xref: /linux/rust/kernel/sync/arc.rs (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //! 5. The object in [`Arc`] is pinned implicitly.
16 //!
17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18 
19 use crate::{
20     alloc::{box_ext::BoxExt, AllocError, Flags},
21     bindings,
22     init::{self, InPlaceInit, Init, PinInit},
23     try_init,
24     types::{ForeignOwnable, Opaque},
25 };
26 use alloc::boxed::Box;
27 use core::{
28     alloc::Layout,
29     fmt,
30     marker::{PhantomData, Unsize},
31     mem::{ManuallyDrop, MaybeUninit},
32     ops::{Deref, DerefMut},
33     pin::Pin,
34     ptr::NonNull,
35 };
36 use macros::pin_data;
37 
38 mod std_vendor;
39 
40 /// A reference-counted pointer to an instance of `T`.
41 ///
42 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
43 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
44 ///
45 /// # Invariants
46 ///
47 /// The reference count on an instance of [`Arc`] is always non-zero.
48 /// The object pointed to by [`Arc`] is always pinned.
49 ///
50 /// # Examples
51 ///
52 /// ```
53 /// use kernel::sync::Arc;
54 ///
55 /// struct Example {
56 ///     a: u32,
57 ///     b: u32,
58 /// }
59 ///
60 /// // Create a refcounted instance of `Example`.
61 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
62 ///
63 /// // Get a new pointer to `obj` and increment the refcount.
64 /// let cloned = obj.clone();
65 ///
66 /// // Assert that both `obj` and `cloned` point to the same underlying object.
67 /// assert!(core::ptr::eq(&*obj, &*cloned));
68 ///
69 /// // Destroy `obj` and decrement its refcount.
70 /// drop(obj);
71 ///
72 /// // Check that the values are still accessible through `cloned`.
73 /// assert_eq!(cloned.a, 10);
74 /// assert_eq!(cloned.b, 20);
75 ///
76 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
77 /// # Ok::<(), Error>(())
78 /// ```
79 ///
80 /// Using `Arc<T>` as the type of `self`:
81 ///
82 /// ```
83 /// use kernel::sync::Arc;
84 ///
85 /// struct Example {
86 ///     a: u32,
87 ///     b: u32,
88 /// }
89 ///
90 /// impl Example {
91 ///     fn take_over(self: Arc<Self>) {
92 ///         // ...
93 ///     }
94 ///
95 ///     fn use_reference(self: &Arc<Self>) {
96 ///         // ...
97 ///     }
98 /// }
99 ///
100 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
101 /// obj.use_reference();
102 /// obj.take_over();
103 /// # Ok::<(), Error>(())
104 /// ```
105 ///
106 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
107 ///
108 /// ```
109 /// use kernel::sync::{Arc, ArcBorrow};
110 ///
111 /// trait MyTrait {
112 ///     // Trait has a function whose `self` type is `Arc<Self>`.
113 ///     fn example1(self: Arc<Self>) {}
114 ///
115 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
116 ///     fn example2(self: ArcBorrow<'_, Self>) {}
117 /// }
118 ///
119 /// struct Example;
120 /// impl MyTrait for Example {}
121 ///
122 /// // `obj` has type `Arc<Example>`.
123 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
124 ///
125 /// // `coerced` has type `Arc<dyn MyTrait>`.
126 /// let coerced: Arc<dyn MyTrait> = obj;
127 /// # Ok::<(), Error>(())
128 /// ```
129 pub struct Arc<T: ?Sized> {
130     ptr: NonNull<ArcInner<T>>,
131     _p: PhantomData<ArcInner<T>>,
132 }
133 
134 #[pin_data]
135 #[repr(C)]
136 struct ArcInner<T: ?Sized> {
137     refcount: Opaque<bindings::refcount_t>,
138     data: T,
139 }
140 
141 impl<T: ?Sized> ArcInner<T> {
142     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
143     ///
144     /// # Safety
145     ///
146     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
147     /// not yet have been destroyed.
148     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
149         let refcount_layout = Layout::new::<bindings::refcount_t>();
150         // SAFETY: The caller guarantees that the pointer is valid.
