1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implicitly. 16 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 19 use crate::{ 20 alloc::{AllocError, Flags, KBox}, 21 bindings, 22 init::{self, InPlaceInit, Init, PinInit}, 23 try_init, 24 types::{ForeignOwnable, Opaque}, 25 }; 26 use core::{ 27 alloc::Layout, 28 fmt, 29 marker::{PhantomData, Unsize}, 30 mem::{ManuallyDrop, MaybeUninit}, 31 ops::{Deref, DerefMut}, 32 pin::Pin, 33 ptr::NonNull, 34 }; 35 use macros::pin_data; 36 37 mod std_vendor; 38 39 /// A reference-counted pointer to an instance of `T`. 40 /// 41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 43 /// 44 /// # Invariants 45 /// 46 /// The reference count on an instance of [`Arc`] is always non-zero. 47 /// The object pointed to by [`Arc`] is always pinned. 48 /// 49 /// # Examples 50 /// 51 /// ``` 52 /// use kernel::sync::Arc; 53 /// 54 /// struct Example { 55 /// a: u32, 56 /// b: u32, 57 /// } 58 /// 59 /// // Create a refcounted instance of `Example`. 60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 61 /// 62 /// // Get a new pointer to `obj` and increment the refcount. 63 /// let cloned = obj.clone(); 64 /// 65 /// // Assert that both `obj` and `cloned` point to the same underlying object. 66 /// assert!(core::ptr::eq(&*obj, &*cloned)); 67 /// 68 /// // Destroy `obj` and decrement its refcount. 69 /// drop(obj); 70 /// 71 /// // Check that the values are still accessible through `cloned`. 72 /// assert_eq!(cloned.a, 10); 73 /// assert_eq!(cloned.b, 20); 74 /// 75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 76 /// # Ok::<(), Error>(()) 77 /// ``` 78 /// 79 /// Using `Arc<T>` as the type of `self`: 80 /// 81 /// ``` 82 /// use kernel::sync::Arc; 83 /// 84 /// struct Example { 85 /// a: u32, 86 /// b: u32, 87 /// } 88 /// 89 /// impl Example { 90 /// fn take_over(self: Arc<Self>) { 91 /// // ... 92 /// } 93 /// 94 /// fn use_reference(self: &Arc<Self>) { 95 /// // ... 96 /// } 97 /// } 98 /// 99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 100 /// obj.use_reference(); 101 /// obj.take_over(); 102 /// # Ok::<(), Error>(()) 103 /// ``` 104 /// 105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 106 /// 107 /// ``` 108 /// use kernel::sync::{Arc, ArcBorrow}; 109 /// 110 /// trait MyTrait { 111 /// // Trait has a function whose `self` type is `Arc<Self>`. 112 /// fn example1(self: Arc<Self>) {} 113 /// 114 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 115 /// fn example2(self: ArcBorrow<'_, Self>) {} 116 /// } 117 /// 118 /// struct Example; 119 /// impl MyTrait for Example {} 120 /// 121 /// // `obj` has type `Arc<Example>`. 122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 123 /// 124 /// // `coerced` has type `Arc<dyn MyTrait>`. 125 /// let coerced: Arc<dyn MyTrait> = obj; 126 /// # Ok::<(), Error>(()) 127 /// ``` 128 pub struct Arc<T: ?Sized> { 129 ptr: NonNull<ArcInner<T>>, 130 _p: PhantomData<ArcInner<T>>, 131 } 132 133 #[pin_data] 134 #[repr(C)] 135 struct ArcInner<T: ?Sized> { 136 refcount: Opaque<bindings::refcount_t>, 137 data: T, 138 } 139 140 impl<T: ?Sized> ArcInner<T> { 141 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 142 /// 143 /// # Safety 144 /// 145 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 146 /// not yet have been destroyed. 147 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 148 let refcount_layout = Layout::new::<bindings::refcount_t>(); 149 // SAFETY: The caller guarantees that the pointer is valid. 150 let val_layout = Layout::for_value(unsafe { &*ptr }); 151 // SAFETY: We're computing the layout of a real struct that existed when compiling this 152 // binary, so its layout is not so large that it can trigger arithmetic overflow. 153 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 154 155 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 156 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 157 // 158 // This is documented at: 159 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 160 let ptr = ptr as *const ArcInner<T>; 161 162 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 163 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 164 // still valid. 165 let ptr = unsafe { ptr.byte_sub(val_offset) }; 166 167 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 168 // address. 169 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 170 } 171 } 172 173 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 174 // dynamically-sized type (DST) `U`. 