xref: /linux/rust/kernel/sync/arc.rs (revision d072acda4862f095ec9056979b654cc06a22cc68)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //! 5. The object in [`Arc`] is pinned implicitly.
16 //!
17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18 
19 use crate::{
20     alloc::{AllocError, Flags, KBox},
21     bindings,
22     init::{self, InPlaceInit, Init, PinInit},
23     try_init,
24     types::{ForeignOwnable, Opaque},
25 };
26 use core::{
27     alloc::Layout,
28     fmt,
29     marker::{PhantomData, Unsize},
30     mem::{ManuallyDrop, MaybeUninit},
31     ops::{Deref, DerefMut},
32     pin::Pin,
33     ptr::NonNull,
34 };
35 use macros::pin_data;
36 
37 mod std_vendor;
38 
39 /// A reference-counted pointer to an instance of `T`.
40 ///
41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43 ///
44 /// # Invariants
45 ///
46 /// The reference count on an instance of [`Arc`] is always non-zero.
47 /// The object pointed to by [`Arc`] is always pinned.
48 ///
49 /// # Examples
50 ///
51 /// ```
52 /// use kernel::sync::Arc;
53 ///
54 /// struct Example {
55 ///     a: u32,
56 ///     b: u32,
57 /// }
58 ///
59 /// // Create a refcounted instance of `Example`.
60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
61 ///
62 /// // Get a new pointer to `obj` and increment the refcount.
63 /// let cloned = obj.clone();
64 ///
65 /// // Assert that both `obj` and `cloned` point to the same underlying object.
66 /// assert!(core::ptr::eq(&*obj, &*cloned));
67 ///
68 /// // Destroy `obj` and decrement its refcount.
69 /// drop(obj);
70 ///
71 /// // Check that the values are still accessible through `cloned`.
72 /// assert_eq!(cloned.a, 10);
73 /// assert_eq!(cloned.b, 20);
74 ///
75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76 /// # Ok::<(), Error>(())
77 /// ```
78 ///
79 /// Using `Arc<T>` as the type of `self`:
80 ///
81 /// ```
82 /// use kernel::sync::Arc;
83 ///
84 /// struct Example {
85 ///     a: u32,
86 ///     b: u32,
87 /// }
88 ///
89 /// impl Example {
90 ///     fn take_over(self: Arc<Self>) {
91 ///         // ...
92 ///     }
93 ///
94 ///     fn use_reference(self: &Arc<Self>) {
95 ///         // ...
96 ///     }
97 /// }
98 ///
99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
100 /// obj.use_reference();
101 /// obj.take_over();
102 /// # Ok::<(), Error>(())
103 /// ```
104 ///
105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106 ///
107 /// ```
108 /// use kernel::sync::{Arc, ArcBorrow};
109 ///
110 /// trait MyTrait {
111 ///     // Trait has a function whose `self` type is `Arc<Self>`.
112 ///     fn example1(self: Arc<Self>) {}
113 ///
114 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115 ///     fn example2(self: ArcBorrow<'_, Self>) {}
116 /// }
117 ///
118 /// struct Example;
119 /// impl MyTrait for Example {}
120 ///
121 /// // `obj` has type `Arc<Example>`.
122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
123 ///
124 /// // `coerced` has type `Arc<dyn MyTrait>`.
125 /// let coerced: Arc<dyn MyTrait> = obj;
126 /// # Ok::<(), Error>(())
127 /// ```
128 pub struct Arc<T: ?Sized> {
129     ptr: NonNull<ArcInner<T>>,
130     _p: PhantomData<ArcInner<T>>,
131 }
132 
133 #[pin_data]
134 #[repr(C)]
135 struct ArcInner<T: ?Sized> {
136     refcount: Opaque<bindings::refcount_t>,
137     data: T,
138 }
139 
140 impl<T: ?Sized> ArcInner<T> {
141     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
142     ///
143     /// # Safety
144     ///
145     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
146     /// not yet have been destroyed.
147     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
148         let refcount_layout = Layout::new::<bindings::refcount_t>();
149         // SAFETY: The caller guarantees that the pointer is valid.
