1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 17 18 use crate::{ 19 bindings, 20 error::{self, Error}, 21 init::{self, InPlaceInit, Init, PinInit}, 22 try_init, 23 types::{ForeignOwnable, Opaque}, 24 }; 25 use alloc::boxed::Box; 26 use core::{ 27 alloc::{AllocError, Layout}, 28 fmt, 29 marker::{PhantomData, Unsize}, 30 mem::{ManuallyDrop, MaybeUninit}, 31 ops::{Deref, DerefMut}, 32 pin::Pin, 33 ptr::NonNull, 34 }; 35 use macros::pin_data; 36 37 mod std_vendor; 38 39 /// A reference-counted pointer to an instance of `T`. 40 /// 41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 43 /// 44 /// # Invariants 45 /// 46 /// The reference count on an instance of [`Arc`] is always non-zero. 47 /// The object pointed to by [`Arc`] is always pinned. 48 /// 49 /// # Examples 50 /// 51 /// ``` 52 /// use kernel::sync::Arc; 53 /// 54 /// struct Example { 55 /// a: u32, 56 /// b: u32, 57 /// } 58 /// 59 /// // Create a refcounted instance of `Example`. 60 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 61 /// 62 /// // Get a new pointer to `obj` and increment the refcount. 63 /// let cloned = obj.clone(); 64 /// 65 /// // Assert that both `obj` and `cloned` point to the same underlying object. 66 /// assert!(core::ptr::eq(&*obj, &*cloned)); 67 /// 68 /// // Destroy `obj` and decrement its refcount. 69 /// drop(obj); 70 /// 71 /// // Check that the values are still accessible through `cloned`. 72 /// assert_eq!(cloned.a, 10); 73 /// assert_eq!(cloned.b, 20); 74 /// 75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 76 /// # Ok::<(), Error>(()) 77 /// ``` 78 /// 79 /// Using `Arc<T>` as the type of `self`: 80 /// 81 /// ``` 82 /// use kernel::sync::Arc; 83 /// 84 /// struct Example { 85 /// a: u32, 86 /// b: u32, 87 /// } 88 /// 89 /// impl Example { 90 /// fn take_over(self: Arc<Self>) { 91 /// // ... 92 /// } 93 /// 94 /// fn use_reference(self: &Arc<Self>) { 95 /// // ... 96 /// } 97 /// } 98 /// 99 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 100 /// obj.use_reference(); 101 /// obj.take_over(); 102 /// # Ok::<(), Error>(()) 103 /// ``` 104 /// 105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 106 /// 107 /// ``` 108 /// use kernel::sync::{Arc, ArcBorrow}; 109 /// 110 /// trait MyTrait { 111 /// // Trait has a function whose `self` type is `Arc<Self>`. 112 /// fn example1(self: Arc<Self>) {} 113 /// 114 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 115 /// fn example2(self: ArcBorrow<'_, Self>) {} 116 /// } 117 /// 118 /// struct Example; 119 /// impl MyTrait for Example {} 120 /// 121 /// // `obj` has type `Arc<Example>`. 122 /// let obj: Arc<Example> = Arc::try_new(Example)?; 123 /// 124 /// // `coerced` has type `Arc<dyn MyTrait>`. 125 /// let coerced: Arc<dyn MyTrait> = obj; 126 /// # Ok::<(), Error>(()) 127 /// ``` 128 pub struct Arc<T: ?Sized> { 129 ptr: NonNull<ArcInner<T>>, 130 _p: PhantomData<ArcInner<T>>, 131 } 132 133 #[pin_data] 134 #[repr(C)] 135 struct ArcInner<T: ?Sized> { 136 refcount: Opaque<bindings::refcount_t>, 137 data: T, 138 } 139 140 // This is to allow [`Arc`] (and variants) to be used as the type of `self`. 141 impl<T: ?Sized> core::ops::Receiver for Arc<T> {} 142 143 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 144 // dynamically-sized type (DST) `U`. 145 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 146 147 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 148 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 149 150 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 151 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 152 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 153 // mutable reference when the reference count reaches zero and `T` is dropped. 154 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 155 156 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 157 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 158 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 159 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 160 // the reference count reaches zero and `T` is dropped. 161 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 162 163 impl<T> Arc<T> { 164 /// Constructs a new reference counted instance of `T`. 165 pub fn try_new(contents: T) -> Result<Self, AllocError> { 166 // INVARIANT: The refcount is initialised to a non-zero value. 167 let value = ArcInner { 168 // SAFETY: There are no safety requirements for this FFI call. 169 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 170 data: contents, 171 }; 172 173 let inner = Box::try_new(value)?; 174 175 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 176 // `Arc` object. 177 Ok(unsafe { Self::from_inner(Box::leak(inner).into()) }) 178 } 179 180 /// Use the given initializer to in-place initialize a `T`. 181 /// 182 /// If `T: !Unpin` it will not be able to move afterwards. 183 #[inline] 184 pub fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Self> 185 where 186 Error: From<E>, 187 { 188 UniqueArc::pin_init(init).map(|u| u.into()) 189 } 190 191 /// Use the given initializer to in-place initialize a `T`. 