175 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 176 177 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 178 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 179 180 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 181 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 182 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 183 // mutable reference when the reference count reaches zero and `T` is dropped. 184 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 185 186 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 187 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 188 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 189 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 190 // the reference count reaches zero and `T` is dropped. 191 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 192 193 impl<T> Arc<T> { 194 /// Constructs a new reference counted instance of `T`. 195 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 196 // INVARIANT: The refcount is initialised to a non-zero value. 197 let value = ArcInner { 198 // SAFETY: There are no safety requirements for this FFI call. 199 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 200 data: contents, 201 }; 202 203 let inner = KBox::new(value, flags)?; 204 205 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 206 // `Arc` object. 207 Ok(unsafe { Self::from_inner(KBox::leak(inner).into()) }) 208 } 209 } 210 211 impl<T: ?Sized> Arc<T> { 212 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 213 /// 214 /// # Safety 215 /// 216 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 217 /// count, one of which will be owned by the new [`Arc`] instance. 218 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 219 // INVARIANT: By the safety requirements, the invariants hold. 220 Arc { 221 ptr: inner, 222 _p: PhantomData, 223 } 224 } 225 226 /// Convert the [`Arc`] into a raw pointer. 227 /// 228 /// The raw pointer has ownership of the refcount that this Arc object owned. 229 pub fn into_raw(self) -> *const T { 230 let ptr = self.ptr.as_ptr(); 231 core::mem::forget(self); 232 // SAFETY: The pointer is valid. 233 unsafe { core::ptr::addr_of!((*ptr).data) } 234 } 235 236 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 237 /// 238 /// # Safety 239 /// 240 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 241 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 242 pub unsafe fn from_raw(ptr: *const T) -> Self { 243 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 244 // `Arc` that is still valid. 245 let ptr = unsafe { ArcInner::container_of(ptr) }; 246 247 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 248 // reference count held then will be owned by the new `Arc` object. 249 unsafe { Self::from_inner(ptr) } 250 } 251 252 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 253 /// 254 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 255 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 256 #[inline] 257 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 258 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 259 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 260 // reference can be created. 261 unsafe { ArcBorrow::new(self.ptr) } 262 } 263 264 /// Compare whether two [`Arc`] pointers reference the same underlying object. 265 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 266 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 267 } 268 269 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 270 /// 271 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 272 /// this method will never call the destructor of the value. 273 /// 274 /// # Examples 275 /// 276 /// ``` 277 /// use kernel::sync::{Arc, UniqueArc}; 278 /// 279 /// let arc = Arc::new(42, GFP_KERNEL)?; 280 /// let unique_arc = arc.into_unique_or_drop(); 281 /// 282 /// // The above conversion should succeed since refcount of `arc` is 1. 283 /// assert!(unique_arc.is_some()); 284 /// 285 /// assert_eq!(*(unique_arc.unwrap()), 42); 286 /// 287 /// # Ok::<(), Error>(()) 288 /// ``` 289 /// 290 /// ``` 291 /// use kernel::sync::{Arc, UniqueArc}; 292 /// 293 /// let arc = Arc::new(42, GFP_KERNEL)?; 294 /// let another = arc.clone(); 295 /// 296 /// let unique_arc = arc.into_unique_or_drop(); 297 /// 298 /// // The above conversion should fail since refcount of `arc` is >1. 299 /// assert!(unique_arc.is_none()); 300 /// 301 /// # Ok::<(), Error>(()) 302 /// ``` 303 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> { 304 // We will manually manage the refcount in this method, so we disable the destructor. 305 let me = ManuallyDrop::new(self); 306 // SAFETY: We own a refcount, so the pointer is still valid. 