150         let val_layout = Layout::for_value(unsafe { &*ptr });
151         // SAFETY: We're computing the layout of a real struct that existed when compiling this
152         // binary, so its layout is not so large that it can trigger arithmetic overflow.
153         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
154 
155         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
156         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
157         //
158         // This is documented at:
159         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
160         let ptr = ptr as *const ArcInner<T>;
161 
162         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
163         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
164         // still valid.
165         let ptr = unsafe { ptr.byte_sub(val_offset) };
166 
167         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
168         // address.
169         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
170     }
171 }
172 
173 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
174 // dynamically-sized type (DST) `U`.
175 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
176 
177 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
178 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
179 
180 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
181 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
182 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
183 // mutable reference when the reference count reaches zero and `T` is dropped.
184 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
185 
186 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
187 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
188 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
189 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
190 // the reference count reaches zero and `T` is dropped.
191 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
192 
193 impl<T> Arc<T> {
194     /// Constructs a new reference counted instance of `T`.
195     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
196         // INVARIANT: The refcount is initialised to a non-zero value.
197         let value = ArcInner {
198             // SAFETY: There are no safety requirements for this FFI call.
199             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
200             data: contents,
201         };
202 
203         let inner = KBox::new(value, flags)?;
204 
205         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
206         // `Arc` object.
207         Ok(unsafe { Self::from_inner(KBox::leak(inner).into()) })
208     }
209 }
210 
211 impl<T: ?Sized> Arc<T> {
212     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
213     ///
214     /// # Safety
215     ///
216     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
217     /// count, one of which will be owned by the new [`Arc`] instance.
218     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
219         // INVARIANT: By the safety requirements, the invariants hold.
220         Arc {
221             ptr: inner,
222             _p: PhantomData,
223         }
224     }
225 
226     /// Convert the [`Arc`] into a raw pointer.
227     ///
228     /// The raw pointer has ownership of the refcount that this Arc object owned.
229     pub fn into_raw(self) -> *const T {
230         let ptr = self.ptr.as_ptr();
231         core::mem::forget(self);
232         // SAFETY: The pointer is valid.
233         unsafe { core::ptr::addr_of!((*ptr).data) }
234     }
235 
236     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
237     ///
238     /// # Safety
239     ///
240     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
241     /// must not be called more than once for each previous call to [`Arc::into_raw`].
242     pub unsafe fn from_raw(ptr: *const T) -> Self {
243         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
244         // `Arc` that is still valid.
245         let ptr = unsafe { ArcInner::container_of(ptr) };
246 
247         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
248         // reference count held then will be owned by the new `Arc` object.
249         unsafe { Self::from_inner(ptr) }
250     }
251 
252     /// Returns an [`ArcBorrow`] from the given [`Arc`].
253     ///
254     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
255     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
256     #[inline]
257     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
258         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
259         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
260         // reference can be created.
261         unsafe { ArcBorrow::new(self.ptr) }
262     }
263 
264     /// Compare whether two [`Arc`] pointers reference the same underlying object.
265     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
266         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
267     }
268 
269     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
270     ///
271     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
272     /// this method will never call the destructor of the value.
273     ///
274     /// # Examples
275     ///
276     /// ```
277     /// use kernel::sync::{Arc, UniqueArc};
278     ///
279     /// let arc = Arc::new(42, GFP_KERNEL)?;
280     /// let unique_arc = arc.into_unique_or_drop();
281     ///
282     /// // The above conversion should succeed since refcount of `arc` is 1.
283     /// assert!(unique_arc.is_some());
284     ///
285     /// assert_eq!(*(unique_arc.unwrap()), 42);
286     ///
287     /// # Ok::<(), Error>(())
288     /// ```
289     ///
290     /// ```
291     /// use kernel::sync::{Arc, UniqueArc};
292     ///
293     /// let arc = Arc::new(42, GFP_KERNEL)?;
294     /// let another = arc.clone();
295     ///
296     /// let unique_arc = arc.into_unique_or_drop();
297     ///
298     /// // The above conversion should fail since refcount of `arc` is >1.
