1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implicitly. 16 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 19 use crate::{ 20 alloc::{AllocError, Flags, KBox}, 21 bindings, 22 init::{self, InPlaceWrite, Init, PinInit}, 23 init_ext::InPlaceInit, 24 try_init, 25 types::{ForeignOwnable, Opaque}, 26 }; 27 use core::{ 28 alloc::Layout, 29 fmt, 30 marker::PhantomData, 31 mem::{ManuallyDrop, MaybeUninit}, 32 ops::{Deref, DerefMut}, 33 pin::Pin, 34 ptr::NonNull, 35 }; 36 use macros::pin_data; 37 38 mod std_vendor; 39 40 /// A reference-counted pointer to an instance of `T`. 41 /// 42 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 43 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 44 /// 45 /// # Invariants 46 /// 47 /// The reference count on an instance of [`Arc`] is always non-zero. 48 /// The object pointed to by [`Arc`] is always pinned. 49 /// 50 /// # Examples 51 /// 52 /// ``` 53 /// use kernel::sync::Arc; 54 /// 55 /// struct Example { 56 /// a: u32, 57 /// b: u32, 58 /// } 59 /// 60 /// // Create a refcounted instance of `Example`. 61 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 62 /// 63 /// // Get a new pointer to `obj` and increment the refcount. 64 /// let cloned = obj.clone(); 65 /// 66 /// // Assert that both `obj` and `cloned` point to the same underlying object. 67 /// assert!(core::ptr::eq(&*obj, &*cloned)); 68 /// 69 /// // Destroy `obj` and decrement its refcount. 70 /// drop(obj); 71 /// 72 /// // Check that the values are still accessible through `cloned`. 73 /// assert_eq!(cloned.a, 10); 74 /// assert_eq!(cloned.b, 20); 75 /// 76 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 77 /// # Ok::<(), Error>(()) 78 /// ``` 79 /// 80 /// Using `Arc<T>` as the type of `self`: 81 /// 82 /// ``` 83 /// use kernel::sync::Arc; 84 /// 85 /// struct Example { 86 /// a: u32, 87 /// b: u32, 88 /// } 89 /// 90 /// impl Example { 91 /// fn take_over(self: Arc<Self>) { 92 /// // ... 93 /// } 94 /// 95 /// fn use_reference(self: &Arc<Self>) { 96 /// // ... 97 /// } 98 /// } 99 /// 100 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 101 /// obj.use_reference(); 102 /// obj.take_over(); 103 /// # Ok::<(), Error>(()) 104 /// ``` 105 /// 106 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 107 /// 108 /// ``` 109 /// use kernel::sync::{Arc, ArcBorrow}; 110 /// 111 /// trait MyTrait { 112 /// // Trait has a function whose `self` type is `Arc<Self>`. 113 /// fn example1(self: Arc<Self>) {} 114 /// 115 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 116 /// fn example2(self: ArcBorrow<'_, Self>) {} 117 /// } 118 /// 119 /// struct Example; 120 /// impl MyTrait for Example {} 121 /// 122 /// // `obj` has type `Arc<Example>`. 123 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 124 /// 125 /// // `coerced` has type `Arc<dyn MyTrait>`. 126 /// let coerced: Arc<dyn MyTrait> = obj; 127 /// # Ok::<(), Error>(()) 128 /// ``` 129 #[repr(transparent)] 130 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 131 pub struct Arc<T: ?Sized> { 132 ptr: NonNull<ArcInner<T>>, 133 // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as 134 // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in 135 // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently 136 // meaningful with respect to dropck - but this may change in the future so this is left here 137 // out of an abundance of caution. 138 // 139 // See https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking 140 // for more detail on the semantics of dropck in the presence of `PhantomData`. 141 _p: PhantomData<ArcInner<T>>, 142 } 143 144 #[pin_data] 145 #[repr(C)] 146 struct ArcInner<T: ?Sized> { 147 refcount: Opaque<bindings::refcount_t>, 148 data: T, 149 } 150 151 impl<T: ?Sized> ArcInner<T> { 152 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 153 /// 154 /// # Safety 155 /// 156 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 157 /// not yet have been destroyed. 158 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 159 let refcount_layout = Layout::new::<bindings::refcount_t>(); 160 // SAFETY: The caller guarantees that the pointer is valid. 161 let val_layout = Layout::for_value(unsafe { &*ptr }); 162 // SAFETY: We're computing the layout of a real struct that existed when compiling this 163 // binary, so its layout is not so large that it can trigger arithmetic overflow. 164 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 165 166 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 167 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 168 // 169 // This is documented at: 170 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 171 let ptr = ptr as *const ArcInner<T>; 172 173 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 174 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 175 // still valid. 176 let ptr = unsafe { ptr.byte_sub(val_offset) }; 177 178 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 179 // address. 180 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 181 } 182 } 183 184 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 185 // dynamically-sized type (DST) `U`. 