151         let val_layout = Layout::for_value(unsafe { &*ptr });
152         // SAFETY: We're computing the layout of a real struct that existed when compiling this
153         // binary, so its layout is not so large that it can trigger arithmetic overflow.
154         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
155 
156         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
157         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
158         //
159         // This is documented at:
160         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
161         let ptr = ptr as *const ArcInner<T>;
162 
163         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
164         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
165         // still valid.
166         let ptr = unsafe { ptr.byte_sub(val_offset) };
167 
168         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
169         // address.
170         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
171     }
172 }
173 
174 // This is to allow [`Arc`] (and variants) to be used as the type of `self`.
175 impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
176 
177 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
178 // dynamically-sized type (DST) `U`.
179 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
180 
181 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
182 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
183 
184 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
185 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
186 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
187 // mutable reference when the reference count reaches zero and `T` is dropped.
188 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
189 
190 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
191 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
192 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
193 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
194 // the reference count reaches zero and `T` is dropped.
195 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
196 
197 impl<T> Arc<T> {
198     /// Constructs a new reference counted instance of `T`.
199     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
200         // INVARIANT: The refcount is initialised to a non-zero value.
201         let value = ArcInner {
202             // SAFETY: There are no safety requirements for this FFI call.
203             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
204             data: contents,
205         };
206 
207         let inner = <Box<_> as BoxExt<_>>::new(value, flags)?;
208 
209         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
210         // `Arc` object.
211         Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
212     }
213 }
214 
215 impl<T: ?Sized> Arc<T> {
216     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
217     ///
218     /// # Safety
219     ///
220     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
221     /// count, one of which will be owned by the new [`Arc`] instance.
222     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
223         // INVARIANT: By the safety requirements, the invariants hold.
224         Arc {
225             ptr: inner,
226             _p: PhantomData,
227         }
228     }
229 
230     /// Convert the [`Arc`] into a raw pointer.
231     ///
232     /// The raw pointer has ownership of the refcount that this Arc object owned.
233     pub fn into_raw(self) -> *const T {
234         let ptr = self.ptr.as_ptr();
235         core::mem::forget(self);
236         // SAFETY: The pointer is valid.
237         unsafe { core::ptr::addr_of!((*ptr).data) }
238     }
239 
240     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
241     ///
242     /// # Safety
243     ///
244     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
245     /// must not be called more than once for each previous call to [`Arc::into_raw`].
246     pub unsafe fn from_raw(ptr: *const T) -> Self {
247         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
248         // `Arc` that is still valid.
249         let ptr = unsafe { ArcInner::container_of(ptr) };
250 
251         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
252         // reference count held then will be owned by the new `Arc` object.
253         unsafe { Self::from_inner(ptr) }
254     }
255 
256     /// Returns an [`ArcBorrow`] from the given [`Arc`].
257     ///
258     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
259     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
260     #[inline]
261     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
262         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
263         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
264         // reference can be created.
265         unsafe { ArcBorrow::new(self.ptr) }
266     }
267 
268     /// Compare whether two [`Arc`] pointers reference the same underlying object.
269     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
270         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
271     }
272 
273     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
274     ///
275     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
276     /// this method will never call the destructor of the value.
277     ///
278     /// # Examples
279     ///
280     /// ```
281     /// use kernel::sync::{Arc, UniqueArc};
282     ///
283     /// let arc = Arc::new(42, GFP_KERNEL)?;
284     /// let unique_arc = arc.into_unique_or_drop();
285     ///
286     /// // The above conversion should succeed since refcount of `arc` is 1.
287     /// assert!(unique_arc.is_some());
288     ///
289     /// assert_eq!(*(unique_arc.unwrap()), 42);
290     ///
291     /// # Ok::<(), Error>(())
292     /// ```
293     ///
294     /// ```
295     /// use kernel::sync::{Arc, UniqueArc};
296     ///
297     /// let arc = Arc::new(42, GFP_KERNEL)?;
298     /// let another = arc.clone();
299     ///
300     /// let unique_arc = arc.into_unique_or_drop();
301     ///
302     /// // The above conversion should fail since refcount of `arc` is >1.
