xref: /linux/rust/kernel/sync/arc.rs (revision 94c37d42cb7ca362aee9633bec2dbeed787edf3e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's [`Refcount`] type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //! 5. The object in [`Arc`] is pinned implicitly.
16 //!
17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18 
19 use crate::{
20     alloc::{AllocError, Flags, KBox},
21     ffi::c_void,
22     fmt,
23     init::InPlaceInit,
24     sync::Refcount,
25     try_init,
26     types::ForeignOwnable,
27 };
28 use core::{
29     alloc::Layout,
30     borrow::{Borrow, BorrowMut},
31     marker::PhantomData,
32     mem::{ManuallyDrop, MaybeUninit},
33     ops::{Deref, DerefMut},
34     pin::Pin,
35     ptr::NonNull,
36 };
37 use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit};
38 
39 mod std_vendor;
40 
41 /// A reference-counted pointer to an instance of `T`.
42 ///
43 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
44 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
45 ///
46 /// # Invariants
47 ///
48 /// The reference count on an instance of [`Arc`] is always non-zero.
49 /// The object pointed to by [`Arc`] is always pinned.
50 ///
51 /// # Examples
52 ///
53 /// ```
54 /// use kernel::sync::Arc;
55 ///
56 /// struct Example {
57 ///     a: u32,
58 ///     b: u32,
59 /// }
60 ///
61 /// // Create a refcounted instance of `Example`.
62 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
63 ///
64 /// // Get a new pointer to `obj` and increment the refcount.
65 /// let cloned = obj.clone();
66 ///
67 /// // Assert that both `obj` and `cloned` point to the same underlying object.
68 /// assert!(core::ptr::eq(&*obj, &*cloned));
69 ///
70 /// // Destroy `obj` and decrement its refcount.
71 /// drop(obj);
72 ///
73 /// // Check that the values are still accessible through `cloned`.
74 /// assert_eq!(cloned.a, 10);
75 /// assert_eq!(cloned.b, 20);
76 ///
77 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
78 /// # Ok::<(), Error>(())
79 /// ```
80 ///
81 /// Using `Arc<T>` as the type of `self`:
82 ///
83 /// ```
84 /// use kernel::sync::Arc;
85 ///
86 /// struct Example {
87 ///     a: u32,
88 ///     b: u32,
89 /// }
90 ///
91 /// impl Example {
92 ///     fn take_over(self: Arc<Self>) {
93 ///         // ...
94 ///     }
95 ///
96 ///     fn use_reference(self: &Arc<Self>) {
97 ///         // ...
98 ///     }
99 /// }
100 ///
101 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
102 /// obj.use_reference();
103 /// obj.take_over();
104 /// # Ok::<(), Error>(())
105 /// ```
106 ///
107 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
108 ///
109 /// ```
110 /// use kernel::sync::{Arc, ArcBorrow};
111 ///
112 /// trait MyTrait {
113 ///     // Trait has a function whose `self` type is `Arc<Self>`.
114 ///     fn example1(self: Arc<Self>) {}
115 ///
116 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
117 ///     fn example2(self: ArcBorrow<'_, Self>) {}
118 /// }
119 ///
120 /// struct Example;
121 /// impl MyTrait for Example {}
122 ///
123 /// // `obj` has type `Arc<Example>`.
124 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
125 ///
126 /// // `coerced` has type `Arc<dyn MyTrait>`.
127 /// let coerced: Arc<dyn MyTrait> = obj;
128 /// # Ok::<(), Error>(())
129 /// ```
130 #[repr(transparent)]
131 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
132 pub struct Arc<T: ?Sized> {
133     ptr: NonNull<ArcInner<T>>,
134     // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as
135     // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in
136     // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently
137     // meaningful with respect to dropck - but this may change in the future so this is left here
138     // out of an abundance of caution.
139     //
140     // See <https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking>
141     // for more detail on the semantics of dropck in the presence of `PhantomData`.
142     _p: PhantomData<ArcInner<T>>,
143 }
144 
145 #[pin_data]
146 #[repr(C)]
147 struct ArcInner<T: ?Sized> {
148     refcount: Refcount,
149     data: T,
150 }
151 
152 impl<T: ?Sized> ArcInner<T> {
153     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
154     ///
155     /// # Safety
156     ///
157     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
158     /// not yet have been destroyed.
