /// Compare whether two [`Arc`] pointers reference the same underlying object.
309     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
310         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
311     }
312 
313     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
314     ///
315     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
316     /// this method will never call the destructor of the value.
317     ///
318     /// # Examples
319     ///
320     /// ```
321     /// use kernel::sync::{Arc, UniqueArc};
322     ///
323     /// let arc = Arc::new(42, GFP_KERNEL)?;
324     /// let unique_arc = arc.into_unique_or_drop();
325     ///
326     /// // The above conversion should succeed since refcount of `arc` is 1.
327     /// assert!(unique_arc.is_some());
328     ///
329     /// assert_eq!(*(unique_arc.unwrap()), 42);
330     ///
331     /// # Ok::<(), Error>(())
332     /// ```
333     ///
334     /// ```
335     /// use kernel::sync::{Arc, UniqueArc};
336     ///
337     /// let arc = Arc::new(42, GFP_KERNEL)?;
338     /// let another = arc.clone();
339     ///
340     /// let unique_arc = arc.into_unique_or_drop();
341     ///
342     /// // The above conversion should fail since refcount of `arc` is >1.
343     /// assert!(unique_arc.is_none());
344     ///
345     /// # Ok::<(), Error>(())
346     /// ```
347     pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
348         // We will manually manage the refcount in this method, so we disable the destructor.
349         let me = ManuallyDrop::new(self);
350         // SAFETY: We own a refcount, so the pointer is still valid.
351         let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
352 
353         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
354         // return without further touching the `Arc`. If the refcount reaches zero, then there are
355         // no other arcs, and we can create a `UniqueArc`.
356         //
357         // SAFETY: We own a refcount, so the pointer is not dangling.
358         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
359         if is_zero {
360             // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
361             // accesses to the refcount.
362             unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
363 
364             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
365             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
366             // their values.
367             Some(Pin::from(UniqueArc {
368                 inner: ManuallyDrop::into_inner(me),
369             }))
370         } else {
371             None
372         }
373     }
374 }
375 
376 // SAFETY: The `into_foreign` function returns a pointer that is well-aligned.
377 unsafe impl<T: 'static> ForeignOwnable for Arc<T> {
378     type PointedTo = ArcInner<T>;
379     type Borrowed<'a> = ArcBorrow<'a, T>;
380     type BorrowedMut<'a> = Self::Borrowed<'a>;
381 
382     fn into_foreign(self) -> *mut Self::PointedTo {
383         ManuallyDrop::new(self).ptr.as_ptr()
384     }
385 
386     unsafe fn from_foreign(ptr: *mut Self::PointedTo) -> Self {
387         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
388         // call to `Self::into_foreign`.
389         let inner = unsafe { NonNull::new_unchecked(ptr) };
390 
391         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
392         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
393         // holds a reference count increment that is transferrable to us.
394         unsafe { Self::from_inner(inner) }
395     }
396 
397     unsafe fn borrow<'a>(ptr: *mut Self::PointedTo) -> ArcBorrow<'a, T> {
398         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
399         // call to `Self::into_foreign`.
400         let inner = unsafe { NonNull::new_unchecked(ptr) };
401 
402         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
403         // for the lifetime of the returned value.
404         unsafe { ArcBorrow::new(inner) }
405     }
406 
407     unsafe fn borrow_mut<'a>(ptr: *mut Self::PointedTo) -> ArcBorrow<'a, T> {
408         // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety
409         // requirements for `borrow`.
410         unsafe { <Self as ForeignOwnable>::borrow(ptr) }
411     }
412 }
413 
414 impl<T: ?Sized> Deref for Arc<T> {
415     type Target = T;
416 
417     fn deref(&self) -> &Self::Target {
418         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
419         // safe to dereference it.
420         unsafe { &self.ptr.as_ref().data }
421     }
422 }
423 
424 impl<T: ?Sized> AsRef<T> for Arc<T> {
425     fn as_ref(&self) -> &T {
426         self.deref()
427     }
428 }
429 
430 /// # Examples
431 ///
432 /// ```
433 /// # use core::borrow::Borrow;
434 /// # use kernel::sync::Arc;
435 /// struct Foo<B: Borrow<u32>>(B);
436 ///
437 /// // Owned instance.
438 /// let owned = Foo(1);
439 ///
440 /// // Shared instance.
441 /// let arc = Arc::new(1, GFP_KERNEL)?;
442 /// let shared = Foo(arc.clone());
443 ///
444 /// let i = 1;
445 /// // Borrowed from `i`.