186 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 187 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 188 189 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 190 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 191 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 192 193 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 194 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 195 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 196 // mutable reference when the reference count reaches zero and `T` is dropped. 197 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 198 199 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 200 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 201 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 202 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 203 // the reference count reaches zero and `T` is dropped. 204 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 205 206 impl<T> InPlaceInit<T> for Arc<T> { 207 type PinnedSelf = Self; 208 209 #[inline] 210 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 211 where 212 E: From<AllocError>, 213 { 214 UniqueArc::try_pin_init(init, flags).map(|u| u.into()) 215 } 216 217 #[inline] 218 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 219 where 220 E: From<AllocError>, 221 { 222 UniqueArc::try_init(init, flags).map(|u| u.into()) 223 } 224 } 225 226 impl<T> Arc<T> { 227 /// Constructs a new reference counted instance of `T`. 228 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 229 // INVARIANT: The refcount is initialised to a non-zero value. 230 let value = ArcInner { 231 // SAFETY: There are no safety requirements for this FFI call. 232 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 233 data: contents, 234 }; 235 236 let inner = KBox::new(value, flags)?; 237 let inner = KBox::leak(inner).into(); 238 239 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 240 // `Arc` object. 241 Ok(unsafe { Self::from_inner(inner) }) 242 } 243 } 244 245 impl<T: ?Sized> Arc<T> { 246 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 247 /// 248 /// # Safety 249 /// 250 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 251 /// count, one of which will be owned by the new [`Arc`] instance. 252 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 253 // INVARIANT: By the safety requirements, the invariants hold. 254 Arc { 255 ptr: inner, 256 _p: PhantomData, 257 } 258 } 259 260 /// Convert the [`Arc`] into a raw pointer. 261 /// 262 /// The raw pointer has ownership of the refcount that this Arc object owned. 263 pub fn into_raw(self) -> *const T { 264 let ptr = self.ptr.as_ptr(); 265 core::mem::forget(self); 266 // SAFETY: The pointer is valid. 267 unsafe { core::ptr::addr_of!((*ptr).data) } 268 } 269 270 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 271 /// 272 /// # Safety 273 /// 274 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 275 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 276 pub unsafe fn from_raw(ptr: *const T) -> Self { 277 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 278 // `Arc` that is still valid. 279 let ptr = unsafe { ArcInner::container_of(ptr) }; 280 281 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 282 // reference count held then will be owned by the new `Arc` object. 283 unsafe { Self::from_inner(ptr) } 284 } 285 286 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 287 /// 288 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 289 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 290 #[inline] 291 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 292 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 293 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 294 // reference can be created. 295 unsafe { ArcBorrow::new(self.ptr) } 296 } 297 298 /// Compare whether two [`Arc`] pointers reference the same underlying object. 299 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 300 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 301 } 302 303 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 304 /// 305 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 306 /// this method will never call the destructor of the value. 307 /// 308 /// # Examples 309 /// 310 /// ``` 311 /// use kernel::sync::{Arc, UniqueArc}; 312 /// 313 /// let arc = Arc::new(42, GFP_KERNEL)?; 314 /// let unique_arc = arc.into_unique_or_drop(); 315 /// 316 /// // The above conversion should succeed since refcount of `arc` is 1. 317 /// assert!(unique_arc.is_some()); 318 /// 319 /// assert_eq!(*(unique_arc.unwrap()), 42); 320 /// 321 /// # Ok::<(), Error>(()) 322 /// ``` 323 /// 324 /// ``` 325 /// use kernel::sync::{Arc, UniqueArc}; 326 /// 327 /// let arc = Arc::new(42, GFP_KERNEL)?; 328 /// let another = arc.clone(); 329 /// 330 /// let unique_arc = arc.into_unique_or_drop(); 331 /// 332 /// // The above conversion should fail since refcount of `arc` is >1. 333 /// assert!(unique_arc.is_none()); 334 /// 335 /// # Ok::<(), Error>(()) 336 /// ``` 337 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> { 338 // We will manually manage the refcount in this method, so we disable the destructor. 339 let me = ManuallyDrop::new(self); 340 // SAFETY: We own a refcount, so the pointer is still valid. 