xref: /linux/rust/kernel/sync/arc.rs (revision aa991a2a819535a0014e1159b455b64e3db87510)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //! 5. The object in [`Arc`] is pinned implicitly.
16 //!
17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18 
19 use crate::{
20     alloc::{AllocError, Flags, KBox},
21     bindings,
22     init::{self, InPlaceInit, Init, PinInit},
23     try_init,
24     types::{ForeignOwnable, Opaque},
25 };
26 use core::{
27     alloc::Layout,
28     fmt,
29     marker::PhantomData,
30     mem::{ManuallyDrop, MaybeUninit},
31     ops::{Deref, DerefMut},
32     pin::Pin,
33     ptr::NonNull,
34 };
35 use macros::pin_data;
36 
37 mod std_vendor;
38 
39 /// A reference-counted pointer to an instance of `T`.
40 ///
41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43 ///
44 /// # Invariants
45 ///
46 /// The reference count on an instance of [`Arc`] is always non-zero.
47 /// The object pointed to by [`Arc`] is always pinned.
48 ///
49 /// # Examples
50 ///
51 /// ```
52 /// use kernel::sync::Arc;
53 ///
54 /// struct Example {
55 ///     a: u32,
56 ///     b: u32,
57 /// }
58 ///
59 /// // Create a refcounted instance of `Example`.
60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
61 ///
62 /// // Get a new pointer to `obj` and increment the refcount.
63 /// let cloned = obj.clone();
64 ///
65 /// // Assert that both `obj` and `cloned` point to the same underlying object.
66 /// assert!(core::ptr::eq(&*obj, &*cloned));
67 ///
68 /// // Destroy `obj` and decrement its refcount.
69 /// drop(obj);
70 ///
71 /// // Check that the values are still accessible through `cloned`.
72 /// assert_eq!(cloned.a, 10);
73 /// assert_eq!(cloned.b, 20);
74 ///
75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76 /// # Ok::<(), Error>(())
77 /// ```
78 ///
79 /// Using `Arc<T>` as the type of `self`:
80 ///
81 /// ```
82 /// use kernel::sync::Arc;
83 ///
84 /// struct Example {
85 ///     a: u32,
86 ///     b: u32,
87 /// }
88 ///
89 /// impl Example {
90 ///     fn take_over(self: Arc<Self>) {
91 ///         // ...
92 ///     }
93 ///
94 ///     fn use_reference(self: &Arc<Self>) {
95 ///         // ...
96 ///     }
97 /// }
98 ///
99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
100 /// obj.use_reference();
101 /// obj.take_over();
102 /// # Ok::<(), Error>(())
103 /// ```
104 ///
105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106 ///
107 /// ```
108 /// use kernel::sync::{Arc, ArcBorrow};
109 ///
110 /// trait MyTrait {
111 ///     // Trait has a function whose `self` type is `Arc<Self>`.
112 ///     fn example1(self: Arc<Self>) {}
113 ///
114 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115 ///     fn example2(self: ArcBorrow<'_, Self>) {}
116 /// }
117 ///
118 /// struct Example;
119 /// impl MyTrait for Example {}
120 ///
121 /// // `obj` has type `Arc<Example>`.
122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
123 ///
124 /// // `coerced` has type `Arc<dyn MyTrait>`.
125 /// let coerced: Arc<dyn MyTrait> = obj;
126 /// # Ok::<(), Error>(())
127 /// ```
128 #[repr(transparent)]
129 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
130 pub struct Arc<T: ?Sized> {
131     ptr: NonNull<ArcInner<T>>,
132     // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as
133     // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in
134     // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently
135     // meaningful with respect to dropck - but this may change in the future so this is left here
136     // out of an abundance of caution.
137     //
138     // See https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking
139     // for more detail on the semantics of dropck in the presence of `PhantomData`.
140     _p: PhantomData<ArcInner<T>>,
141 }
142 
143 #[pin_data]
144 #[repr(C)]
145 struct ArcInner<T: ?Sized> {
146     refcount: Opaque<bindings::refcount_t>,
147     data: T,
148 }
149 
150 impl<T: ?Sized> ArcInner<T> {
151     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
152     ///
153     /// # Safety
154     ///
155     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
156     /// not yet have been destroyed.
