1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 17 18 use crate::{ 19 bindings, 20 error::Result, 21 types::{ForeignOwnable, Opaque}, 22 }; 23 use alloc::boxed::Box; 24 use core::{ 25 marker::{PhantomData, Unsize}, 26 mem::{ManuallyDrop, MaybeUninit}, 27 ops::{Deref, DerefMut}, 28 pin::Pin, 29 ptr::NonNull, 30 }; 31 32 /// A reference-counted pointer to an instance of `T`. 33 /// 34 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 35 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 36 /// 37 /// # Invariants 38 /// 39 /// The reference count on an instance of [`Arc`] is always non-zero. 40 /// The object pointed to by [`Arc`] is always pinned. 41 /// 42 /// # Examples 43 /// 44 /// ``` 45 /// use kernel::sync::Arc; 46 /// 47 /// struct Example { 48 /// a: u32, 49 /// b: u32, 50 /// } 51 /// 52 /// // Create a ref-counted instance of `Example`. 53 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 54 /// 55 /// // Get a new pointer to `obj` and increment the refcount. 56 /// let cloned = obj.clone(); 57 /// 58 /// // Assert that both `obj` and `cloned` point to the same underlying object. 59 /// assert!(core::ptr::eq(&*obj, &*cloned)); 60 /// 61 /// // Destroy `obj` and decrement its refcount. 62 /// drop(obj); 63 /// 64 /// // Check that the values are still accessible through `cloned`. 65 /// assert_eq!(cloned.a, 10); 66 /// assert_eq!(cloned.b, 20); 67 /// 68 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 69 /// ``` 70 /// 71 /// Using `Arc<T>` as the type of `self`: 72 /// 73 /// ``` 74 /// use kernel::sync::Arc; 75 /// 76 /// struct Example { 77 /// a: u32, 78 /// b: u32, 79 /// } 80 /// 81 /// impl Example { 82 /// fn take_over(self: Arc<Self>) { 83 /// // ... 84 /// } 85 /// 86 /// fn use_reference(self: &Arc<Self>) { 87 /// // ... 88 /// } 89 /// } 90 /// 91 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 92 /// obj.use_reference(); 93 /// obj.take_over(); 94 /// ``` 95 /// 96 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 97 /// 98 /// ``` 99 /// use kernel::sync::{Arc, ArcBorrow}; 100 /// 101 /// trait MyTrait { 102 /// // Trait has a function whose `self` type is `Arc<Self>`. 103 /// fn example1(self: Arc<Self>) {} 104 /// 105 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 106 /// fn example2(self: ArcBorrow<'_, Self>) {} 107 /// } 108 /// 109 /// struct Example; 110 /// impl MyTrait for Example {} 111 /// 112 /// // `obj` has type `Arc<Example>`. 113 /// let obj: Arc<Example> = Arc::try_new(Example)?; 114 /// 115 /// // `coerced` has type `Arc<dyn MyTrait>`. 116 /// let coerced: Arc<dyn MyTrait> = obj; 117 /// ``` 118 pub struct Arc<T: ?Sized> { 119 ptr: NonNull<ArcInner<T>>, 120 _p: PhantomData<ArcInner<T>>, 121 } 122 123 #[repr(C)] 124 struct ArcInner<T: ?Sized> { 125 refcount: Opaque<bindings::refcount_t>, 126 data: T, 127 } 128 129 // This is to allow [`Arc`] (and variants) to be used as the type of `self`. 130 impl<T: ?Sized> core::ops::Receiver for Arc<T> {} 131 132 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 133 // dynamically-sized type (DST) `U`. 134 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 135 136 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 137 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 138 139 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 140 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 141 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` directly, for 142 // example, when the reference count reaches zero and `T` is dropped. 143 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 144 145 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` for the 146 // same reason as above. `T` needs to be `Send` as well because a thread can clone an `&Arc<T>` 147 // into an `Arc<T>`, which may lead to `T` being accessed by the same reasoning as above. 148 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 149 150 impl<T> Arc<T> { 151 /// Constructs a new reference counted instance of `T`. 152 pub fn try_new(contents: T) -> Result<Self> { 153 // INVARIANT: The refcount is initialised to a non-zero value. 154 let value = ArcInner { 155 // SAFETY: There are no safety requirements for this FFI call. 156 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 157 data: contents, 158 }; 159 160 let inner = Box::try_new(value)?; 161 162 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 163 // `Arc` object. 