307 let refcount = unsafe { me.ptr.as_ref() }.refcount.get(); 308 309 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 310 // return without further touching the `Arc`. If the refcount reaches zero, then there are 311 // no other arcs, and we can create a `UniqueArc`. 312 // 313 // SAFETY: We own a refcount, so the pointer is not dangling. 314 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 315 if is_zero { 316 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized 317 // accesses to the refcount. 318 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) }; 319 320 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 321 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 322 // their values. 323 Some(Pin::from(UniqueArc { 324 inner: ManuallyDrop::into_inner(me), 325 })) 326 } else { 327 None 328 } 329 } 330 } 331 332 impl<T: 'static> ForeignOwnable for Arc<T> { 333 type Borrowed<'a> = ArcBorrow<'a, T>; 334 335 fn into_foreign(self) -> *const crate::ffi::c_void { 336 ManuallyDrop::new(self).ptr.as_ptr() as _ 337 } 338 339 unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> ArcBorrow<'a, T> { 340 // By the safety requirement of this function, we know that `ptr` came from 341 // a previous call to `Arc::into_foreign`. 342 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 343 344 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 345 // for the lifetime of the returned value. 346 unsafe { ArcBorrow::new(inner) } 347 } 348 349 unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self { 350 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 351 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 352 // holds a reference count increment that is transferrable to us. 353 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 354 } 355 } 356 357 impl<T: ?Sized> Deref for Arc<T> { 358 type Target = T; 359 360 fn deref(&self) -> &Self::Target { 361 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 362 // safe to dereference it. 363 unsafe { &self.ptr.as_ref().data } 364 } 365 } 366 367 impl<T: ?Sized> AsRef<T> for Arc<T> { 368 fn as_ref(&self) -> &T { 369 self.deref() 370 } 371 } 372 373 impl<T: ?Sized> Clone for Arc<T> { 374 fn clone(&self) -> Self { 375 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 376 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 377 // safe to increment the refcount. 378 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 379 380 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 381 unsafe { Self::from_inner(self.ptr) } 382 } 383 } 384 385 impl<T: ?Sized> Drop for Arc<T> { 386 fn drop(&mut self) { 387 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 388 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 389 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 390 // freed/invalid memory as long as it is never dereferenced. 391 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 392 393 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 394 // this instance is being dropped, so the broken invariant is not observable. 395 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 396 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 397 if is_zero { 398 // The count reached zero, we must free the memory. 399 // 400 // SAFETY: The pointer was initialised from the result of `KBox::leak`. 401 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) }; 402 } 403 } 404 } 405 406 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 407 fn from(item: UniqueArc<T>) -> Self { 408 item.inner 409 } 410 } 411 412 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 413 fn from(item: Pin<UniqueArc<T>>) -> Self { 414 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 415 unsafe { Pin::into_inner_unchecked(item).inner } 416 } 417 } 418 419 /// A borrowed reference to an [`Arc`] instance. 420 /// 421 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 422 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 423 /// 424 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 425 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 426 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 427 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 428 /// needed. 429 /// 430 /// # Invariants 431 /// 432 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 433 /// lifetime of the [`ArcBorrow`] instance. 434 /// 435 /// # Example 436 /// 437 /// ``` 438 /// use kernel::sync::{Arc, ArcBorrow}; 439 /// 440 /// struct Example; 441 /// 442 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 443 /// e.into() 444 /// } 445 /// 446 /// let obj = Arc::new(Example, GFP_KERNEL)?; 447 /// let cloned = do_something(obj.as_arc_borrow()); 448 /// 449 /// // Assert that both `obj` and `cloned` point to the same underlying object. 