159     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
160         let refcount_layout = Layout::new::<Refcount>();
161         // SAFETY: The caller guarantees that the pointer is valid.
162         let val_layout = Layout::for_value(unsafe { &*ptr });
163         // SAFETY: We're computing the layout of a real struct that existed when compiling this
164         // binary, so its layout is not so large that it can trigger arithmetic overflow.
165         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
166 
167         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
168         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
169         //
170         // This is documented at:
171         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
172         let ptr = ptr as *const ArcInner<T>;
173 
174         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
175         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
176         // still valid.
177         let ptr = unsafe { ptr.byte_sub(val_offset) };
178 
179         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
180         // address.
181         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
182     }
183 }
184 
185 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
186 // dynamically-sized type (DST) `U`.
187 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
188 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
189 
190 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
191 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
192 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
193 
194 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
195 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
196 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
197 // mutable reference when the reference count reaches zero and `T` is dropped.
198 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
199 
200 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
201 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
202 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
203 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
204 // the reference count reaches zero and `T` is dropped.
205 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
206 
207 impl<T> InPlaceInit<T> for Arc<T> {
208     type PinnedSelf = Self;
209 
210     #[inline]
211     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
212     where
213         E: From<AllocError>,
214     {
215         UniqueArc::try_pin_init(init, flags).map(|u| u.into())
216     }
217 
218     #[inline]
219     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
220     where
221         E: From<AllocError>,
222     {
223         UniqueArc::try_init(init, flags).map(|u| u.into())
224     }
225 }
226 
227 impl<T> Arc<T> {
228     /// Constructs a new reference counted instance of `T`.
229     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
230         // INVARIANT: The refcount is initialised to a non-zero value.
231         let value = ArcInner {
232             refcount: Refcount::new(1),
233             data: contents,
234         };
235 
236         let inner = KBox::new(value, flags)?;
237         let inner = KBox::leak(inner).into();
238 
239         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
240         // `Arc` object.
241         Ok(unsafe { Self::from_inner(inner) })
242     }
243 
244     /// The offset that the value is stored at.
245     pub const DATA_OFFSET: usize = core::mem::offset_of!(ArcInner<T>, data);
246 }
247 
248 impl<T: ?Sized> Arc<T> {
249     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
250     ///
251     /// # Safety
252     ///
253     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
254     /// count, one of which will be owned by the new [`Arc`] instance.
255     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
256         // INVARIANT: By the safety requirements, the invariants hold.
257         Arc {
258             ptr: inner,
259             _p: PhantomData,
260         }
261     }
262 
263     /// Convert the [`Arc`] into a raw pointer.
264     ///
265     /// The raw pointer has ownership of the refcount that this Arc object owned.
266     pub fn into_raw(self) -> *const T {
267         let ptr = self.ptr.as_ptr();
268         core::mem::forget(self);
269         // SAFETY: The pointer is valid.
270         unsafe { core::ptr::addr_of!((*ptr).data) }
271     }
272 
273     /// Return a raw pointer to the data in this arc.
274     pub fn as_ptr(this: &Self) -> *const T {
275         let ptr = this.ptr.as_ptr();
276 
277         // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`,
278         // field projection to `data`is within bounds of the allocation.
279         unsafe { core::ptr::addr_of!((*ptr).data) }
280     }
281 
282     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
283     ///
284     /// # Safety
285     ///
286     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
287     /// must not be called more than once for each previous call to [`Arc::into_raw`].
288     pub unsafe fn from_raw(ptr: *const T) -> Self {
289         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
290         // `Arc` that is still valid.
291         let ptr = unsafe { ArcInner::container_of(ptr) };
292 
293         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
294         // reference count held then will be owned by the new `Arc` object.
295         unsafe { Self::from_inner(ptr) }
296     }
297 
298     /// Returns an [`ArcBorrow`] from the given [`Arc`].
299     ///
300     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
301     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
302     #[inline]
303     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
304         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
305         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
306         // reference can be created.
307         unsafe { ArcBorrow::new(self.ptr) }
308     }
309 
310     /// Compare whether two [`Arc`] pointers reference the same underlying object.
311     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
312         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
313     }
314 
315     /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
316     ///
317     /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
318     /// this method will never call the destructor of the value.