303     /// assert!(unique_arc.is_none());
304     ///
305     /// # Ok::<(), Error>(())
306     /// ```
307     pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
308         // We will manually manage the refcount in this method, so we disable the destructor.
309         let me = ManuallyDrop::new(self);
310         // SAFETY: We own a refcount, so the pointer is still valid.
311         let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
312 
313         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
314         // return without further touching the `Arc`. If the refcount reaches zero, then there are
315         // no other arcs, and we can create a `UniqueArc`.
316         //
317         // SAFETY: We own a refcount, so the pointer is not dangling.
318         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
319         if is_zero {
320             // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
321             // accesses to the refcount.
322             unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
323 
324             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
325             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
326             // their values.
327             Some(Pin::from(UniqueArc {
328                 inner: ManuallyDrop::into_inner(me),
329             }))
330         } else {
331             None
332         }
333     }
334 }
335 
336 impl<T: 'static> ForeignOwnable for Arc<T> {
337     type Borrowed<'a> = ArcBorrow<'a, T>;
338 
339     fn into_foreign(self) -> *const core::ffi::c_void {
340         ManuallyDrop::new(self).ptr.as_ptr() as _
341     }
342 
343     unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
344         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
345         // a previous call to `Arc::into_foreign`.
346         let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
347 
348         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
349         // for the lifetime of the returned value.
350         unsafe { ArcBorrow::new(inner) }
351     }
352 
353     unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
354         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
355         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
356         // holds a reference count increment that is transferrable to us.
357         unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
358     }
359 }
360 
361 impl<T: ?Sized> Deref for Arc<T> {
362     type Target = T;
363 
364     fn deref(&self) -> &Self::Target {
365         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
366         // safe to dereference it.
367         unsafe { &self.ptr.as_ref().data }
368     }
369 }
370 
371 impl<T: ?Sized> AsRef<T> for Arc<T> {
372     fn as_ref(&self) -> &T {
373         self.deref()
374     }
375 }
376 
377 impl<T: ?Sized> Clone for Arc<T> {
378     fn clone(&self) -> Self {
379         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
380         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
381         // safe to increment the refcount.
382         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
383 
384         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
385         unsafe { Self::from_inner(self.ptr) }
386     }
387 }
388 
389 impl<T: ?Sized> Drop for Arc<T> {
390     fn drop(&mut self) {
391         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
392         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
393         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
394         // freed/invalid memory as long as it is never dereferenced.
395         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
396 
397         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
398         // this instance is being dropped, so the broken invariant is not observable.
399         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
400         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
401         if is_zero {
402             // The count reached zero, we must free the memory.
403             //
404             // SAFETY: The pointer was initialised from the result of `Box::leak`.
405             unsafe { drop(Box::from_raw(self.ptr.as_ptr())) };
406         }
407     }
408 }
409 
410 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
411     fn from(item: UniqueArc<T>) -> Self {
412         item.inner
413     }
414 }
415 
416 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
417     fn from(item: Pin<UniqueArc<T>>) -> Self {
418         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
419         unsafe { Pin::into_inner_unchecked(item).inner }
420     }
421 }
422 
423 /// A borrowed reference to an [`Arc`] instance.
424 ///
425 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
426 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
427 ///
428 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
429 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
430 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
431 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
432 /// needed.
433 ///
434 /// # Invariants
435 ///
436 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
437 /// lifetime of the [`ArcBorrow`] instance.
438 ///
439 /// # Example
440 ///
441 /// ```
442 /// use kernel::sync::{Arc, ArcBorrow};
443 ///
444 /// struct Example;
445 ///
446 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
447 ///     e.into()
448 /// }
449 ///
450 /// let obj = Arc::new(Example, GFP_KERNEL)?;
451 /// let cloned = do_something(obj.as_arc_borrow());
452 ///
453 /// // Assert that both `obj` and `cloned` point to the same underlying object.