192 /// 193 /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned. 194 #[inline] 195 pub fn init<E>(init: impl Init<T, E>) -> error::Result<Self> 196 where 197 Error: From<E>, 198 { 199 UniqueArc::init(init).map(|u| u.into()) 200 } 201 } 202 203 impl<T: ?Sized> Arc<T> { 204 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 205 /// 206 /// # Safety 207 /// 208 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 209 /// count, one of which will be owned by the new [`Arc`] instance. 210 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 211 // INVARIANT: By the safety requirements, the invariants hold. 212 Arc { 213 ptr: inner, 214 _p: PhantomData, 215 } 216 } 217 218 /// Convert the [`Arc`] into a raw pointer. 219 /// 220 /// The raw pointer has ownership of the refcount that this Arc object owned. 221 pub fn into_raw(self) -> *const T { 222 let ptr = self.ptr.as_ptr(); 223 core::mem::forget(self); 224 // SAFETY: The pointer is valid. 225 unsafe { core::ptr::addr_of!((*ptr).data) } 226 } 227 228 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 229 /// 230 /// # Safety 231 /// 232 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 233 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 234 pub unsafe fn from_raw(ptr: *const T) -> Self { 235 let refcount_layout = Layout::new::<bindings::refcount_t>(); 236 // SAFETY: The caller guarantees that the pointer is valid. 237 let val_layout = Layout::for_value(unsafe { &*ptr }); 238 // SAFETY: We're computing the layout of a real struct that existed when compiling this 239 // binary, so its layout is not so large that it can trigger arithmetic overflow. 240 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 241 242 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 243 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 244 // 245 // This is documented at: 246 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 247 let ptr = ptr as *const ArcInner<T>; 248 249 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 250 // pointer, since it originates from a previous call to `Arc::into_raw` and is still valid. 251 let ptr = unsafe { ptr.byte_sub(val_offset) }; 252 253 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 254 // reference count held then will be owned by the new `Arc` object. 255 unsafe { Self::from_inner(NonNull::new_unchecked(ptr.cast_mut())) } 256 } 257 258 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 259 /// 260 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 261 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 262 #[inline] 263 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 264 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 265 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 266 // reference can be created. 267 unsafe { ArcBorrow::new(self.ptr) } 268 } 269 270 /// Compare whether two [`Arc`] pointers reference the same underlying object. 271 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 272 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 273 } 274 } 275 276 impl<T: 'static> ForeignOwnable for Arc<T> { 277 type Borrowed<'a> = ArcBorrow<'a, T>; 278 279 fn into_foreign(self) -> *const core::ffi::c_void { 280 ManuallyDrop::new(self).ptr.as_ptr() as _ 281 } 282 283 unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> { 284 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 285 // a previous call to `Arc::into_foreign`. 286 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 287 288 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 289 // for the lifetime of the returned value. 290 unsafe { ArcBorrow::new(inner) } 291 } 292 293 unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self { 294 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 295 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 296 // holds a reference count increment that is transferrable to us. 297 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 298 } 299 } 300 301 impl<T: ?Sized> Deref for Arc<T> { 302 type Target = T; 303 304 fn deref(&self) -> &Self::Target { 305 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 306 // safe to dereference it. 307 unsafe { &self.ptr.as_ref().data } 308 } 309 } 310 311 impl<T: ?Sized> AsRef<T> for Arc<T> { 312 fn as_ref(&self) -> &T { 313 self.deref() 314 } 315 } 316 317 impl<T: ?Sized> Clone for Arc<T> { 318 fn clone(&self) -> Self { 319 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 320 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 321 // safe to increment the refcount. 322 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 323 324 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 325 unsafe { Self::from_inner(self.ptr) } 326 } 327 } 328 329 impl<T: ?Sized> Drop for Arc<T> { 330 fn drop(&mut self) { 331 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 332 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 333 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 334 // freed/invalid memory as long as it is never dereferenced. 335 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 336 337 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 338 // this instance is being dropped, so the broken invariant is not observable. 