319     ///
320     /// # Examples
321     ///
322     /// ```
323     /// use kernel::sync::{Arc, UniqueArc};
324     ///
325     /// let arc = Arc::new(42, GFP_KERNEL)?;
326     /// let unique_arc = Arc::into_unique_or_drop(arc);
327     ///
328     /// // The above conversion should succeed since refcount of `arc` is 1.
329     /// assert!(unique_arc.is_some());
330     ///
331     /// assert_eq!(*(unique_arc.unwrap()), 42);
332     ///
333     /// # Ok::<(), Error>(())
334     /// ```
335     ///
336     /// ```
337     /// use kernel::sync::{Arc, UniqueArc};
338     ///
339     /// let arc = Arc::new(42, GFP_KERNEL)?;
340     /// let another = arc.clone();
341     ///
342     /// let unique_arc = Arc::into_unique_or_drop(arc);
343     ///
344     /// // The above conversion should fail since refcount of `arc` is >1.
345     /// assert!(unique_arc.is_none());
346     ///
347     /// # Ok::<(), Error>(())
348     /// ```
349     pub fn into_unique_or_drop(this: Self) -> Option<Pin<UniqueArc<T>>> {
350         // We will manually manage the refcount in this method, so we disable the destructor.
351         let this = ManuallyDrop::new(this);
352         // SAFETY: We own a refcount, so the pointer is still valid.
353         let refcount = unsafe { &this.ptr.as_ref().refcount };
354 
355         // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
356         // return without further touching the `Arc`. If the refcount reaches zero, then there are
357         // no other arcs, and we can create a `UniqueArc`.
358         if refcount.dec_and_test() {
359             refcount.set(1);
360 
361             // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
362             // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
363             // their values.
364             Some(Pin::from(UniqueArc {
365                 inner: ManuallyDrop::into_inner(this),
366             }))
367         } else {
368             None
369         }
370     }
371 }
372 
373 // SAFETY: The pointer returned by `into_foreign` was originally allocated as an
374 // `KBox<ArcInner<T>>`, so that type is what determines the alignment.
375 unsafe impl<T: 'static> ForeignOwnable for Arc<T> {
376     const FOREIGN_ALIGN: usize = <KBox<ArcInner<T>> as ForeignOwnable>::FOREIGN_ALIGN;
377 
378     type Borrowed<'a> = ArcBorrow<'a, T>;
379     type BorrowedMut<'a> = Self::Borrowed<'a>;
380 
381     fn into_foreign(self) -> *mut c_void {
382         ManuallyDrop::new(self).ptr.as_ptr().cast()
383     }
384 
385     unsafe fn from_foreign(ptr: *mut c_void) -> Self {
386         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
387         // call to `Self::into_foreign`.
388         let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
389 
390         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
391         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
392         // holds a reference count increment that is transferrable to us.
393         unsafe { Self::from_inner(inner) }
394     }
395 
396     unsafe fn borrow<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> {
397         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
398         // call to `Self::into_foreign`.
399         let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) };
400 
401         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
402         // for the lifetime of the returned value.
403         unsafe { ArcBorrow::new(inner) }
404     }
405 
406     unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> ArcBorrow<'a, T> {
407         // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety
408         // requirements for `borrow`.
409         unsafe { <Self as ForeignOwnable>::borrow(ptr) }
410     }
411 }
412 
413 impl<T: ?Sized> Deref for Arc<T> {
414     type Target = T;
415 
416     fn deref(&self) -> &Self::Target {
417         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
418         // safe to dereference it.
419         unsafe { &self.ptr.as_ref().data }
420     }
421 }
422 
423 impl<T: ?Sized> AsRef<T> for Arc<T> {
424     fn as_ref(&self) -> &T {
425         self.deref()
426     }
427 }
428 
429 /// # Examples
430 ///
431 /// ```
432 /// # use core::borrow::Borrow;
433 /// # use kernel::sync::Arc;
434 /// struct Foo<B: Borrow<u32>>(B);
435 ///
436 /// // Owned instance.
437 /// let owned = Foo(1);
438 ///
439 /// // Shared instance.
440 /// let arc = Arc::new(1, GFP_KERNEL)?;
441 /// let shared = Foo(arc.clone());
442 ///
443 /// let i = 1;
444 /// // Borrowed from `i`.
445 /// let borrowed = Foo(&i);
446 /// # Ok::<(), Error>(())
447 /// ```
448 impl<T: ?Sized> Borrow<T> for Arc<T> {
449     fn borrow(&self) -> &T {
450         self.deref()
451     }
452 }
453 
454 impl<T: ?Sized> Clone for Arc<T> {
455     fn clone(&self) -> Self {
456         // INVARIANT: `Refcount` saturates the refcount, so it cannot overflow to zero.