454 /// assert!(core::ptr::eq(&*obj, &*cloned));
455 /// # Ok::<(), Error>(())
456 /// ```
457 ///
458 /// Using `ArcBorrow<T>` as the type of `self`:
459 ///
460 /// ```
461 /// use kernel::sync::{Arc, ArcBorrow};
462 ///
463 /// struct Example {
464 ///     a: u32,
465 ///     b: u32,
466 /// }
467 ///
468 /// impl Example {
469 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
470 ///         // ...
471 ///     }
472 /// }
473 ///
474 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
475 /// obj.as_arc_borrow().use_reference();
476 /// # Ok::<(), Error>(())
477 /// ```
478 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
479     inner: NonNull<ArcInner<T>>,
480     _p: PhantomData<&'a ()>,
481 }
482 
483 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`.
484 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {}
485 
486 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
487 // `ArcBorrow<U>`.
488 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
489     for ArcBorrow<'_, T>
490 {
491 }
492 
493 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
494     fn clone(&self) -> Self {
495         *self
496     }
497 }
498 
499 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
500 
501 impl<T: ?Sized> ArcBorrow<'_, T> {
502     /// Creates a new [`ArcBorrow`] instance.
503     ///
504     /// # Safety
505     ///
506     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
507     /// 1. That `inner` remains valid;
508     /// 2. That no mutable references to `inner` are created.
509     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
510         // INVARIANT: The safety requirements guarantee the invariants.
511         Self {
512             inner,
513             _p: PhantomData,
514         }
515     }
516 
517     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
518     /// [`Arc::into_raw`].
519     ///
520     /// # Safety
521     ///
522     /// * The provided pointer must originate from a call to [`Arc::into_raw`].
523     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
524     ///   not hit zero.
525     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
526     ///   [`UniqueArc`] reference to this value.
527     pub unsafe fn from_raw(ptr: *const T) -> Self {
528         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
529         // `Arc` that is still valid.
530         let ptr = unsafe { ArcInner::container_of(ptr) };
531 
532         // SAFETY: The caller promises that the value remains valid since the reference count must
533         // not hit zero, and no mutable reference will be created since that would involve a
534         // `UniqueArc`.
535         unsafe { Self::new(ptr) }
536     }
537 }
538 
539 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
540     fn from(b: ArcBorrow<'_, T>) -> Self {
541         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
542         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
543         // increment.
544         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
545             .deref()
546             .clone()
547     }
548 }
549 
550 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
551     type Target = T;
552 
553     fn deref(&self) -> &Self::Target {
554         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
555         // references to it, so it is safe to create a shared reference.
556         unsafe { &self.inner.as_ref().data }
557     }
558 }
559 
560 /// A refcounted object that is known to have a refcount of 1.
561 ///
562 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
563 ///
564 /// # Invariants
565 ///
566 /// `inner` always has a reference count of 1.
567 ///
568 /// # Examples
569 ///
570 /// In the following example, we make changes to the inner object before turning it into an
571 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
572 /// cannot fail.
573 ///
574 /// ```
575 /// use kernel::sync::{Arc, UniqueArc};
576 ///
577 /// struct Example {
578 ///     a: u32,
579 ///     b: u32,
580 /// }
581 ///
582 /// fn test() -> Result<Arc<Example>> {
583 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
584 ///     x.a += 1;
585 ///     x.b += 1;
586 ///     Ok(x.into())
587 /// }
588 ///
589 /// # test().unwrap();
590 /// ```
591 ///
592 /// In the following example we first allocate memory for a refcounted `Example` but we don't
593 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
594 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
595 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
596 ///
597 /// ```
598 /// use kernel::sync::{Arc, UniqueArc};
599 ///
600 /// struct Example {
601 ///     a: u32,
602 ///     b: u32,
603 /// }
604 ///
605 /// fn test() -> Result<Arc<Example>> {
606 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
607 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
608 /// }
609 ///
610 /// # test().unwrap();
611 /// ```
612 ///
613 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
614 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
615 /// initialisation, for example, when initialising fields that are wrapped in locks.