446 /// let borrowed = Foo(&i);
447 /// # Ok::<(), Error>(())
448 /// ```
449 impl<T: ?Sized> Borrow<T> for Arc<T> {
450     fn borrow(&self) -> &T {
451         self.deref()
452     }
453 }
454 
455 impl<T: ?Sized> Clone for Arc<T> {
456     fn clone(&self) -> Self {
457         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
458         // safe to dereference it.
459         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
460 
461         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
462         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
463         // safe to increment the refcount.
464         unsafe { bindings::refcount_inc(refcount) };
465 
466         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
467         unsafe { Self::from_inner(self.ptr) }
468     }
469 }
470 
471 impl<T: ?Sized> Drop for Arc<T> {
472     fn drop(&mut self) {
473         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
474         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
475         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
476         // freed/invalid memory as long as it is never dereferenced.
477         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
478 
479         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
480         // this instance is being dropped, so the broken invariant is not observable.
481         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
482         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
483         if is_zero {
484             // The count reached zero, we must free the memory.
485             //
486             // SAFETY: The pointer was initialised from the result of `KBox::leak`.
487             unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
488         }
489     }
490 }
491 
492 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
493     fn from(item: UniqueArc<T>) -> Self {
494         item.inner
495     }
496 }
497 
498 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
499     fn from(item: Pin<UniqueArc<T>>) -> Self {
500         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
501         unsafe { Pin::into_inner_unchecked(item).inner }
502     }
503 }
504 
505 /// A borrowed reference to an [`Arc`] instance.
506 ///
507 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
508 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
509 ///
510 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
511 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
512 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
513 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
514 /// needed.
515 ///
516 /// # Invariants
517 ///
518 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
519 /// lifetime of the [`ArcBorrow`] instance.
520 ///
521 /// # Examples
522 ///
523 /// ```
524 /// use kernel::sync::{Arc, ArcBorrow};
525 ///
526 /// struct Example;
527 ///
528 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
529 ///     e.into()
530 /// }
531 ///
532 /// let obj = Arc::new(Example, GFP_KERNEL)?;
533 /// let cloned = do_something(obj.as_arc_borrow());
534 ///
535 /// // Assert that both `obj` and `cloned` point to the same underlying object.
536 /// assert!(core::ptr::eq(&*obj, &*cloned));
537 /// # Ok::<(), Error>(())
538 /// ```
539 ///
540 /// Using `ArcBorrow<T>` as the type of `self`:
541 ///
542 /// ```
543 /// use kernel::sync::{Arc, ArcBorrow};
544 ///
545 /// struct Example {
546 ///     a: u32,
547 ///     b: u32,
548 /// }
549 ///
550 /// impl Example {
551 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
552 ///         // ...
553 ///     }
554 /// }
555 ///
556 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
557 /// obj.as_arc_borrow().use_reference();
558 /// # Ok::<(), Error>(())
559 /// ```
560 #[repr(transparent)]
561 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
562 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
563     inner: NonNull<ArcInner<T>>,
564     _p: PhantomData<&'a ()>,
565 }
566 
567 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
568 // `ArcBorrow<U>`.
569 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
570 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
571     for ArcBorrow<'_, T>
572 {
573 }
574 
575 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
576     fn clone(&self) -> Self {
577         *self
578     }
579 }
580 
581 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
582 
583 impl<T: ?Sized> ArcBorrow<'_, T> {
584     /// Creates a new [`ArcBorrow`] instance.
585     ///
586     /// # Safety
587     ///
588     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
589     /// 1. That `inner` remains valid;
590     /// 2. That no mutable references to `inner` are created.
591     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
592         // INVARIANT: The safety requirements guarantee the invariants.
593         Self {
594             inner,
595             _p: PhantomData,
596         }
597     }
598 
599     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
600     /// [`Arc::into_raw`] or [`Arc::as_ptr`].
601     ///
602     /// # Safety
603     ///
604     /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`].
605     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
606     ///   not hit zero.
607     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
608     ///   [`UniqueArc`] reference to this value.
609     pub unsafe fn from_raw(ptr: *const T) -> Self {
610         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
611         // `Arc` that is still valid.
612         let ptr = unsafe { ArcInner::container_of(ptr) };
613 
614         // SAFETY: The caller promises that the value remains valid since the reference count must
615         // not hit zero, and no mutable reference will be created since that would involve a
616         // `UniqueArc`.