299     /// assert!(unique_arc.is_none());
300     ///
301     /// # Ok::<(), Error>(())
302     /// ```
303     pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
304         // We will manually manage the refcount in this method, so we disable the destructor.
305         let me = ManuallyDrop::new(self);
306         // SAFETY: We own a refcount, so the pointer is still valid.
307         let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
308 
309         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
310         // return without further touching the `Arc`. If the refcount reaches zero, then there are
311         // no other arcs, and we can create a `UniqueArc`.
312         //
313         // SAFETY: We own a refcount, so the pointer is not dangling.
314         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
315         if is_zero {
316             // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
317             // accesses to the refcount.
318             unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
319 
320             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
321             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
322             // their values.
323             Some(Pin::from(UniqueArc {
324                 inner: ManuallyDrop::into_inner(me),
325             }))
326         } else {
327             None
328         }
329     }
330 }
331 
332 impl<T: 'static> ForeignOwnable for Arc<T> {
333     type Borrowed<'a> = ArcBorrow<'a, T>;
334 
335     fn into_foreign(self) -> *const crate::ffi::c_void {
336         ManuallyDrop::new(self).ptr.as_ptr() as _
337     }
338 
339     unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> ArcBorrow<'a, T> {
340         // By the safety requirement of this function, we know that `ptr` came from
341         // a previous call to `Arc::into_foreign`.
342         let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
343 
344         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
345         // for the lifetime of the returned value.
346         unsafe { ArcBorrow::new(inner) }
347     }
348 
349     unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self {
350         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
351         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
352         // holds a reference count increment that is transferrable to us.
353         unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
354     }
355 }
356 
357 impl<T: ?Sized> Deref for Arc<T> {
358     type Target = T;
359 
360     fn deref(&self) -> &Self::Target {
361         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
362         // safe to dereference it.
363         unsafe { &self.ptr.as_ref().data }
364     }
365 }
366 
367 impl<T: ?Sized> AsRef<T> for Arc<T> {
368     fn as_ref(&self) -> &T {
369         self.deref()
370     }
371 }
372 
373 impl<T: ?Sized> Clone for Arc<T> {
374     fn clone(&self) -> Self {
375         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
376         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
377         // safe to increment the refcount.
378         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
379 
380         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
381         unsafe { Self::from_inner(self.ptr) }
382     }
383 }
384 
385 impl<T: ?Sized> Drop for Arc<T> {
386     fn drop(&mut self) {
387         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
388         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
389         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
390         // freed/invalid memory as long as it is never dereferenced.
391         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
392 
393         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
394         // this instance is being dropped, so the broken invariant is not observable.
395         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
396         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
397         if is_zero {
398             // The count reached zero, we must free the memory.
399             //
400             // SAFETY: The pointer was initialised from the result of `KBox::leak`.
401             unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
402         }
403     }
404 }
405 
406 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
407     fn from(item: UniqueArc<T>) -> Self {
408         item.inner
409     }
410 }
411 
412 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
413     fn from(item: Pin<UniqueArc<T>>) -> Self {
414         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
415         unsafe { Pin::into_inner_unchecked(item).inner }
416     }
417 }
418 
419 /// A borrowed reference to an [`Arc`] instance.
420 ///
421 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
422 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
423 ///
424 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
425 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
426 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
427 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
428 /// needed.
429 ///
430 /// # Invariants
431 ///
432 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
433 /// lifetime of the [`ArcBorrow`] instance.
434 ///
435 /// # Example
436 ///
437 /// ```
438 /// use kernel::sync::{Arc, ArcBorrow};
439 ///
440 /// struct Example;
441 ///
442 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
443 ///     e.into()
444 /// }
445 ///
446 /// let obj = Arc::new(Example, GFP_KERNEL)?;
447 /// let cloned = do_something(obj.as_arc_borrow());
448 ///
449 /// // Assert that both `obj` and `cloned` point to the same underlying object.