457         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
458         // safe to increment the refcount.
459         unsafe { self.ptr.as_ref() }.refcount.inc();
460 
461         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
462         unsafe { Self::from_inner(self.ptr) }
463     }
464 }
465 
466 impl<T: ?Sized> Drop for Arc<T> {
467     fn drop(&mut self) {
468         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
469         // this instance is being dropped, so the broken invariant is not observable.
470         // SAFETY: By the type invariant, there is necessarily a reference to the object.
471         let is_zero = unsafe { self.ptr.as_ref() }.refcount.dec_and_test();
472         if is_zero {
473             // The count reached zero, we must free the memory.
474             //
475             // SAFETY: The pointer was initialised from the result of `KBox::leak`.
476             unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
477         }
478     }
479 }
480 
481 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
482     fn from(item: UniqueArc<T>) -> Self {
483         item.inner
484     }
485 }
486 
487 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
488     fn from(item: Pin<UniqueArc<T>>) -> Self {
489         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
490         unsafe { Pin::into_inner_unchecked(item).inner }
491     }
492 }
493 
494 /// A borrowed reference to an [`Arc`] instance.
495 ///
496 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
497 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
498 ///
499 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
500 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
501 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
502 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
503 /// needed.
504 ///
505 /// # Invariants
506 ///
507 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
508 /// lifetime of the [`ArcBorrow`] instance.
509 ///
510 /// # Examples
511 ///
512 /// ```
513 /// use kernel::sync::{Arc, ArcBorrow};
514 ///
515 /// struct Example;
516 ///
517 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
518 ///     e.into()
519 /// }
520 ///
521 /// let obj = Arc::new(Example, GFP_KERNEL)?;
522 /// let cloned = do_something(obj.as_arc_borrow());
523 ///
524 /// // Assert that both `obj` and `cloned` point to the same underlying object.
525 /// assert!(core::ptr::eq(&*obj, &*cloned));
526 /// # Ok::<(), Error>(())
527 /// ```
528 ///
529 /// Using `ArcBorrow<T>` as the type of `self`:
530 ///
531 /// ```
532 /// use kernel::sync::{Arc, ArcBorrow};
533 ///
534 /// struct Example {
535 ///     a: u32,
536 ///     b: u32,
537 /// }
538 ///
539 /// impl Example {
540 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
541 ///         // ...
542 ///     }
543 /// }
544 ///
545 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
546 /// obj.as_arc_borrow().use_reference();
547 /// # Ok::<(), Error>(())
548 /// ```
549 #[repr(transparent)]
550 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
551 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
552     inner: NonNull<ArcInner<T>>,
553     _p: PhantomData<&'a ()>,
554 }
555 
556 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
557 // `ArcBorrow<U>`.
558 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
559 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
560     for ArcBorrow<'_, T>
561 {
562 }
563 
564 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
565     fn clone(&self) -> Self {
566         *self
567     }
568 }
569 
570 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
571 
572 impl<T: ?Sized> ArcBorrow<'_, T> {
573     /// Creates a new [`ArcBorrow`] instance.
574     ///
575     /// # Safety
576     ///
577     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
578     /// 1. That `inner` remains valid;
579     /// 2. That no mutable references to `inner` are created.
580     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
581         // INVARIANT: The safety requirements guarantee the invariants.
582         Self {
583             inner,
584             _p: PhantomData,
585         }
586     }
587 
588     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
589     /// [`Arc::into_raw`] or [`Arc::as_ptr`].
590     ///
591     /// # Safety
592     ///
593     /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`].
594     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
595     ///   not hit zero.
596     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
597     ///   [`UniqueArc`] reference to this value.
598     pub unsafe fn from_raw(ptr: *const T) -> Self {
599         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
600         // `Arc` that is still valid.
601         let ptr = unsafe { ArcInner::container_of(ptr) };
602 
603         // SAFETY: The caller promises that the value remains valid since the reference count must
604         // not hit zero, and no mutable reference will be created since that would involve a
605         // `UniqueArc`.
606         unsafe { Self::new(ptr) }
607     }
608 }
609 
610 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
611     fn from(b: ArcBorrow<'_, T>) -> Self {
612         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
613         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
614         // increment.