157     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
158         let refcount_layout = Layout::new::<bindings::refcount_t>();
159         // SAFETY: The caller guarantees that the pointer is valid.
160         let val_layout = Layout::for_value(unsafe { &*ptr });
161         // SAFETY: We're computing the layout of a real struct that existed when compiling this
162         // binary, so its layout is not so large that it can trigger arithmetic overflow.
163         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
164 
165         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
166         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
167         //
168         // This is documented at:
169         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
170         let ptr = ptr as *const ArcInner<T>;
171 
172         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
173         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
174         // still valid.
175         let ptr = unsafe { ptr.byte_sub(val_offset) };
176 
177         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
178         // address.
179         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
180     }
181 }
182 
183 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
184 // dynamically-sized type (DST) `U`.
185 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
186 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
187 
188 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
189 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
190 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
191 
192 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
193 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
194 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
195 // mutable reference when the reference count reaches zero and `T` is dropped.
196 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
197 
198 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
199 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
200 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
201 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
202 // the reference count reaches zero and `T` is dropped.
203 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
204 
205 impl<T> Arc<T> {
206     /// Constructs a new reference counted instance of `T`.
207     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
208         // INVARIANT: The refcount is initialised to a non-zero value.
209         let value = ArcInner {
210             // SAFETY: There are no safety requirements for this FFI call.
211             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
212             data: contents,
213         };
214 
215         let inner = KBox::new(value, flags)?;
216         let inner = KBox::leak(inner).into();
217 
218         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
219         // `Arc` object.
220         Ok(unsafe { Self::from_inner(inner) })
221     }
222 }
223 
224 impl<T: ?Sized> Arc<T> {
225     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
226     ///
227     /// # Safety
228     ///
229     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
230     /// count, one of which will be owned by the new [`Arc`] instance.
231     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
232         // INVARIANT: By the safety requirements, the invariants hold.
233         Arc {
234             ptr: inner,
235             _p: PhantomData,
236         }
237     }
238 
239     /// Convert the [`Arc`] into a raw pointer.
240     ///
241     /// The raw pointer has ownership of the refcount that this Arc object owned.
242     pub fn into_raw(self) -> *const T {
243         let ptr = self.ptr.as_ptr();
244         core::mem::forget(self);
245         // SAFETY: The pointer is valid.
246         unsafe { core::ptr::addr_of!((*ptr).data) }
247     }
248 
249     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
250     ///
251     /// # Safety
252     ///
253     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
254     /// must not be called more than once for each previous call to [`Arc::into_raw`].
255     pub unsafe fn from_raw(ptr: *const T) -> Self {
256         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
257         // `Arc` that is still valid.
258         let ptr = unsafe { ArcInner::container_of(ptr) };
259 
260         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
261         // reference count held then will be owned by the new `Arc` object.
262         unsafe { Self::from_inner(ptr) }
263     }
264 
265     /// Returns an [`ArcBorrow`] from the given [`Arc`].
266     ///
267     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
268     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
269     #[inline]
270     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
271         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
272         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
273         // reference can be created.
274         unsafe { ArcBorrow::new(self.ptr) }
275     }
276 
277     /// Compare whether two [`Arc`] pointers reference the same underlying object.
278     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
279         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
280     }
281 
282     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
283     ///
284     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
285     /// this method will never call the destructor of the value.
286     ///
287     /// # Examples
288     ///
289     /// ```
290     /// use kernel::sync::{Arc, UniqueArc};
291     ///
292     /// let arc = Arc::new(42, GFP_KERNEL)?;
293     /// let unique_arc = arc.into_unique_or_drop();
294     ///
295     /// // The above conversion should succeed since refcount of `arc` is 1.
296     /// assert!(unique_arc.is_some());
297     ///
298     /// assert_eq!(*(unique_arc.unwrap()), 42);
299     ///
300     /// # Ok::<(), Error>(())
301     /// ```
302     ///
303     /// ```
304     /// use kernel::sync::{Arc, UniqueArc};
305     ///
306     /// let arc = Arc::new(42, GFP_KERNEL)?;
307     /// let another = arc.clone();
308     ///
309     /// let unique_arc = arc.into_unique_or_drop();
310     ///
311     /// // The above conversion should fail since refcount of `arc` is >1.