339 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 340 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 341 if is_zero { 342 // The count reached zero, we must free the memory. 343 // 344 // SAFETY: The pointer was initialised from the result of `Box::leak`. 345 unsafe { drop(Box::from_raw(self.ptr.as_ptr())) }; 346 } 347 } 348 } 349 350 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 351 fn from(item: UniqueArc<T>) -> Self { 352 item.inner 353 } 354 } 355 356 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 357 fn from(item: Pin<UniqueArc<T>>) -> Self { 358 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 359 unsafe { Pin::into_inner_unchecked(item).inner } 360 } 361 } 362 363 /// A borrowed reference to an [`Arc`] instance. 364 /// 365 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 366 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 367 /// 368 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 369 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 370 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 371 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 372 /// needed. 373 /// 374 /// # Invariants 375 /// 376 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 377 /// lifetime of the [`ArcBorrow`] instance. 378 /// 379 /// # Example 380 /// 381 /// ``` 382 /// use kernel::sync::{Arc, ArcBorrow}; 383 /// 384 /// struct Example; 385 /// 386 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 387 /// e.into() 388 /// } 389 /// 390 /// let obj = Arc::try_new(Example)?; 391 /// let cloned = do_something(obj.as_arc_borrow()); 392 /// 393 /// // Assert that both `obj` and `cloned` point to the same underlying object. 394 /// assert!(core::ptr::eq(&*obj, &*cloned)); 395 /// # Ok::<(), Error>(()) 396 /// ``` 397 /// 398 /// Using `ArcBorrow<T>` as the type of `self`: 399 /// 400 /// ``` 401 /// use kernel::sync::{Arc, ArcBorrow}; 402 /// 403 /// struct Example { 404 /// a: u32, 405 /// b: u32, 406 /// } 407 /// 408 /// impl Example { 409 /// fn use_reference(self: ArcBorrow<'_, Self>) { 410 /// // ... 411 /// } 412 /// } 413 /// 414 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 415 /// obj.as_arc_borrow().use_reference(); 416 /// # Ok::<(), Error>(()) 417 /// ``` 418 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 419 inner: NonNull<ArcInner<T>>, 420 _p: PhantomData<&'a ()>, 421 } 422 423 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`. 424 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {} 425 426 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 427 // `ArcBorrow<U>`. 428 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 429 for ArcBorrow<'_, T> 430 { 431 } 432 433 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 434 fn clone(&self) -> Self { 435 *self 436 } 437 } 438 439 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 440 441 impl<T: ?Sized> ArcBorrow<'_, T> { 442 /// Creates a new [`ArcBorrow`] instance. 443 /// 444 /// # Safety 445 /// 446 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 447 /// 1. That `inner` remains valid; 448 /// 2. That no mutable references to `inner` are created. 449 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 450 // INVARIANT: The safety requirements guarantee the invariants. 451 Self { 452 inner, 453 _p: PhantomData, 454 } 455 } 456 } 457 458 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 459 fn from(b: ArcBorrow<'_, T>) -> Self { 460 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 461 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 462 // increment. 463 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 464 .deref() 465 .clone() 466 } 467 } 468 469 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 470 type Target = T; 471 472 fn deref(&self) -> &Self::Target { 473 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 474 // references to it, so it is safe to create a shared reference. 475 unsafe { &self.inner.as_ref().data } 476 } 477 } 478 479 /// A refcounted object that is known to have a refcount of 1. 480 /// 481 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 482 /// 483 /// # Invariants 484 /// 485 /// `inner` always has a reference count of 1. 486 /// 487 /// # Examples 488 /// 489 /// In the following example, we make changes to the inner object before turning it into an 490 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 491 /// cannot fail. 492 /// 493 /// ``` 494 /// use kernel::sync::{Arc, UniqueArc}; 495 /// 496 /// struct Example { 497 /// a: u32, 498 /// b: u32, 499 /// } 500 /// 501 /// fn test() -> Result<Arc<Example>> { 502 /// let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?; 503 /// x.a += 1; 504 /// x.b += 1; 505 /// Ok(x.into()) 506 /// } 507 /// 508 /// # test().unwrap(); 509 /// ``` 510 /// 511 /// In the following example we first allocate memory for a refcounted `Example` but we don't 512 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 513 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 514 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 515 /// 516 /// ``` 517 /// use kernel::sync::{Arc, UniqueArc}; 518 /// 519 /// struct Example { 520 /// a: u32, 521 /// b: u32, 522 /// } 523 /// 524 /// fn test() -> Result<Arc<Example>> { 525 /// let x = UniqueArc::try_new_uninit()?; 526 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 527 /// } 528 /// 529 /// # test().unwrap(); 530 /// ``` 531 /// 532 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 533 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 534 /// initialisation, for example, when initialising fields that are wrapped in locks. 