615         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
616             .deref()
617             .clone()
618     }
619 }
620 
621 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
622     type Target = T;
623 
624     fn deref(&self) -> &Self::Target {
625         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
626         // references to it, so it is safe to create a shared reference.
627         unsafe { &self.inner.as_ref().data }
628     }
629 }
630 
631 /// A refcounted object that is known to have a refcount of 1.
632 ///
633 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
634 ///
635 /// # Invariants
636 ///
637 /// `inner` always has a reference count of 1.
638 ///
639 /// # Examples
640 ///
641 /// In the following example, we make changes to the inner object before turning it into an
642 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
643 /// cannot fail.
644 ///
645 /// ```
646 /// use kernel::sync::{Arc, UniqueArc};
647 ///
648 /// struct Example {
649 ///     a: u32,
650 ///     b: u32,
651 /// }
652 ///
653 /// fn test() -> Result<Arc<Example>> {
654 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
655 ///     x.a += 1;
656 ///     x.b += 1;
657 ///     Ok(x.into())
658 /// }
659 ///
660 /// # test().unwrap();
661 /// ```
662 ///
663 /// In the following example we first allocate memory for a refcounted `Example` but we don't
664 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
665 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
666 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
667 ///
668 /// ```
669 /// use kernel::sync::{Arc, UniqueArc};
670 ///
671 /// struct Example {
672 ///     a: u32,
673 ///     b: u32,
674 /// }
675 ///
676 /// fn test() -> Result<Arc<Example>> {
677 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
678 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
679 /// }
680 ///
681 /// # test().unwrap();
682 /// ```
683 ///
684 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
685 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
686 /// initialisation, for example, when initialising fields that are wrapped in locks.
687 ///
688 /// ```
689 /// use kernel::sync::{Arc, UniqueArc};
690 ///
691 /// struct Example {
692 ///     a: u32,
693 ///     b: u32,
694 /// }
695 ///
696 /// fn test() -> Result<Arc<Example>> {
697 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
698 ///     // We can modify `pinned` because it is `Unpin`.
699 ///     pinned.as_mut().a += 1;
700 ///     Ok(pinned.into())
701 /// }
702 ///
703 /// # test().unwrap();
704 /// ```
705 pub struct UniqueArc<T: ?Sized> {
706     inner: Arc<T>,
707 }
708 
709 impl<T> InPlaceInit<T> for UniqueArc<T> {
710     type PinnedSelf = Pin<Self>;
711 
712     #[inline]
713     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
714     where
715         E: From<AllocError>,
716     {
717         UniqueArc::new_uninit(flags)?.write_pin_init(init)
718     }
719 
720     #[inline]
721     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
722     where
723         E: From<AllocError>,
724     {
725         UniqueArc::new_uninit(flags)?.write_init(init)
726     }
727 }
728 
729 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
730     type Initialized = UniqueArc<T>;
731 
732     fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
733         let slot = self.as_mut_ptr();
734         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
735         // slot is valid.
736         unsafe { init.__init(slot)? };
737         // SAFETY: All fields have been initialized.
738         Ok(unsafe { self.assume_init() })
739     }
740 
741     fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
742         let slot = self.as_mut_ptr();
743         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
744         // slot is valid and will not be moved, because we pin it later.
745         unsafe { init.__pinned_init(slot)? };
746         // SAFETY: All fields have been initialized.
747         Ok(unsafe { self.assume_init() }.into())
748     }
749 }
750 
751 impl<T> UniqueArc<T> {
752     /// Tries to allocate a new [`UniqueArc`] instance.
753     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
754         Ok(Self {
755             // INVARIANT: The newly-created object has a refcount of 1.
756             inner: Arc::new(value, flags)?,
757         })
758     }
759 
760     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
761     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
762         // INVARIANT: The refcount is initialised to a non-zero value.
763         let inner = KBox::try_init::<AllocError>(
764             try_init!(ArcInner {
765                 refcount: Refcount::new(1),
766                 data <- pin_init::uninit::<T, AllocError>(),
767             }? AllocError),
768             flags,
769         )?;
770         Ok(UniqueArc {
771             // INVARIANT: The newly-created object has a refcount of 1.
772             // SAFETY: The pointer from the `KBox` is valid.