450 /// assert!(core::ptr::eq(&*obj, &*cloned)); 451 /// # Ok::<(), Error>(()) 452 /// ``` 453 /// 454 /// Using `ArcBorrow<T>` as the type of `self`: 455 /// 456 /// ``` 457 /// use kernel::sync::{Arc, ArcBorrow}; 458 /// 459 /// struct Example { 460 /// a: u32, 461 /// b: u32, 462 /// } 463 /// 464 /// impl Example { 465 /// fn use_reference(self: ArcBorrow<'_, Self>) { 466 /// // ... 467 /// } 468 /// } 469 /// 470 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 471 /// obj.as_arc_borrow().use_reference(); 472 /// # Ok::<(), Error>(()) 473 /// ``` 474 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 475 inner: NonNull<ArcInner<T>>, 476 _p: PhantomData<&'a ()>, 477 } 478 479 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 480 // `ArcBorrow<U>`. 481 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 482 for ArcBorrow<'_, T> 483 { 484 } 485 486 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 487 fn clone(&self) -> Self { 488 *self 489 } 490 } 491 492 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 493 494 impl<T: ?Sized> ArcBorrow<'_, T> { 495 /// Creates a new [`ArcBorrow`] instance. 496 /// 497 /// # Safety 498 /// 499 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 500 /// 1. That `inner` remains valid; 501 /// 2. That no mutable references to `inner` are created. 502 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 503 // INVARIANT: The safety requirements guarantee the invariants. 504 Self { 505 inner, 506 _p: PhantomData, 507 } 508 } 509 510 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 511 /// [`Arc::into_raw`]. 512 /// 513 /// # Safety 514 /// 515 /// * The provided pointer must originate from a call to [`Arc::into_raw`]. 516 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 517 /// not hit zero. 518 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 519 /// [`UniqueArc`] reference to this value. 520 pub unsafe fn from_raw(ptr: *const T) -> Self { 521 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 522 // `Arc` that is still valid. 523 let ptr = unsafe { ArcInner::container_of(ptr) }; 524 525 // SAFETY: The caller promises that the value remains valid since the reference count must 526 // not hit zero, and no mutable reference will be created since that would involve a 527 // `UniqueArc`. 528 unsafe { Self::new(ptr) } 529 } 530 } 531 532 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 533 fn from(b: ArcBorrow<'_, T>) -> Self { 534 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 535 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 536 // increment. 537 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 538 .deref() 539 .clone() 540 } 541 } 542 543 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 544 type Target = T; 545 546 fn deref(&self) -> &Self::Target { 547 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 548 // references to it, so it is safe to create a shared reference. 549 unsafe { &self.inner.as_ref().data } 550 } 551 } 552 553 /// A refcounted object that is known to have a refcount of 1. 554 /// 555 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 556 /// 557 /// # Invariants 558 /// 559 /// `inner` always has a reference count of 1. 560 /// 561 /// # Examples 562 /// 563 /// In the following example, we make changes to the inner object before turning it into an 564 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 565 /// cannot fail. 566 /// 567 /// ``` 568 /// use kernel::sync::{Arc, UniqueArc}; 569 /// 570 /// struct Example { 571 /// a: u32, 572 /// b: u32, 573 /// } 574 /// 575 /// fn test() -> Result<Arc<Example>> { 576 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 577 /// x.a += 1; 578 /// x.b += 1; 579 /// Ok(x.into()) 580 /// } 581 /// 582 /// # test().unwrap(); 583 /// ``` 584 /// 585 /// In the following example we first allocate memory for a refcounted `Example` but we don't 586 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 587 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 588 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 589 /// 590 /// ``` 591 /// use kernel::sync::{Arc, UniqueArc}; 592 /// 593 /// struct Example { 594 /// a: u32, 595 /// b: u32, 596 /// } 597 /// 598 /// fn test() -> Result<Arc<Example>> { 599 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 600 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 601 /// } 602 /// 603 /// # test().unwrap(); 604 /// ``` 605 /// 606 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 607 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 608 /// initialisation, for example, when initialising fields that are wrapped in locks. 