xref: /linux/rust/kernel/sync/arc.rs (revision a0a4e17013f68739733028bba89673cdbb9caabd)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //!
16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
17 
18 use crate::{
19     alloc::{box_ext::BoxExt, AllocError, Flags},
20     bindings,
21     error::{self, Error},
22     init::{self, InPlaceInit, Init, PinInit},
23     try_init,
24     types::{ForeignOwnable, Opaque},
25 };
26 use alloc::boxed::Box;
27 use core::{
28     alloc::Layout,
29     fmt,
30     marker::{PhantomData, Unsize},
31     mem::{ManuallyDrop, MaybeUninit},
32     ops::{Deref, DerefMut},
33     pin::Pin,
34     ptr::NonNull,
35 };
36 use macros::pin_data;
37 
38 mod std_vendor;
39 
40 /// A reference-counted pointer to an instance of `T`.
41 ///
42 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
43 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
44 ///
45 /// # Invariants
46 ///
47 /// The reference count on an instance of [`Arc`] is always non-zero.
48 /// The object pointed to by [`Arc`] is always pinned.
49 ///
50 /// # Examples
51 ///
52 /// ```
53 /// use kernel::sync::Arc;
54 ///
55 /// struct Example {
56 ///     a: u32,
57 ///     b: u32,
58 /// }
59 ///
60 /// // Create a refcounted instance of `Example`.
61 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
62 ///
63 /// // Get a new pointer to `obj` and increment the refcount.
64 /// let cloned = obj.clone();
65 ///
66 /// // Assert that both `obj` and `cloned` point to the same underlying object.
67 /// assert!(core::ptr::eq(&*obj, &*cloned));
68 ///
69 /// // Destroy `obj` and decrement its refcount.
70 /// drop(obj);
71 ///
72 /// // Check that the values are still accessible through `cloned`.
73 /// assert_eq!(cloned.a, 10);
74 /// assert_eq!(cloned.b, 20);
75 ///
76 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
77 /// # Ok::<(), Error>(())
78 /// ```
79 ///
80 /// Using `Arc<T>` as the type of `self`:
81 ///
82 /// ```
83 /// use kernel::sync::Arc;
84 ///
85 /// struct Example {
86 ///     a: u32,
87 ///     b: u32,
88 /// }
89 ///
90 /// impl Example {
91 ///     fn take_over(self: Arc<Self>) {
92 ///         // ...
93 ///     }
94 ///
95 ///     fn use_reference(self: &Arc<Self>) {
96 ///         // ...
97 ///     }
98 /// }
99 ///
100 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
101 /// obj.use_reference();
102 /// obj.take_over();
103 /// # Ok::<(), Error>(())
104 /// ```
105 ///
106 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
107 ///
108 /// ```
109 /// use kernel::sync::{Arc, ArcBorrow};
110 ///
111 /// trait MyTrait {
112 ///     // Trait has a function whose `self` type is `Arc<Self>`.
113 ///     fn example1(self: Arc<Self>) {}
114 ///
115 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
116 ///     fn example2(self: ArcBorrow<'_, Self>) {}
117 /// }
118 ///
119 /// struct Example;
120 /// impl MyTrait for Example {}
121 ///
122 /// // `obj` has type `Arc<Example>`.
123 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
124 ///
125 /// // `coerced` has type `Arc<dyn MyTrait>`.
126 /// let coerced: Arc<dyn MyTrait> = obj;
127 /// # Ok::<(), Error>(())
128 /// ```
129 pub struct Arc<T: ?Sized> {
130     ptr: NonNull<ArcInner<T>>,
131     _p: PhantomData<ArcInner<T>>,
132 }
133 
134 #[pin_data]
135 #[repr(C)]
136 struct ArcInner<T: ?Sized> {
137     refcount: Opaque<bindings::refcount_t>,
138     data: T,
139 }
140 
141 impl<T: ?Sized> ArcInner<T> {
142     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
143     ///
144     /// # Safety
145     ///
146     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
147     /// not yet have been destroyed.
148     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
149         let refcount_layout = Layout::new::<bindings::refcount_t>();
150         // SAFETY: The caller guarantees that the pointer is valid.