164 Ok(unsafe { Self::from_inner(Box::leak(inner).into()) }) 165 } 166 } 167 168 impl<T: ?Sized> Arc<T> { 169 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 170 /// 171 /// # Safety 172 /// 173 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 174 /// count, one of which will be owned by the new [`Arc`] instance. 175 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 176 // INVARIANT: By the safety requirements, the invariants hold. 177 Arc { 178 ptr: inner, 179 _p: PhantomData, 180 } 181 } 182 183 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 184 /// 185 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 186 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 187 #[inline] 188 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 189 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 190 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 191 // reference can be created. 192 unsafe { ArcBorrow::new(self.ptr) } 193 } 194 } 195 196 impl<T: 'static> ForeignOwnable for Arc<T> { 197 type Borrowed<'a> = ArcBorrow<'a, T>; 198 199 fn into_foreign(self) -> *const core::ffi::c_void { 200 ManuallyDrop::new(self).ptr.as_ptr() as _ 201 } 202 203 unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> { 204 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 205 // a previous call to `Arc::into_foreign`. 206 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 207 208 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 209 // for the lifetime of the returned value. Additionally, the safety requirements of 210 // `ForeignOwnable::borrow_mut` ensure that no new mutable references are created. 211 unsafe { ArcBorrow::new(inner) } 212 } 213 214 unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self { 215 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 216 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 217 // holds a reference count increment that is transferrable to us. 218 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 219 } 220 } 221 222 impl<T: ?Sized> Deref for Arc<T> { 223 type Target = T; 224 225 fn deref(&self) -> &Self::Target { 226 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 227 // safe to dereference it. 228 unsafe { &self.ptr.as_ref().data } 229 } 230 } 231 232 impl<T: ?Sized> Clone for Arc<T> { 233 fn clone(&self) -> Self { 234 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 235 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 236 // safe to increment the refcount. 237 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 238 239 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 240 unsafe { Self::from_inner(self.ptr) } 241 } 242 } 243 244 impl<T: ?Sized> Drop for Arc<T> { 245 fn drop(&mut self) { 246 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 247 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 248 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 249 // freed/invalid memory as long as it is never dereferenced. 250 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 251 252 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 253 // this instance is being dropped, so the broken invariant is not observable. 254 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 255 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 256 if is_zero { 257 // The count reached zero, we must free the memory. 258 // 259 // SAFETY: The pointer was initialised from the result of `Box::leak`. 260 unsafe { Box::from_raw(self.ptr.as_ptr()) }; 261 } 262 } 263 } 264 265 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 266 fn from(item: UniqueArc<T>) -> Self { 267 item.inner 268 } 269 } 270 271 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 272 fn from(item: Pin<UniqueArc<T>>) -> Self { 273 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 274 unsafe { Pin::into_inner_unchecked(item).inner } 275 } 276 } 277 278 /// A borrowed reference to an [`Arc`] instance. 279 /// 280 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 281 /// to use just `&T`, which we can trivially get from an `Arc<T>` instance. 282 /// 283 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 284 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 285 /// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double 286 /// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if 287 /// needed. 288 /// 289 /// # Invariants 290 /// 291 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 292 /// lifetime of the [`ArcBorrow`] instance. 