341 let refcount = unsafe { me.ptr.as_ref() }.refcount.get(); 342 343 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 344 // return without further touching the `Arc`. If the refcount reaches zero, then there are 345 // no other arcs, and we can create a `UniqueArc`. 346 // 347 // SAFETY: We own a refcount, so the pointer is not dangling. 348 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 349 if is_zero { 350 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized 351 // accesses to the refcount. 352 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) }; 353 354 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 355 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 356 // their values. 357 Some(Pin::from(UniqueArc { 358 inner: ManuallyDrop::into_inner(me), 359 })) 360 } else { 361 None 362 } 363 } 364 } 365 366 impl<T: 'static> ForeignOwnable for Arc<T> { 367 type Borrowed<'a> = ArcBorrow<'a, T>; 368 type BorrowedMut<'a> = Self::Borrowed<'a>; 369 370 fn into_foreign(self) -> *mut crate::ffi::c_void { 371 ManuallyDrop::new(self).ptr.as_ptr().cast() 372 } 373 374 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self { 375 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 376 // call to `Self::into_foreign`. 377 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) }; 378 379 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 380 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 381 // holds a reference count increment that is transferrable to us. 382 unsafe { Self::from_inner(inner) } 383 } 384 385 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> ArcBorrow<'a, T> { 386 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 387 // call to `Self::into_foreign`. 388 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) }; 389 390 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 391 // for the lifetime of the returned value. 392 unsafe { ArcBorrow::new(inner) } 393 } 394 395 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> ArcBorrow<'a, T> { 396 // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety 397 // requirements for `borrow`. 398 unsafe { Self::borrow(ptr) } 399 } 400 } 401 402 impl<T: ?Sized> Deref for Arc<T> { 403 type Target = T; 404 405 fn deref(&self) -> &Self::Target { 406 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 407 // safe to dereference it. 408 unsafe { &self.ptr.as_ref().data } 409 } 410 } 411 412 impl<T: ?Sized> AsRef<T> for Arc<T> { 413 fn as_ref(&self) -> &T { 414 self.deref() 415 } 416 } 417 418 impl<T: ?Sized> Clone for Arc<T> { 419 fn clone(&self) -> Self { 420 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 421 // safe to dereference it. 422 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 423 424 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 425 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 426 // safe to increment the refcount. 427 unsafe { bindings::refcount_inc(refcount) }; 428 429 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 430 unsafe { Self::from_inner(self.ptr) } 431 } 432 } 433 434 impl<T: ?Sized> Drop for Arc<T> { 435 fn drop(&mut self) { 436 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 437 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 438 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 439 // freed/invalid memory as long as it is never dereferenced. 440 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 441 442 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 443 // this instance is being dropped, so the broken invariant is not observable. 444 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 445 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 446 if is_zero { 447 // The count reached zero, we must free the memory. 448 // 449 // SAFETY: The pointer was initialised from the result of `KBox::leak`. 450 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) }; 451 } 452 } 453 } 454 455 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 456 fn from(item: UniqueArc<T>) -> Self { 457 item.inner 458 } 459 } 460 461 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 462 fn from(item: Pin<UniqueArc<T>>) -> Self { 463 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 464 unsafe { Pin::into_inner_unchecked(item).inner } 465 } 466 } 467 468 /// A borrowed reference to an [`Arc`] instance. 469 /// 470 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 471 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 472 /// 473 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 474 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 475 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 476 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 477 /// needed. 478 /// 479 /// # Invariants 480 /// 481 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 482 /// lifetime of the [`ArcBorrow`] instance. 483 /// 484 /// # Example 485 /// 486 /// ``` 487 /// use kernel::sync::{Arc, ArcBorrow}; 488 /// 489 /// struct Example; 490 /// 491 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 492 /// e.into() 493 /// } 494 /// 495 /// let obj = Arc::new(Example, GFP_KERNEL)?; 496 /// let cloned = do_something(obj.as_arc_borrow()); 497 /// 498 /// // Assert that both `obj` and `cloned` point to the same underlying object. 499 /// assert!