151         let val_layout = Layout::for_value(unsafe { &*ptr });
152         // SAFETY: We're computing the layout of a real struct that existed when compiling this
153         // binary, so its layout is not so large that it can trigger arithmetic overflow.
154         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
155 
156         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
157         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
158         //
159         // This is documented at:
160         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
161         let ptr = ptr as *const ArcInner<T>;
162 
163         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
164         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
165         // still valid.
166         let ptr = unsafe { ptr.byte_sub(val_offset) };
167 
168         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
169         // address.
170         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
171     }
172 }
173 
174 // This is to allow [`Arc`] (and variants) to be used as the type of `self`.
175 impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
176 
177 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
178 // dynamically-sized type (DST) `U`.
179 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
180 
181 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
182 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
183 
184 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
185 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
186 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
187 // mutable reference when the reference count reaches zero and `T` is dropped.
188 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
189 
190 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
191 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
192 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
193 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
194 // the reference count reaches zero and `T` is dropped.
195 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
196 
197 impl<T> Arc<T> {
198     /// Constructs a new reference counted instance of `T`.
199     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
200         // INVARIANT: The refcount is initialised to a non-zero value.
201         let value = ArcInner {
202             // SAFETY: There are no safety requirements for this FFI call.
203             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
204             data: contents,
205         };
206 
207         let inner = <Box<_> as BoxExt<_>>::new(value, flags)?;
208 
209         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
210         // `Arc` object.
211         Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
212     }
213 
214     /// Use the given initializer to in-place initialize a `T`.
215     ///
216     /// If `T: !Unpin` it will not be able to move afterwards.
217     #[inline]
218     pub fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self>
219     where
220         Error: From<E>,
221     {
222         UniqueArc::pin_init(init, flags).map(|u| u.into())
223     }
224 
225     /// Use the given initializer to in-place initialize a `T`.
226     ///
227     /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned.
228     #[inline]
229     pub fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self>
230     where
231         Error: From<E>,
232     {
233         UniqueArc::init(init, flags).map(|u| u.into())
234     }
235 }
236 
237 impl<T: ?Sized> Arc<T> {
238     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
239     ///
240     /// # Safety
241     ///
242     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
243     /// count, one of which will be owned by the new [`Arc`] instance.
244     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
245         // INVARIANT: By the safety requirements, the invariants hold.
246         Arc {
247             ptr: inner,
248             _p: PhantomData,
249         }
250     }
251 
252     /// Convert the [`Arc`] into a raw pointer.
253     ///
254     /// The raw pointer has ownership of the refcount that this Arc object owned.
255     pub fn into_raw(self) -> *const T {
256         let ptr = self.ptr.as_ptr();
257         core::mem::forget(self);
258         // SAFETY: The pointer is valid.
259         unsafe { core::ptr::addr_of!((*ptr).data) }
260     }
261 
262     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
263     ///
264     /// # Safety
265     ///
266     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
267     /// must not be called more than once for each previous call to [`Arc::into_raw`].
268     pub unsafe fn from_raw(ptr: *const T) -> Self {
269         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
270         // `Arc` that is still valid.
271         let ptr = unsafe { ArcInner::container_of(ptr) };
272 
273         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
274         // reference count held then will be owned by the new `Arc` object.
275         unsafe { Self::from_inner(ptr) }
276     }
277 
278     /// Returns an [`ArcBorrow`] from the given [`Arc`].
279     ///
280     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
281     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
282     #[inline]
283     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
284         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
285         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
286         // reference can be created.
287         unsafe { ArcBorrow::new(self.ptr) }
288     }
289 
290     /// Compare whether two [`Arc`] pointers reference the same underlying object.
291     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
292         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
293     }
294 
295     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
296     ///
297     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
298     /// this method will never call the destructor of the value.
299     ///
300     /// # Examples
301     ///
302     /// ```
303     /// use kernel::sync::{Arc, UniqueArc};
304     ///
305     /// let arc = Arc::new(42, GFP_KERNEL)?;
306     /// let unique_arc = arc.into_unique_or_drop();
307     ///
308     /// // The above conversion should succeed since refcount of `arc` is 1.