312     /// assert!(unique_arc.is_none());
313     ///
314     /// # Ok::<(), Error>(())
315     /// ```
316     pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
317         // We will manually manage the refcount in this method, so we disable the destructor.
318         let me = ManuallyDrop::new(self);
319         // SAFETY: We own a refcount, so the pointer is still valid.
320         let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
321 
322         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
323         // return without further touching the `Arc`. If the refcount reaches zero, then there are
324         // no other arcs, and we can create a `UniqueArc`.
325         //
326         // SAFETY: We own a refcount, so the pointer is not dangling.
327         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
328         if is_zero {
329             // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
330             // accesses to the refcount.
331             unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
332 
333             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
334             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
335             // their values.
336             Some(Pin::from(UniqueArc {
337                 inner: ManuallyDrop::into_inner(me),
338             }))
339         } else {
340             None
341         }
342     }
343 }
344 
345 impl<T: 'static> ForeignOwnable for Arc<T> {
346     type Borrowed<'a> = ArcBorrow<'a, T>;
347 
348     fn into_foreign(self) -> *const crate::ffi::c_void {
349         ManuallyDrop::new(self).ptr.as_ptr().cast()
350     }
351 
352     unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> ArcBorrow<'a, T> {
353         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
354         // call to `Self::into_foreign`.
355         let inner = unsafe { NonNull::new_unchecked(ptr.cast_mut().cast::<ArcInner<T>>()) };
356 
357         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
358         // for the lifetime of the returned value.
359         unsafe { ArcBorrow::new(inner) }
360     }
361 
362     unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self {
363         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
364         // call to `Self::into_foreign`.
365         let inner = unsafe { NonNull::new_unchecked(ptr.cast_mut().cast::<ArcInner<T>>()) };
366 
367         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
368         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
369         // holds a reference count increment that is transferrable to us.
370         unsafe { Self::from_inner(inner) }
371     }
372 }
373 
374 impl<T: ?Sized> Deref for Arc<T> {
375     type Target = T;
376 
377     fn deref(&self) -> &Self::Target {
378         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
379         // safe to dereference it.
380         unsafe { &self.ptr.as_ref().data }
381     }
382 }
383 
384 impl<T: ?Sized> AsRef<T> for Arc<T> {
385     fn as_ref(&self) -> &T {
386         self.deref()
387     }
388 }
389 
390 impl<T: ?Sized> Clone for Arc<T> {
391     fn clone(&self) -> Self {
392         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
393         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
394         // safe to increment the refcount.
395         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
396 
397         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
398         unsafe { Self::from_inner(self.ptr) }
399     }
400 }
401 
402 impl<T: ?Sized> Drop for Arc<T> {
403     fn drop(&mut self) {
404         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
405         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
406         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
407         // freed/invalid memory as long as it is never dereferenced.
408         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
409 
410         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
411         // this instance is being dropped, so the broken invariant is not observable.
412         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
413         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
414         if is_zero {
415             // The count reached zero, we must free the memory.
416             //
417             // SAFETY: The pointer was initialised from the result of `KBox::leak`.
418             unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
419         }
420     }
421 }
422 
423 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
424     fn from(item: UniqueArc<T>) -> Self {
425         item.inner
426     }
427 }
428 
429 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
430     fn from(item: Pin<UniqueArc<T>>) -> Self {
431         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
432         unsafe { Pin::into_inner_unchecked(item).inner }
433     }
434 }
435 
436 /// A borrowed reference to an [`Arc`] instance.
437 ///
438 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
439 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
440 ///
441 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
442 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
443 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
444 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
445 /// needed.
446 ///
447 /// # Invariants
448 ///
449 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
450 /// lifetime of the [`ArcBorrow`] instance.
451 ///
452 /// # Example
453 ///
454 /// ```
455 /// use kernel::sync::{Arc, ArcBorrow};
456 ///
457 /// struct Example;
458 ///
459 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
460 ///     e.into()
461 /// }
462 ///
463 /// let obj = Arc::new(Example, GFP_KERNEL)?;
464 /// let cloned = do_something(obj.as_arc_borrow());
465 ///
466 /// // Assert that both `obj` and `cloned` point to the same underlying object.