(core::ptr::eq(&*obj, &*cloned)); 500 /// # Ok::<(), Error>(()) 501 /// ``` 502 /// 503 /// Using `ArcBorrow<T>` as the type of `self`: 504 /// 505 /// ``` 506 /// use kernel::sync::{Arc, ArcBorrow}; 507 /// 508 /// struct Example { 509 /// a: u32, 510 /// b: u32, 511 /// } 512 /// 513 /// impl Example { 514 /// fn use_reference(self: ArcBorrow<'_, Self>) { 515 /// // ... 516 /// } 517 /// } 518 /// 519 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 520 /// obj.as_arc_borrow().use_reference(); 521 /// # Ok::<(), Error>(()) 522 /// ``` 523 #[repr(transparent)] 524 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 525 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 526 inner: NonNull<ArcInner<T>>, 527 _p: PhantomData<&'a ()>, 528 } 529 530 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 531 // `ArcBorrow<U>`. 532 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 533 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 534 for ArcBorrow<'_, T> 535 { 536 } 537 538 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 539 fn clone(&self) -> Self { 540 *self 541 } 542 } 543 544 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 545 546 impl<T: ?Sized> ArcBorrow<'_, T> { 547 /// Creates a new [`ArcBorrow`] instance. 548 /// 549 /// # Safety 550 /// 551 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 552 /// 1. That `inner` remains valid; 553 /// 2. That no mutable references to `inner` are created. 554 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 555 // INVARIANT: The safety requirements guarantee the invariants. 556 Self { 557 inner, 558 _p: PhantomData, 559 } 560 } 561 562 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 563 /// [`Arc::into_raw`]. 564 /// 565 /// # Safety 566 /// 567 /// * The provided pointer must originate from a call to [`Arc::into_raw`]. 568 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 569 /// not hit zero. 570 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 571 /// [`UniqueArc`] reference to this value. 572 pub unsafe fn from_raw(ptr: *const T) -> Self { 573 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 574 // `Arc` that is still valid. 575 let ptr = unsafe { ArcInner::container_of(ptr) }; 576 577 // SAFETY: The caller promises that the value remains valid since the reference count must 578 // not hit zero, and no mutable reference will be created since that would involve a 579 // `UniqueArc`. 580 unsafe { Self::new(ptr) } 581 } 582 } 583 584 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 585 fn from(b: ArcBorrow<'_, T>) -> Self { 586 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 587 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 588 // increment. 589 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 590 .deref() 591 .clone() 592 } 593 } 594 595 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 596 type Target = T; 597 598 fn deref(&self) -> &Self::Target { 599 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 600 // references to it, so it is safe to create a shared reference. 601 unsafe { &self.inner.as_ref().data } 602 } 603 } 604 605 /// A refcounted object that is known to have a refcount of 1. 606 /// 607 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 608 /// 609 /// # Invariants 610 /// 611 /// `inner` always has a reference count of 1. 612 /// 613 /// # Examples 614 /// 615 /// In the following example, we make changes to the inner object before turning it into an 616 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 617 /// cannot fail. 618 /// 619 /// ``` 620 /// use kernel::sync::{Arc, UniqueArc}; 621 /// 622 /// struct Example { 623 /// a: u32, 624 /// b: u32, 625 /// } 626 /// 627 /// fn test() -> Result<Arc<Example>> { 628 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 629 /// x.a += 1; 630 /// x.b += 1; 631 /// Ok(x.into()) 632 /// } 633 /// 634 /// # test().unwrap(); 635 /// ``` 636 /// 637 /// In the following example we first allocate memory for a refcounted `Example` but we don't 638 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 639 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 640 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 641 /// 642 /// ``` 643 /// use kernel::sync::{Arc, UniqueArc}; 644 /// 645 /// struct Example { 646 /// a: u32, 647 /// b: u32, 648 /// } 649 /// 650 /// fn test() -> Result<Arc<Example>> { 651 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 652 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 653 /// } 654 /// 655 /// # test().unwrap(); 656 /// ``` 657 /// 658 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 659 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 660 /// initialisation, for example, when initialising fields that are wrapped in locks. 661 /// 662 /// ``` 663 /// use kernel::sync::{Arc, UniqueArc}; 664 /// 665 /// struct Example { 666 /// a: u32, 667 /// b: u32, 668 /// } 669 /// 670 /// fn test() -> Result<Arc<Example>> { 671 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 672 /// // We can modify `pinned` because it is `Unpin`. 