609 /// 610 /// ``` 611 /// use kernel::sync::{Arc, UniqueArc}; 612 /// 613 /// struct Example { 614 /// a: u32, 615 /// b: u32, 616 /// } 617 /// 618 /// fn test() -> Result<Arc<Example>> { 619 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 620 /// // We can modify `pinned` because it is `Unpin`. 621 /// pinned.as_mut().a += 1; 622 /// Ok(pinned.into()) 623 /// } 624 /// 625 /// # test().unwrap(); 626 /// ``` 627 pub struct UniqueArc<T: ?Sized> { 628 inner: Arc<T>, 629 } 630 631 impl<T> UniqueArc<T> { 632 /// Tries to allocate a new [`UniqueArc`] instance. 633 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 634 Ok(Self { 635 // INVARIANT: The newly-created object has a refcount of 1. 636 inner: Arc::new(value, flags)?, 637 }) 638 } 639 640 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 641 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 642 // INVARIANT: The refcount is initialised to a non-zero value. 643 let inner = KBox::try_init::<AllocError>( 644 try_init!(ArcInner { 645 // SAFETY: There are no safety requirements for this FFI call. 646 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 647 data <- init::uninit::<T, AllocError>(), 648 }? AllocError), 649 flags, 650 )?; 651 Ok(UniqueArc { 652 // INVARIANT: The newly-created object has a refcount of 1. 653 // SAFETY: The pointer from the `KBox` is valid. 654 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) }, 655 }) 656 } 657 } 658 659 impl<T> UniqueArc<MaybeUninit<T>> { 660 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 661 pub fn write(mut self, value: T) -> UniqueArc<T> { 662 self.deref_mut().write(value); 663 // SAFETY: We just wrote the value to be initialized. 664 unsafe { self.assume_init() } 665 } 666 667 /// Unsafely assume that `self` is initialized. 668 /// 669 /// # Safety 670 /// 671 /// The caller guarantees that the value behind this pointer has been initialized. It is 672 /// *immediate* UB to call this when the value is not initialized. 673 pub unsafe fn assume_init(self) -> UniqueArc<T> { 674 let inner = ManuallyDrop::new(self).inner.ptr; 675 UniqueArc { 676 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 677 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 678 inner: unsafe { Arc::from_inner(inner.cast()) }, 679 } 680 } 681 682 /// Initialize `self` using the given initializer. 683 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 684 // SAFETY: The supplied pointer is valid for initialization. 685 match unsafe { init.__init(self.as_mut_ptr()) } { 686 // SAFETY: Initialization completed successfully. 687 Ok(()) => Ok(unsafe { self.assume_init() }), 688 Err(err) => Err(err), 689 } 690 } 691 692 /// Pin-initialize `self` using the given pin-initializer. 693 pub fn pin_init_with<E>( 694 mut self, 695 init: impl PinInit<T, E>, 696 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 697 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 698 // to ensure it does not move. 699 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 700 // SAFETY: Initialization completed successfully. 701 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 702 Err(err) => Err(err), 703 } 704 } 705 } 706 707 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 708 fn from(obj: UniqueArc<T>) -> Self { 709 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 710 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 711 unsafe { Pin::new_unchecked(obj) } 712 } 713 } 714 715 impl<T: ?Sized> Deref for UniqueArc<T> { 716 type Target = T; 717 718 fn deref(&self) -> &Self::Target { 719 self.inner.deref() 720 } 721 } 722 723 impl<T: ?Sized> DerefMut for UniqueArc<T> { 724 fn deref_mut(&mut self) -> &mut Self::Target { 725 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 726 // it is safe to dereference it. Additionally, we know there is only one reference when 727 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 728 unsafe { &mut self.inner.ptr.as_mut().data } 729 } 730 } 731 732 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 733 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 734 fmt::Display::fmt(self.deref(), f) 735 } 736 } 737 738 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 739 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 740 fmt::Display::fmt(self.deref(), f) 741 } 742 } 743 744 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 745 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 746 fmt::Debug::fmt(self.deref(), f) 747 } 748 } 749 750 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 751 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 752 fmt::Debug::fmt(self.deref(), f) 753 } 754 } 755