467 /// assert!(core::ptr::eq(&*obj, &*cloned));
468 /// # Ok::<(), Error>(())
469 /// ```
470 ///
471 /// Using `ArcBorrow<T>` as the type of `self`:
472 ///
473 /// ```
474 /// use kernel::sync::{Arc, ArcBorrow};
475 ///
476 /// struct Example {
477 ///     a: u32,
478 ///     b: u32,
479 /// }
480 ///
481 /// impl Example {
482 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
483 ///         // ...
484 ///     }
485 /// }
486 ///
487 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
488 /// obj.as_arc_borrow().use_reference();
489 /// # Ok::<(), Error>(())
490 /// ```
491 #[repr(transparent)]
492 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
493 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
494     inner: NonNull<ArcInner<T>>,
495     _p: PhantomData<&'a ()>,
496 }
497 
498 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
499 // `ArcBorrow<U>`.
500 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
501 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
502     for ArcBorrow<'_, T>
503 {
504 }
505 
506 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
507     fn clone(&self) -> Self {
508         *self
509     }
510 }
511 
512 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
513 
514 impl<T: ?Sized> ArcBorrow<'_, T> {
515     /// Creates a new [`ArcBorrow`] instance.
516     ///
517     /// # Safety
518     ///
519     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
520     /// 1. That `inner` remains valid;
521     /// 2. That no mutable references to `inner` are created.
522     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
523         // INVARIANT: The safety requirements guarantee the invariants.
524         Self {
525             inner,
526             _p: PhantomData,
527         }
528     }
529 
530     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
531     /// [`Arc::into_raw`].
532     ///
533     /// # Safety
534     ///
535     /// * The provided pointer must originate from a call to [`Arc::into_raw`].
536     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
537     ///   not hit zero.
538     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
539     ///   [`UniqueArc`] reference to this value.
540     pub unsafe fn from_raw(ptr: *const T) -> Self {
541         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
542         // `Arc` that is still valid.
543         let ptr = unsafe { ArcInner::container_of(ptr) };
544 
545         // SAFETY: The caller promises that the value remains valid since the reference count must
546         // not hit zero, and no mutable reference will be created since that would involve a
547         // `UniqueArc`.
548         unsafe { Self::new(ptr) }
549     }
550 }
551 
552 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
553     fn from(b: ArcBorrow<'_, T>) -> Self {
554         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
555         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
556         // increment.
557         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
558             .deref()
559             .clone()
560     }
561 }
562 
563 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
564     type Target = T;
565 
566     fn deref(&self) -> &Self::Target {
567         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
568         // references to it, so it is safe to create a shared reference.
569         unsafe { &self.inner.as_ref().data }
570     }
571 }
572 
573 /// A refcounted object that is known to have a refcount of 1.
574 ///
575 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
576 ///
577 /// # Invariants
578 ///
579 /// `inner` always has a reference count of 1.
580 ///
581 /// # Examples
582 ///
583 /// In the following example, we make changes to the inner object before turning it into an
584 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
585 /// cannot fail.
586 ///
587 /// ```
588 /// use kernel::sync::{Arc, UniqueArc};
589 ///
590 /// struct Example {
591 ///     a: u32,
592 ///     b: u32,
593 /// }
594 ///
595 /// fn test() -> Result<Arc<Example>> {
596 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
597 ///     x.a += 1;
598 ///     x.b += 1;
599 ///     Ok(x.into())
600 /// }
601 ///
602 /// # test().unwrap();
603 /// ```
604 ///
605 /// In the following example we first allocate memory for a refcounted `Example` but we don't
606 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
607 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
608 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
609 ///
610 /// ```
611 /// use kernel::sync::{Arc, UniqueArc};
612 ///
613 /// struct Example {
614 ///     a: u32,
615 ///     b: u32,
616 /// }
617 ///
618 /// fn test() -> Result<Arc<Example>> {
619 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
620 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
621 /// }
622 ///
623 /// # test().unwrap();
624 /// ```
625 ///
626 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
627 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
628 /// initialisation, for example, when initialising fields that are wrapped in locks.