617         unsafe { Self::new(ptr) }
618     }
619 }
620 
621 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
622     fn from(b: ArcBorrow<'_, T>) -> Self {
623         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
624         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
625         // increment.
626         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
627             .deref()
628             .clone()
629     }
630 }
631 
632 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
633     type Target = T;
634 
635     fn deref(&self) -> &Self::Target {
636         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
637         // references to it, so it is safe to create a shared reference.
638         unsafe { &self.inner.as_ref().data }
639     }
640 }
641 
642 /// A refcounted object that is known to have a refcount of 1.
643 ///
644 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
645 ///
646 /// # Invariants
647 ///
648 /// `inner` always has a reference count of 1.
649 ///
650 /// # Examples
651 ///
652 /// In the following example, we make changes to the inner object before turning it into an
653 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
654 /// cannot fail.
655 ///
656 /// ```
657 /// use kernel::sync::{Arc, UniqueArc};
658 ///
659 /// struct Example {
660 ///     a: u32,
661 ///     b: u32,
662 /// }
663 ///
664 /// fn test() -> Result<Arc<Example>> {
665 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
666 ///     x.a += 1;
667 ///     x.b += 1;
668 ///     Ok(x.into())
669 /// }
670 ///
671 /// # test().unwrap();
672 /// ```
673 ///
674 /// In the following example we first allocate memory for a refcounted `Example` but we don't
675 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
676 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
677 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
678 ///
679 /// ```
680 /// use kernel::sync::{Arc, UniqueArc};
681 ///
682 /// struct Example {
683 ///     a: u32,
684 ///     b: u32,
685 /// }
686 ///
687 /// fn test() -> Result<Arc<Example>> {
688 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
689 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
690 /// }
691 ///
692 /// # test().unwrap();
693 /// ```
694 ///
695 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
696 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
697 /// initialisation, for example, when initialising fields that are wrapped in locks.
698 ///
699 /// ```
700 /// use kernel::sync::{Arc, UniqueArc};
701 ///
702 /// struct Example {
703 ///     a: u32,
704 ///     b: u32,
705 /// }
706 ///
707 /// fn test() -> Result<Arc<Example>> {
708 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
709 ///     // We can modify `pinned` because it is `Unpin`.
710 ///     pinned.as_mut().a += 1;
711 ///     Ok(pinned.into())
712 /// }
713 ///
714 /// # test().unwrap();
715 /// ```
716 pub struct UniqueArc<T: ?Sized> {
717     inner: Arc<T>,
718 }
719 
720 impl<T> InPlaceInit<T> for UniqueArc<T> {
721     type PinnedSelf = Pin<Self>;
722 
723     #[inline]
724     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
725     where
726         E: From<AllocError>,
727     {
728         UniqueArc::new_uninit(flags)?.write_pin_init(init)
729     }
730 
731     #[inline]
732     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
733     where
734         E: From<AllocError>,
735     {
736         UniqueArc::new_uninit(flags)?.write_init(init)
737     }
738 }
739 
740 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
741     type Initialized = UniqueArc<T>;
742 
743     fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
744         let slot = self.as_mut_ptr();
745         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
746         // slot is valid.
747         unsafe { init.__init(slot)? };
748         // SAFETY: All fields have been initialized.
749         Ok(unsafe { self.assume_init() })
750     }
751 
752     fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
753         let slot = self.as_mut_ptr();
754         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
755         // slot is valid and will not be moved, because we pin it later.
756         unsafe { init.__pinned_init(slot)? };
757         // SAFETY: All fields have been initialized.
758         Ok(unsafe { self.assume_init() }.into())
759     }
760 }
761 
762 impl<T> UniqueArc<T> {
763     /// Tries to allocate a new [`UniqueArc`] instance.
764     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
765         Ok(Self {
766             // INVARIANT: The newly-created object has a refcount of 1.
767             inner: Arc::new(value, flags)?,
768         })
769     }
770 
771     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
772     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
773         // INVARIANT: The refcount is initialised to a non-zero value.
774         let inner = KBox::try_init::<AllocError>(
775             try_init!(ArcInner {
776                 // SAFETY: There are no safety requirements for this FFI call.
777                 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
778                 data <- pin_init::uninit::<T, AllocError>(),
779             }? AllocError),
780             flags,
781         )?;
782         Ok(UniqueArc {
783             // INVARIANT: The newly-created object has a refcount of 1.
784             // SAFETY: The pointer from the `KBox` is valid.