309     /// assert!(unique_arc.is_some());
310     ///
311     /// assert_eq!(*(unique_arc.unwrap()), 42);
312     ///
313     /// # Ok::<(), Error>(())
314     /// ```
315     ///
316     /// ```
317     /// use kernel::sync::{Arc, UniqueArc};
318     ///
319     /// let arc = Arc::new(42, GFP_KERNEL)?;
320     /// let another = arc.clone();
321     ///
322     /// let unique_arc = arc.into_unique_or_drop();
323     ///
324     /// // The above conversion should fail since refcount of `arc` is >1.
325     /// assert!(unique_arc.is_none());
326     ///
327     /// # Ok::<(), Error>(())
328     /// ```
329     pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
330         // We will manually manage the refcount in this method, so we disable the destructor.
331         let me = ManuallyDrop::new(self);
332         // SAFETY: We own a refcount, so the pointer is still valid.
333         let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
334 
335         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
336         // return without further touching the `Arc`. If the refcount reaches zero, then there are
337         // no other arcs, and we can create a `UniqueArc`.
338         //
339         // SAFETY: We own a refcount, so the pointer is not dangling.
340         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
341         if is_zero {
342             // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
343             // accesses to the refcount.
344             unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
345 
346             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
347             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
348             // their values.
349             Some(Pin::from(UniqueArc {
350                 inner: ManuallyDrop::into_inner(me),
351             }))
352         } else {
353             None
354         }
355     }
356 }
357 
358 impl<T: 'static> ForeignOwnable for Arc<T> {
359     type Borrowed<'a> = ArcBorrow<'a, T>;
360 
361     fn into_foreign(self) -> *const core::ffi::c_void {
362         ManuallyDrop::new(self).ptr.as_ptr() as _
363     }
364 
365     unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
366         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
367         // a previous call to `Arc::into_foreign`.
368         let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
369 
370         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
371         // for the lifetime of the returned value.
372         unsafe { ArcBorrow::new(inner) }
373     }
374 
375     unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
376         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
377         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
378         // holds a reference count increment that is transferrable to us.
379         unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
380     }
381 }
382 
383 impl<T: ?Sized> Deref for Arc<T> {
384     type Target = T;
385 
386     fn deref(&self) -> &Self::Target {
387         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
388         // safe to dereference it.
389         unsafe { &self.ptr.as_ref().data }
390     }
391 }
392 
393 impl<T: ?Sized> AsRef<T> for Arc<T> {
394     fn as_ref(&self) -> &T {
395         self.deref()
396     }
397 }
398 
399 impl<T: ?Sized> Clone for Arc<T> {
400     fn clone(&self) -> Self {
401         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
402         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
403         // safe to increment the refcount.
404         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
405 
406         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
407         unsafe { Self::from_inner(self.ptr) }
408     }
409 }
410 
411 impl<T: ?Sized> Drop for Arc<T> {
412     fn drop(&mut self) {
413         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
414         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
415         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
416         // freed/invalid memory as long as it is never dereferenced.
417         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
418 
419         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
420         // this instance is being dropped, so the broken invariant is not observable.
421         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
422         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
423         if is_zero {
424             // The count reached zero, we must free the memory.
425             //
426             // SAFETY: The pointer was initialised from the result of `Box::leak`.
427             unsafe { drop(Box::from_raw(self.ptr.as_ptr())) };
428         }
429     }
430 }
431 
432 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
433     fn from(item: UniqueArc<T>) -> Self {
434         item.inner
435     }
436 }
437 
438 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
439     fn from(item: Pin<UniqueArc<T>>) -> Self {
440         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
441         unsafe { Pin::into_inner_unchecked(item).inner }
442     }
443 }
444 
445 /// A borrowed reference to an [`Arc`] instance.
446 ///
447 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
448 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
449 ///
450 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
451 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
452 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
453 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
454 /// needed.
455 ///
456 /// # Invariants
457 ///
458 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
459 /// lifetime of the [`ArcBorrow`] instance.
460 ///
461 /// # Example
462 ///
463 /// ```
464 /// use kernel::sync::{Arc, ArcBorrow};
465 ///
466 /// struct Example;
467 ///
468 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
469 ///     e.into()
470 /// }
471 ///
472 /// let obj = Arc::new(Example, GFP_KERNEL)?;
473 /// let cloned = do_something(obj.as_arc_borrow());
474 ///
475 /// // Assert that both `obj` and `cloned` point to the same underlying object.