450 /// assert!(core::ptr::eq(&*obj, &*cloned));
451 /// # Ok::<(), Error>(())
452 /// ```
453 ///
454 /// Using `ArcBorrow<T>` as the type of `self`:
455 ///
456 /// ```
457 /// use kernel::sync::{Arc, ArcBorrow};
458 ///
459 /// struct Example {
460 ///     a: u32,
461 ///     b: u32,
462 /// }
463 ///
464 /// impl Example {
465 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
466 ///         // ...
467 ///     }
468 /// }
469 ///
470 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
471 /// obj.as_arc_borrow().use_reference();
472 /// # Ok::<(), Error>(())
473 /// ```
474 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
475     inner: NonNull<ArcInner<T>>,
476     _p: PhantomData<&'a ()>,
477 }
478 
479 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
480 // `ArcBorrow<U>`.
481 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
482     for ArcBorrow<'_, T>
483 {
484 }
485 
486 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
487     fn clone(&self) -> Self {
488         *self
489     }
490 }
491 
492 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
493 
494 impl<T: ?Sized> ArcBorrow<'_, T> {
495     /// Creates a new [`ArcBorrow`] instance.
496     ///
497     /// # Safety
498     ///
499     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
500     /// 1. That `inner` remains valid;
501     /// 2. That no mutable references to `inner` are created.
502     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
503         // INVARIANT: The safety requirements guarantee the invariants.
504         Self {
505             inner,
506             _p: PhantomData,
507         }
508     }
509 
510     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
511     /// [`Arc::into_raw`].
512     ///
513     /// # Safety
514     ///
515     /// * The provided pointer must originate from a call to [`Arc::into_raw`].
516     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
517     ///   not hit zero.
518     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
519     ///   [`UniqueArc`] reference to this value.
520     pub unsafe fn from_raw(ptr: *const T) -> Self {
521         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
522         // `Arc` that is still valid.
523         let ptr = unsafe { ArcInner::container_of(ptr) };
524 
525         // SAFETY: The caller promises that the value remains valid since the reference count must
526         // not hit zero, and no mutable reference will be created since that would involve a
527         // `UniqueArc`.
528         unsafe { Self::new(ptr) }
529     }
530 }
531 
532 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
533     fn from(b: ArcBorrow<'_, T>) -> Self {
534         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
535         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
536         // increment.
537         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
538             .deref()
539             .clone()
540     }
541 }
542 
543 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
544     type Target = T;
545 
546     fn deref(&self) -> &Self::Target {
547         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
548         // references to it, so it is safe to create a shared reference.
549         unsafe { &self.inner.as_ref().data }
550     }
551 }
552 
553 /// A refcounted object that is known to have a refcount of 1.
554 ///
555 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
556 ///
557 /// # Invariants
558 ///
559 /// `inner` always has a reference count of 1.
560 ///
561 /// # Examples
562 ///
563 /// In the following example, we make changes to the inner object before turning it into an
564 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
565 /// cannot fail.
566 ///
567 /// ```
568 /// use kernel::sync::{Arc, UniqueArc};
569 ///
570 /// struct Example {
571 ///     a: u32,
572 ///     b: u32,
573 /// }
574 ///
575 /// fn test() -> Result<Arc<Example>> {
576 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
577 ///     x.a += 1;
578 ///     x.b += 1;
579 ///     Ok(x.into())
580 /// }
581 ///
582 /// # test().unwrap();
583 /// ```
584 ///
585 /// In the following example we first allocate memory for a refcounted `Example` but we don't
586 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
587 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
588 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
589 ///
590 /// ```
591 /// use kernel::sync::{Arc, UniqueArc};
592 ///
593 /// struct Example {
594 ///     a: u32,
595 ///     b: u32,
596 /// }
597 ///
598 /// fn test() -> Result<Arc<Example>> {
599 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
600 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
601 /// }
602 ///
603 /// # test().unwrap();
604 /// ```
605 ///
606 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
607 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
608 /// initialisation, for example, when initialising fields that are wrapped in locks.