785             inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
786         })
787     }
788 }
789 
790 impl<T> UniqueArc<MaybeUninit<T>> {
791     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
792     pub fn write(mut self, value: T) -> UniqueArc<T> {
793         self.deref_mut().write(value);
794         // SAFETY: We just wrote the value to be initialized.
795         unsafe { self.assume_init() }
796     }
797 
798     /// Unsafely assume that `self` is initialized.
799     ///
800     /// # Safety
801     ///
802     /// The caller guarantees that the value behind this pointer has been initialized. It is
803     /// *immediate* UB to call this when the value is not initialized.
804     pub unsafe fn assume_init(self) -> UniqueArc<T> {
805         let inner = ManuallyDrop::new(self).inner.ptr;
806         UniqueArc {
807             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
808             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
809             inner: unsafe { Arc::from_inner(inner.cast()) },
810         }
811     }
812 
813     /// Initialize `self` using the given initializer.
814     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
815         // SAFETY: The supplied pointer is valid for initialization.
816         match unsafe { init.__init(self.as_mut_ptr()) } {
817             // SAFETY: Initialization completed successfully.
818             Ok(()) => Ok(unsafe { self.assume_init() }),
819             Err(err) => Err(err),
820         }
821     }
822 
823     /// Pin-initialize `self` using the given pin-initializer.
824     pub fn pin_init_with<E>(
825         mut self,
826         init: impl PinInit<T, E>,
827     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
828         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
829         // to ensure it does not move.
830         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
831             // SAFETY: Initialization completed successfully.
832             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
833             Err(err) => Err(err),
834         }
835     }
836 }
837 
838 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
839     fn from(obj: UniqueArc<T>) -> Self {
840         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
841         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
842         unsafe { Pin::new_unchecked(obj) }
843     }
844 }
845 
846 impl<T: ?Sized> Deref for UniqueArc<T> {
847     type Target = T;
848 
849     fn deref(&self) -> &Self::Target {
850         self.inner.deref()
851     }
852 }
853 
854 impl<T: ?Sized> DerefMut for UniqueArc<T> {
855     fn deref_mut(&mut self) -> &mut Self::Target {
856         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
857         // it is safe to dereference it. Additionally, we know there is only one reference when
858         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
859         unsafe { &mut self.inner.ptr.as_mut().data }
860     }
861 }
862 
863 /// # Examples
864 ///
865 /// ```
866 /// # use core::borrow::Borrow;
867 /// # use kernel::sync::UniqueArc;
868 /// struct Foo<B: Borrow<u32>>(B);
869 ///
870 /// // Owned instance.
871 /// let owned = Foo(1);
872 ///
873 /// // Owned instance using `UniqueArc`.
874 /// let arc = UniqueArc::new(1, GFP_KERNEL)?;
875 /// let shared = Foo(arc);
876 ///
877 /// let i = 1;
878 /// // Borrowed from `i`.
879 /// let borrowed = Foo(&i);
880 /// # Ok::<(), Error>(())
881 /// ```
882 impl<T: ?Sized> Borrow<T> for UniqueArc<T> {
883     fn borrow(&self) -> &T {
884         self.deref()
885     }
886 }
887 
888 /// # Examples
889 ///
890 /// ```
891 /// # use core::borrow::BorrowMut;
892 /// # use kernel::sync::UniqueArc;
893 /// struct Foo<B: BorrowMut<u32>>(B);
894 ///
895 /// // Owned instance.
896 /// let owned = Foo(1);
897 ///
898 /// // Owned instance using `UniqueArc`.
899 /// let arc = UniqueArc::new(1, GFP_KERNEL)?;
900 /// let shared = Foo(arc);
901 ///
902 /// let mut i = 1;
903 /// // Borrowed from `i`.
904 /// let borrowed = Foo(&mut i);
905 /// # Ok::<(), Error>(())
906 /// ```
907 impl<T: ?Sized> BorrowMut<T> for UniqueArc<T> {
908     fn borrow_mut(&mut self) -> &mut T {
909         self.deref_mut()
910     }
911 }
912 
913 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
914     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
915         fmt::Display::fmt(self.deref(), f)
916     }
917 }
918 
919 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
920     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
921         fmt::Display::fmt(self.deref(), f)
922     }
923 }
924 
925 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
926     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
927         fmt::Debug::fmt(self.deref(), f)
928     }
929 }
930 
931 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
932     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
933         fmt::Debug::fmt(self.deref(), f)
934     }
935 }
936