629 ///
630 /// ```
631 /// use kernel::sync::{Arc, UniqueArc};
632 ///
633 /// struct Example {
634 ///     a: u32,
635 ///     b: u32,
636 /// }
637 ///
638 /// fn test() -> Result<Arc<Example>> {
639 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
640 ///     // We can modify `pinned` because it is `Unpin`.
641 ///     pinned.as_mut().a += 1;
642 ///     Ok(pinned.into())
643 /// }
644 ///
645 /// # test().unwrap();
646 /// ```
647 pub struct UniqueArc<T: ?Sized> {
648     inner: Arc<T>,
649 }
650 
651 impl<T> UniqueArc<T> {
652     /// Tries to allocate a new [`UniqueArc`] instance.
653     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
654         Ok(Self {
655             // INVARIANT: The newly-created object has a refcount of 1.
656             inner: Arc::new(value, flags)?,
657         })
658     }
659 
660     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
661     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
662         // INVARIANT: The refcount is initialised to a non-zero value.
663         let inner = KBox::try_init::<AllocError>(
664             try_init!(ArcInner {
665                 // SAFETY: There are no safety requirements for this FFI call.
666                 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
667                 data <- init::uninit::<T, AllocError>(),
668             }? AllocError),
669             flags,
670         )?;
671         Ok(UniqueArc {
672             // INVARIANT: The newly-created object has a refcount of 1.
673             // SAFETY: The pointer from the `KBox` is valid.
674             inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
675         })
676     }
677 }
678 
679 impl<T> UniqueArc<MaybeUninit<T>> {
680     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
681     pub fn write(mut self, value: T) -> UniqueArc<T> {
682         self.deref_mut().write(value);
683         // SAFETY: We just wrote the value to be initialized.
684         unsafe { self.assume_init() }
685     }
686 
687     /// Unsafely assume that `self` is initialized.
688     ///
689     /// # Safety
690     ///
691     /// The caller guarantees that the value behind this pointer has been initialized. It is
692     /// *immediate* UB to call this when the value is not initialized.
693     pub unsafe fn assume_init(self) -> UniqueArc<T> {
694         let inner = ManuallyDrop::new(self).inner.ptr;
695         UniqueArc {
696             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
697             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
698             inner: unsafe { Arc::from_inner(inner.cast()) },
699         }
700     }
701 
702     /// Initialize `self` using the given initializer.
703     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
704         // SAFETY: The supplied pointer is valid for initialization.
705         match unsafe { init.__init(self.as_mut_ptr()) } {
706             // SAFETY: Initialization completed successfully.
707             Ok(()) => Ok(unsafe { self.assume_init() }),
708             Err(err) => Err(err),
709         }
710     }
711 
712     /// Pin-initialize `self` using the given pin-initializer.
713     pub fn pin_init_with<E>(
714         mut self,
715         init: impl PinInit<T, E>,
716     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
717         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
718         // to ensure it does not move.
719         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
720             // SAFETY: Initialization completed successfully.
721             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
722             Err(err) => Err(err),
723         }
724     }
725 }
726 
727 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
728     fn from(obj: UniqueArc<T>) -> Self {
729         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
730         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
731         unsafe { Pin::new_unchecked(obj) }
732     }
733 }
734 
735 impl<T: ?Sized> Deref for UniqueArc<T> {
736     type Target = T;
737 
738     fn deref(&self) -> &Self::Target {
739         self.inner.deref()
740     }
741 }
742 
743 impl<T: ?Sized> DerefMut for UniqueArc<T> {
744     fn deref_mut(&mut self) -> &mut Self::Target {
745         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
746         // it is safe to dereference it. Additionally, we know there is only one reference when
747         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
748         unsafe { &mut self.inner.ptr.as_mut().data }
749     }
750 }
751 
752 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
753     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
754         fmt::Display::fmt(self.deref(), f)
755     }
756 }
757 
758 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
759     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
760         fmt::Display::fmt(self.deref(), f)
761     }
762 }
763 
764 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
765     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
766         fmt::Debug::fmt(self.deref(), f)
767     }
768 }
769 
770 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
771     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
772         fmt::Debug::fmt(self.deref(), f)
773     }
774 }
775