535 /// 536 /// ``` 537 /// use kernel::sync::{Arc, UniqueArc}; 538 /// 539 /// struct Example { 540 /// a: u32, 541 /// b: u32, 542 /// } 543 /// 544 /// fn test() -> Result<Arc<Example>> { 545 /// let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?); 546 /// // We can modify `pinned` because it is `Unpin`. 547 /// pinned.as_mut().a += 1; 548 /// Ok(pinned.into()) 549 /// } 550 /// 551 /// # test().unwrap(); 552 /// ``` 553 pub struct UniqueArc<T: ?Sized> { 554 inner: Arc<T>, 555 } 556 557 impl<T> UniqueArc<T> { 558 /// Tries to allocate a new [`UniqueArc`] instance. 559 pub fn try_new(value: T) -> Result<Self, AllocError> { 560 Ok(Self { 561 // INVARIANT: The newly-created object has a refcount of 1. 562 inner: Arc::try_new(value)?, 563 }) 564 } 565 566 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 567 pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 568 // INVARIANT: The refcount is initialised to a non-zero value. 569 let inner = Box::try_init::<AllocError>(try_init!(ArcInner { 570 // SAFETY: There are no safety requirements for this FFI call. 571 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 572 data <- init::uninit::<T, AllocError>(), 573 }? AllocError))?; 574 Ok(UniqueArc { 575 // INVARIANT: The newly-created object has a refcount of 1. 576 // SAFETY: The pointer from the `Box` is valid. 577 inner: unsafe { Arc::from_inner(Box::leak(inner).into()) }, 578 }) 579 } 580 } 581 582 impl<T> UniqueArc<MaybeUninit<T>> { 583 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 584 pub fn write(mut self, value: T) -> UniqueArc<T> { 585 self.deref_mut().write(value); 586 // SAFETY: We just wrote the value to be initialized. 587 unsafe { self.assume_init() } 588 } 589 590 /// Unsafely assume that `self` is initialized. 591 /// 592 /// # Safety 593 /// 594 /// The caller guarantees that the value behind this pointer has been initialized. It is 595 /// *immediate* UB to call this when the value is not initialized. 596 pub unsafe fn assume_init(self) -> UniqueArc<T> { 597 let inner = ManuallyDrop::new(self).inner.ptr; 598 UniqueArc { 599 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 600 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 601 inner: unsafe { Arc::from_inner(inner.cast()) }, 602 } 603 } 604 605 /// Initialize `self` using the given initializer. 606 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 607 // SAFETY: The supplied pointer is valid for initialization. 608 match unsafe { init.__init(self.as_mut_ptr()) } { 609 // SAFETY: Initialization completed successfully. 610 Ok(()) => Ok(unsafe { self.assume_init() }), 611 Err(err) => Err(err), 612 } 613 } 614 615 /// Pin-initialize `self` using the given pin-initializer. 616 pub fn pin_init_with<E>( 617 mut self, 618 init: impl PinInit<T, E>, 619 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 620 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 621 // to ensure it does not move. 622 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 623 // SAFETY: Initialization completed successfully. 624 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 625 Err(err) => Err(err), 626 } 627 } 628 } 629 630 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 631 fn from(obj: UniqueArc<T>) -> Self { 632 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 633 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 634 unsafe { Pin::new_unchecked(obj) } 635 } 636 } 637 638 impl<T: ?Sized> Deref for UniqueArc<T> { 639 type Target = T; 640 641 fn deref(&self) -> &Self::Target { 642 self.inner.deref() 643 } 644 } 645 646 impl<T: ?Sized> DerefMut for UniqueArc<T> { 647 fn deref_mut(&mut self) -> &mut Self::Target { 648 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 649 // it is safe to dereference it. Additionally, we know there is only one reference when 650 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 651 unsafe { &mut self.inner.ptr.as_mut().data } 652 } 653 } 654 655 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 656 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 657 fmt::Display::fmt(self.deref(), f) 658 } 659 } 660 661 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 662 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 663 fmt::Display::fmt(self.deref(), f) 664 } 665 } 666 667 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 668 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 669 fmt::Debug::fmt(self.deref(), f) 670 } 671 } 672 673 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 674 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 675 fmt::Debug::fmt(self.deref(), f) 676 } 677 } 678