609 ///
610 /// ```
611 /// use kernel::sync::{Arc, UniqueArc};
612 ///
613 /// struct Example {
614 ///     a: u32,
615 ///     b: u32,
616 /// }
617 ///
618 /// fn test() -> Result<Arc<Example>> {
619 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
620 ///     // We can modify `pinned` because it is `Unpin`.
621 ///     pinned.as_mut().a += 1;
622 ///     Ok(pinned.into())
623 /// }
624 ///
625 /// # test().unwrap();
626 /// ```
627 pub struct UniqueArc<T: ?Sized> {
628     inner: Arc<T>,
629 }
630 
631 impl<T> UniqueArc<T> {
632     /// Tries to allocate a new [`UniqueArc`] instance.
633     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
634         Ok(Self {
635             // INVARIANT: The newly-created object has a refcount of 1.
636             inner: Arc::new(value, flags)?,
637         })
638     }
639 
640     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
641     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
642         // INVARIANT: The refcount is initialised to a non-zero value.
643         let inner = KBox::try_init::<AllocError>(
644             try_init!(ArcInner {
645                 // SAFETY: There are no safety requirements for this FFI call.
646                 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
647                 data <- init::uninit::<T, AllocError>(),
648             }? AllocError),
649             flags,
650         )?;
651         Ok(UniqueArc {
652             // INVARIANT: The newly-created object has a refcount of 1.
653             // SAFETY: The pointer from the `KBox` is valid.
654             inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
655         })
656     }
657 }
658 
659 impl<T> UniqueArc<MaybeUninit<T>> {
660     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
661     pub fn write(mut self, value: T) -> UniqueArc<T> {
662         self.deref_mut().write(value);
663         // SAFETY: We just wrote the value to be initialized.
664         unsafe { self.assume_init() }
665     }
666 
667     /// Unsafely assume that `self` is initialized.
668     ///
669     /// # Safety
670     ///
671     /// The caller guarantees that the value behind this pointer has been initialized. It is
672     /// *immediate* UB to call this when the value is not initialized.
673     pub unsafe fn assume_init(self) -> UniqueArc<T> {
674         let inner = ManuallyDrop::new(self).inner.ptr;
675         UniqueArc {
676             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
677             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
678             inner: unsafe { Arc::from_inner(inner.cast()) },
679         }
680     }
681 
682     /// Initialize `self` using the given initializer.
683     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
684         // SAFETY: The supplied pointer is valid for initialization.
685         match unsafe { init.__init(self.as_mut_ptr()) } {
686             // SAFETY: Initialization completed successfully.
687             Ok(()) => Ok(unsafe { self.assume_init() }),
688             Err(err) => Err(err),
689         }
690     }
691 
692     /// Pin-initialize `self` using the given pin-initializer.
693     pub fn pin_init_with<E>(
694         mut self,
695         init: impl PinInit<T, E>,
696     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
697         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
698         // to ensure it does not move.
699         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
700             // SAFETY: Initialization completed successfully.
701             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
702             Err(err) => Err(err),
703         }
704     }
705 }
706 
707 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
708     fn from(obj: UniqueArc<T>) -> Self {
709         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
710         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
711         unsafe { Pin::new_unchecked(obj) }
712     }
713 }
714 
715 impl<T: ?Sized> Deref for UniqueArc<T> {
716     type Target = T;
717 
718     fn deref(&self) -> &Self::Target {
719         self.inner.deref()
720     }
721 }
722 
723 impl<T: ?Sized> DerefMut for UniqueArc<T> {
724     fn deref_mut(&mut self) -> &mut Self::Target {
725         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
726         // it is safe to dereference it. Additionally, we know there is only one reference when
727         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
728         unsafe { &mut self.inner.ptr.as_mut().data }
729     }
730 }
731 
732 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
733     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
734         fmt::Display::fmt(self.deref(), f)
735     }
736 }
737 
738 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
739     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
740         fmt::Display::fmt(self.deref(), f)
741     }
742 }
743 
744 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
745     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
746         fmt::Debug::fmt(self.deref(), f)
747     }
748 }
749 
750 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
751     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
752         fmt::Debug::fmt(self.deref(), f)
753     }
754 }
755