773             inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
774         })
775     }
776 }
777 
778 impl<T> UniqueArc<MaybeUninit<T>> {
779     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
780     pub fn write(mut self, value: T) -> UniqueArc<T> {
781         self.deref_mut().write(value);
782         // SAFETY: We just wrote the value to be initialized.
783         unsafe { self.assume_init() }
784     }
785 
786     /// Unsafely assume that `self` is initialized.
787     ///
788     /// # Safety
789     ///
790     /// The caller guarantees that the value behind this pointer has been initialized. It is
791     /// *immediate* UB to call this when the value is not initialized.
792     pub unsafe fn assume_init(self) -> UniqueArc<T> {
793         let inner = ManuallyDrop::new(self).inner.ptr;
794         UniqueArc {
795             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
796             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
797             inner: unsafe { Arc::from_inner(inner.cast()) },
798         }
799     }
800 
801     /// Initialize `self` using the given initializer.
802     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
803         // SAFETY: The supplied pointer is valid for initialization.
804         match unsafe { init.__init(self.as_mut_ptr()) } {
805             // SAFETY: Initialization completed successfully.
806             Ok(()) => Ok(unsafe { self.assume_init() }),
807             Err(err) => Err(err),
808         }
809     }
810 
811     /// Pin-initialize `self` using the given pin-initializer.
812     pub fn pin_init_with<E>(
813         mut self,
814         init: impl PinInit<T, E>,
815     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
816         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
817         // to ensure it does not move.
818         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
819             // SAFETY: Initialization completed successfully.
820             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
821             Err(err) => Err(err),
822         }
823     }
824 }
825 
826 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
827     fn from(obj: UniqueArc<T>) -> Self {
828         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
829         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
830         unsafe { Pin::new_unchecked(obj) }
831     }
832 }
833 
834 impl<T: ?Sized> Deref for UniqueArc<T> {
835     type Target = T;
836 
837     fn deref(&self) -> &Self::Target {
838         self.inner.deref()
839     }
840 }
841 
842 impl<T: ?Sized> DerefMut for UniqueArc<T> {
843     fn deref_mut(&mut self) -> &mut Self::Target {
844         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
845         // it is safe to dereference it. Additionally, we know there is only one reference when
846         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
847         unsafe { &mut self.inner.ptr.as_mut().data }
848     }
849 }
850 
851 /// # Examples
852 ///
853 /// ```
854 /// # use core::borrow::Borrow;
855 /// # use kernel::sync::UniqueArc;
856 /// struct Foo<B: Borrow<u32>>(B);
857 ///
858 /// // Owned instance.
859 /// let owned = Foo(1);
860 ///
861 /// // Owned instance using `UniqueArc`.
862 /// let arc = UniqueArc::new(1, GFP_KERNEL)?;
863 /// let shared = Foo(arc);
864 ///
865 /// let i = 1;
866 /// // Borrowed from `i`.
867 /// let borrowed = Foo(&i);
868 /// # Ok::<(), Error>(())
869 /// ```
870 impl<T: ?Sized> Borrow<T> for UniqueArc<T> {
871     fn borrow(&self) -> &T {
872         self.deref()
873     }
874 }
875 
876 /// # Examples
877 ///
878 /// ```
879 /// # use core::borrow::BorrowMut;
880 /// # use kernel::sync::UniqueArc;
881 /// struct Foo<B: BorrowMut<u32>>(B);
882 ///
883 /// // Owned instance.
884 /// let owned = Foo(1);
885 ///
886 /// // Owned instance using `UniqueArc`.
887 /// let arc = UniqueArc::new(1, GFP_KERNEL)?;
888 /// let shared = Foo(arc);
889 ///
890 /// let mut i = 1;
891 /// // Borrowed from `i`.
892 /// let borrowed = Foo(&mut i);
893 /// # Ok::<(), Error>(())
894 /// ```
895 impl<T: ?Sized> BorrowMut<T> for UniqueArc<T> {
896     fn borrow_mut(&mut self) -> &mut T {
897         self.deref_mut()
898     }
899 }
900 
901 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
902     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
903         fmt::Display::fmt(self.deref(), f)
904     }
905 }
906 
907 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
908     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
909         fmt::Display::fmt(self.deref(), f)
910     }
911 }
912 
913 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
914     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
915         fmt::Debug::fmt(self.deref(), f)
916     }
917 }
918 
919 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
920     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
921         fmt::Debug::fmt(self.deref(), f)
922     }
923 }
924