476 /// assert!(core::ptr::eq(&*obj, &*cloned));
477 /// # Ok::<(), Error>(())
478 /// ```
479 ///
480 /// Using `ArcBorrow<T>` as the type of `self`:
481 ///
482 /// ```
483 /// use kernel::sync::{Arc, ArcBorrow};
484 ///
485 /// struct Example {
486 ///     a: u32,
487 ///     b: u32,
488 /// }
489 ///
490 /// impl Example {
491 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
492 ///         // ...
493 ///     }
494 /// }
495 ///
496 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
497 /// obj.as_arc_borrow().use_reference();
498 /// # Ok::<(), Error>(())
499 /// ```
500 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
501     inner: NonNull<ArcInner<T>>,
502     _p: PhantomData<&'a ()>,
503 }
504 
505 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`.
506 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {}
507 
508 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
509 // `ArcBorrow<U>`.
510 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
511     for ArcBorrow<'_, T>
512 {
513 }
514 
515 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
516     fn clone(&self) -> Self {
517         *self
518     }
519 }
520 
521 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
522 
523 impl<T: ?Sized> ArcBorrow<'_, T> {
524     /// Creates a new [`ArcBorrow`] instance.
525     ///
526     /// # Safety
527     ///
528     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
529     /// 1. That `inner` remains valid;
530     /// 2. That no mutable references to `inner` are created.
531     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
532         // INVARIANT: The safety requirements guarantee the invariants.
533         Self {
534             inner,
535             _p: PhantomData,
536         }
537     }
538 
539     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
540     /// [`Arc::into_raw`].
541     ///
542     /// # Safety
543     ///
544     /// * The provided pointer must originate from a call to [`Arc::into_raw`].
545     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
546     ///   not hit zero.
547     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
548     ///   [`UniqueArc`] reference to this value.
549     pub unsafe fn from_raw(ptr: *const T) -> Self {
550         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
551         // `Arc` that is still valid.
552         let ptr = unsafe { ArcInner::container_of(ptr) };
553 
554         // SAFETY: The caller promises that the value remains valid since the reference count must
555         // not hit zero, and no mutable reference will be created since that would involve a
556         // `UniqueArc`.
557         unsafe { Self::new(ptr) }
558     }
559 }
560 
561 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
562     fn from(b: ArcBorrow<'_, T>) -> Self {
563         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
564         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
565         // increment.
566         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
567             .deref()
568             .clone()
569     }
570 }
571 
572 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
573     type Target = T;
574 
575     fn deref(&self) -> &Self::Target {
576         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
577         // references to it, so it is safe to create a shared reference.
578         unsafe { &self.inner.as_ref().data }
579     }
580 }
581 
582 /// A refcounted object that is known to have a refcount of 1.
583 ///
584 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
585 ///
586 /// # Invariants
587 ///
588 /// `inner` always has a reference count of 1.
589 ///
590 /// # Examples
591 ///
592 /// In the following example, we make changes to the inner object before turning it into an
593 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
594 /// cannot fail.
595 ///
596 /// ```
597 /// use kernel::sync::{Arc, UniqueArc};
598 ///
599 /// struct Example {
600 ///     a: u32,
601 ///     b: u32,
602 /// }
603 ///
604 /// fn test() -> Result<Arc<Example>> {
605 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
606 ///     x.a += 1;
607 ///     x.b += 1;
608 ///     Ok(x.into())
609 /// }
610 ///
611 /// # test().unwrap();
612 /// ```
613 ///
614 /// In the following example we first allocate memory for a refcounted `Example` but we don't
615 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
616 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
617 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
618 ///
619 /// ```
620 /// use kernel::sync::{Arc, UniqueArc};
621 ///
622 /// struct Example {
623 ///     a: u32,
624 ///     b: u32,
625 /// }
626 ///
627 /// fn test() -> Result<Arc<Example>> {
628 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
629 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
630 /// }
631 ///
632 /// # test().unwrap();
633 /// ```
634 ///
635 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
636 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
637 /// initialisation, for example, when initialising fields that are wrapped in locks.