673 /// pinned.as_mut().a += 1; 674 /// Ok(pinned.into()) 675 /// } 676 /// 677 /// # test().unwrap(); 678 /// ``` 679 pub struct UniqueArc<T: ?Sized> { 680 inner: Arc<T>, 681 } 682 683 impl<T> InPlaceInit<T> for UniqueArc<T> { 684 type PinnedSelf = Pin<Self>; 685 686 #[inline] 687 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 688 where 689 E: From<AllocError>, 690 { 691 UniqueArc::new_uninit(flags)?.write_pin_init(init) 692 } 693 694 #[inline] 695 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 696 where 697 E: From<AllocError>, 698 { 699 UniqueArc::new_uninit(flags)?.write_init(init) 700 } 701 } 702 703 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> { 704 type Initialized = UniqueArc<T>; 705 706 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 707 let slot = self.as_mut_ptr(); 708 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 709 // slot is valid. 710 unsafe { init.__init(slot)? }; 711 // SAFETY: All fields have been initialized. 712 Ok(unsafe { self.assume_init() }) 713 } 714 715 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 716 let slot = self.as_mut_ptr(); 717 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 718 // slot is valid and will not be moved, because we pin it later. 719 unsafe { init.__pinned_init(slot)? }; 720 // SAFETY: All fields have been initialized. 721 Ok(unsafe { self.assume_init() }.into()) 722 } 723 } 724 725 impl<T> UniqueArc<T> { 726 /// Tries to allocate a new [`UniqueArc`] instance. 727 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 728 Ok(Self { 729 // INVARIANT: The newly-created object has a refcount of 1. 730 inner: Arc::new(value, flags)?, 731 }) 732 } 733 734 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 735 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 736 // INVARIANT: The refcount is initialised to a non-zero value. 737 let inner = KBox::try_init::<AllocError>( 738 try_init!(ArcInner { 739 // SAFETY: There are no safety requirements for this FFI call. 740 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 741 data <- init::uninit::<T, AllocError>(), 742 }? AllocError), 743 flags, 744 )?; 745 Ok(UniqueArc { 746 // INVARIANT: The newly-created object has a refcount of 1. 747 // SAFETY: The pointer from the `KBox` is valid. 748 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) }, 749 }) 750 } 751 } 752 753 impl<T> UniqueArc<MaybeUninit<T>> { 754 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 755 pub fn write(mut self, value: T) -> UniqueArc<T> { 756 self.deref_mut().write(value); 757 // SAFETY: We just wrote the value to be initialized. 758 unsafe { self.assume_init() } 759 } 760 761 /// Unsafely assume that `self` is initialized. 762 /// 763 /// # Safety 764 /// 765 /// The caller guarantees that the value behind this pointer has been initialized. It is 766 /// *immediate* UB to call this when the value is not initialized. 767 pub unsafe fn assume_init(self) -> UniqueArc<T> { 768 let inner = ManuallyDrop::new(self).inner.ptr; 769 UniqueArc { 770 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 771 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 772 inner: unsafe { Arc::from_inner(inner.cast()) }, 773 } 774 } 775 776 /// Initialize `self` using the given initializer. 777 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 778 // SAFETY: The supplied pointer is valid for initialization. 779 match unsafe { init.__init(self.as_mut_ptr()) } { 780 // SAFETY: Initialization completed successfully. 781 Ok(()) => Ok(unsafe { self.assume_init() }), 782 Err(err) => Err(err), 783 } 784 } 785 786 /// Pin-initialize `self` using the given pin-initializer. 787 pub fn pin_init_with<E>( 788 mut self, 789 init: impl PinInit<T, E>, 790 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 791 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 792 // to ensure it does not move. 793 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 794 // SAFETY: Initialization completed successfully. 795 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 796 Err(err) => Err(err), 797 } 798 } 799 } 800 801 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 802 fn from(obj: UniqueArc<T>) -> Self { 803 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 804 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 805 unsafe { Pin::new_unchecked(obj) } 806 } 807 } 808 809 impl<T: ?Sized> Deref for UniqueArc<T> { 810 type Target = T; 811 812 fn deref(&self) -> &Self::Target { 813 self.inner.deref() 814 } 815 } 816 817 impl<T: ?Sized> DerefMut for UniqueArc<T> { 818 fn deref_mut(&mut self) -> &mut Self::Target { 819 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 820 // it is safe to dereference it. Additionally, we know there is only one reference when 821 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 822 unsafe { &mut self.inner.ptr.as_mut().data } 823 } 824 } 825 826 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 827 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 828 fmt::Display::fmt(self.deref(), f) 829 } 830 } 831 832 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 833 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 834 fmt::Display::fmt(self.deref(), f) 835 } 836 } 837 838 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 839 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 840 fmt::Debug::fmt(self.deref(), f) 841 } 842 } 843 844 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 845 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 846 fmt::Debug::fmt(self.deref(), f) 847 } 848 } 849