616 ///
617 /// ```
618 /// use kernel::sync::{Arc, UniqueArc};
619 ///
620 /// struct Example {
621 ///     a: u32,
622 ///     b: u32,
623 /// }
624 ///
625 /// fn test() -> Result<Arc<Example>> {
626 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
627 ///     // We can modify `pinned` because it is `Unpin`.
628 ///     pinned.as_mut().a += 1;
629 ///     Ok(pinned.into())
630 /// }
631 ///
632 /// # test().unwrap();
633 /// ```
634 pub struct UniqueArc<T: ?Sized> {
635     inner: Arc<T>,
636 }
637 
638 impl<T> UniqueArc<T> {
639     /// Tries to allocate a new [`UniqueArc`] instance.
640     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
641         Ok(Self {
642             // INVARIANT: The newly-created object has a refcount of 1.
643             inner: Arc::new(value, flags)?,
644         })
645     }
646 
647     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
648     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
649         // INVARIANT: The refcount is initialised to a non-zero value.
650         let inner = Box::try_init::<AllocError>(
651             try_init!(ArcInner {
652                 // SAFETY: There are no safety requirements for this FFI call.
653                 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
654                 data <- init::uninit::<T, AllocError>(),
655             }? AllocError),
656             flags,
657         )?;
658         Ok(UniqueArc {
659             // INVARIANT: The newly-created object has a refcount of 1.
660             // SAFETY: The pointer from the `Box` is valid.
661             inner: unsafe { Arc::from_inner(Box::leak(inner).into()) },
662         })
663     }
664 }
665 
666 impl<T> UniqueArc<MaybeUninit<T>> {
667     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
668     pub fn write(mut self, value: T) -> UniqueArc<T> {
669         self.deref_mut().write(value);
670         // SAFETY: We just wrote the value to be initialized.
671         unsafe { self.assume_init() }
672     }
673 
674     /// Unsafely assume that `self` is initialized.
675     ///
676     /// # Safety
677     ///
678     /// The caller guarantees that the value behind this pointer has been initialized. It is
679     /// *immediate* UB to call this when the value is not initialized.
680     pub unsafe fn assume_init(self) -> UniqueArc<T> {
681         let inner = ManuallyDrop::new(self).inner.ptr;
682         UniqueArc {
683             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
684             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
685             inner: unsafe { Arc::from_inner(inner.cast()) },
686         }
687     }
688 
689     /// Initialize `self` using the given initializer.
690     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
691         // SAFETY: The supplied pointer is valid for initialization.
692         match unsafe { init.__init(self.as_mut_ptr()) } {
693             // SAFETY: Initialization completed successfully.
694             Ok(()) => Ok(unsafe { self.assume_init() }),
695             Err(err) => Err(err),
696         }
697     }
698 
699     /// Pin-initialize `self` using the given pin-initializer.
700     pub fn pin_init_with<E>(
701         mut self,
702         init: impl PinInit<T, E>,
703     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
704         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
705         // to ensure it does not move.
706         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
707             // SAFETY: Initialization completed successfully.
708             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
709             Err(err) => Err(err),
710         }
711     }
712 }
713 
714 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
715     fn from(obj: UniqueArc<T>) -> Self {
716         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
717         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
718         unsafe { Pin::new_unchecked(obj) }
719     }
720 }
721 
722 impl<T: ?Sized> Deref for UniqueArc<T> {
723     type Target = T;
724 
725     fn deref(&self) -> &Self::Target {
726         self.inner.deref()
727     }
728 }
729 
730 impl<T: ?Sized> DerefMut for UniqueArc<T> {
731     fn deref_mut(&mut self) -> &mut Self::Target {
732         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
733         // it is safe to dereference it. Additionally, we know there is only one reference when
734         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
735         unsafe { &mut self.inner.ptr.as_mut().data }
736     }
737 }
738 
739 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
740     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
741         fmt::Display::fmt(self.deref(), f)
742     }
743 }
744 
745 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
746     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
747         fmt::Display::fmt(self.deref(), f)
748     }
749 }
750 
751 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
752     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
753         fmt::Debug::fmt(self.deref(), f)
754     }
755 }
756 
757 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
758     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
759         fmt::Debug::fmt(self.deref(), f)
760     }
761 }
762