638 ///
639 /// ```
640 /// use kernel::sync::{Arc, UniqueArc};
641 ///
642 /// struct Example {
643 ///     a: u32,
644 ///     b: u32,
645 /// }
646 ///
647 /// fn test() -> Result<Arc<Example>> {
648 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
649 ///     // We can modify `pinned` because it is `Unpin`.
650 ///     pinned.as_mut().a += 1;
651 ///     Ok(pinned.into())
652 /// }
653 ///
654 /// # test().unwrap();
655 /// ```
656 pub struct UniqueArc<T: ?Sized> {
657     inner: Arc<T>,
658 }
659 
660 impl<T> UniqueArc<T> {
661     /// Tries to allocate a new [`UniqueArc`] instance.
662     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
663         Ok(Self {
664             // INVARIANT: The newly-created object has a refcount of 1.
665             inner: Arc::new(value, flags)?,
666         })
667     }
668 
669     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
670     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
671         // INVARIANT: The refcount is initialised to a non-zero value.
672         let inner = Box::try_init::<AllocError>(
673             try_init!(ArcInner {
674                 // SAFETY: There are no safety requirements for this FFI call.
675                 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
676                 data <- init::uninit::<T, AllocError>(),
677             }? AllocError),
678             flags,
679         )?;
680         Ok(UniqueArc {
681             // INVARIANT: The newly-created object has a refcount of 1.
682             // SAFETY: The pointer from the `Box` is valid.
683             inner: unsafe { Arc::from_inner(Box::leak(inner).into()) },
684         })
685     }
686 }
687 
688 impl<T> UniqueArc<MaybeUninit<T>> {
689     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
690     pub fn write(mut self, value: T) -> UniqueArc<T> {
691         self.deref_mut().write(value);
692         // SAFETY: We just wrote the value to be initialized.
693         unsafe { self.assume_init() }
694     }
695 
696     /// Unsafely assume that `self` is initialized.
697     ///
698     /// # Safety
699     ///
700     /// The caller guarantees that the value behind this pointer has been initialized. It is
701     /// *immediate* UB to call this when the value is not initialized.
702     pub unsafe fn assume_init(self) -> UniqueArc<T> {
703         let inner = ManuallyDrop::new(self).inner.ptr;
704         UniqueArc {
705             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
706             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
707             inner: unsafe { Arc::from_inner(inner.cast()) },
708         }
709     }
710 
711     /// Initialize `self` using the given initializer.
712     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
713         // SAFETY: The supplied pointer is valid for initialization.
714         match unsafe { init.__init(self.as_mut_ptr()) } {
715             // SAFETY: Initialization completed successfully.
716             Ok(()) => Ok(unsafe { self.assume_init() }),
717             Err(err) => Err(err),
718         }
719     }
720 
721     /// Pin-initialize `self` using the given pin-initializer.
722     pub fn pin_init_with<E>(
723         mut self,
724         init: impl PinInit<T, E>,
725     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
726         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
727         // to ensure it does not move.
728         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
729             // SAFETY: Initialization completed successfully.
730             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
731             Err(err) => Err(err),
732         }
733     }
734 }
735 
736 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
737     fn from(obj: UniqueArc<T>) -> Self {
738         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
739         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
740         unsafe { Pin::new_unchecked(obj) }
741     }
742 }
743 
744 impl<T: ?Sized> Deref for UniqueArc<T> {
745     type Target = T;
746 
747     fn deref(&self) -> &Self::Target {
748         self.inner.deref()
749     }
750 }
751 
752 impl<T: ?Sized> DerefMut for UniqueArc<T> {
753     fn deref_mut(&mut self) -> &mut Self::Target {
754         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
755         // it is safe to dereference it. Additionally, we know there is only one reference when
756         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
757         unsafe { &mut self.inner.ptr.as_mut().data }
758     }
759 }
760 
761 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
762     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
763         fmt::Display::fmt(self.deref(), f)
764     }
765 }
766 
767 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
768     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
769         fmt::Display::fmt(self.deref(), f)
770     }
771 }
772 
773 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
774     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
775         fmt::Debug::fmt(self.deref(), f)
776     }
777 }
778 
779 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
780     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
781         fmt::Debug::fmt(self.deref(), f)
782     }
783 }
784