293 /// 294 /// # Example 295 /// 296 /// ``` 297 /// use crate::sync::{Arc, ArcBorrow}; 298 /// 299 /// struct Example; 300 /// 301 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 302 /// e.into() 303 /// } 304 /// 305 /// let obj = Arc::try_new(Example)?; 306 /// let cloned = do_something(obj.as_arc_borrow()); 307 /// 308 /// // Assert that both `obj` and `cloned` point to the same underlying object. 309 /// assert!(core::ptr::eq(&*obj, &*cloned)); 310 /// ``` 311 /// 312 /// Using `ArcBorrow<T>` as the type of `self`: 313 /// 314 /// ``` 315 /// use crate::sync::{Arc, ArcBorrow}; 316 /// 317 /// struct Example { 318 /// a: u32, 319 /// b: u32, 320 /// } 321 /// 322 /// impl Example { 323 /// fn use_reference(self: ArcBorrow<'_, Self>) { 324 /// // ... 325 /// } 326 /// } 327 /// 328 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 329 /// obj.as_arc_borrow().use_reference(); 330 /// ``` 331 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 332 inner: NonNull<ArcInner<T>>, 333 _p: PhantomData<&'a ()>, 334 } 335 336 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`. 337 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {} 338 339 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 340 // `ArcBorrow<U>`. 341 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 342 for ArcBorrow<'_, T> 343 { 344 } 345 346 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 347 fn clone(&self) -> Self { 348 *self 349 } 350 } 351 352 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 353 354 impl<T: ?Sized> ArcBorrow<'_, T> { 355 /// Creates a new [`ArcBorrow`] instance. 356 /// 357 /// # Safety 358 /// 359 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 360 /// 1. That `inner` remains valid; 361 /// 2. That no mutable references to `inner` are created. 362 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 363 // INVARIANT: The safety requirements guarantee the invariants. 364 Self { 365 inner, 366 _p: PhantomData, 367 } 368 } 369 } 370 371 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 372 fn from(b: ArcBorrow<'_, T>) -> Self { 373 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 374 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 375 // increment. 376 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 377 .deref() 378 .clone() 379 } 380 } 381 382 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 383 type Target = T; 384 385 fn deref(&self) -> &Self::Target { 386 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 387 // references to it, so it is safe to create a shared reference. 388 unsafe { &self.inner.as_ref().data } 389 } 390 } 391 392 /// A refcounted object that is known to have a refcount of 1. 393 /// 394 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 395 /// 396 /// # Invariants 397 /// 398 /// `inner` always has a reference count of 1. 399 /// 400 /// # Examples 401 /// 402 /// In the following example, we make changes to the inner object before turning it into an 403 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 404 /// cannot fail. 405 /// 406 /// ``` 407 /// use kernel::sync::{Arc, UniqueArc}; 408 /// 409 /// struct Example { 410 /// a: u32, 411 /// b: u32, 412 /// } 413 /// 414 /// fn test() -> Result<Arc<Example>> { 415 /// let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?; 416 /// x.a += 1; 417 /// x.b += 1; 418 /// Ok(x.into()) 419 /// } 420 /// 421 /// # test().unwrap(); 422 /// ``` 423 /// 424 /// In the following example we first allocate memory for a ref-counted `Example` but we don't 425 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 426 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 427 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 428 /// 429 /// ``` 430 /// use kernel::sync::{Arc, UniqueArc}; 431 /// 432 /// struct Example { 433 /// a: u32, 434 /// b: u32, 435 /// } 436 /// 437 /// fn test() -> Result<Arc<Example>> { 438 /// let x = UniqueArc::try_new_uninit()?; 439 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 440 /// } 441 /// 442 /// # test().unwrap(); 443 /// ``` 444 /// 445 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 446 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 447 /// initialisation, for example, when initialising fields that are wrapped in locks. 448 /// 449 /// ``` 450 /// use kernel::sync::{Arc, UniqueArc}; 451 /// 452 /// struct Example { 453 /// a: u32, 454 /// b: u32, 455 /// } 456 /// 457 /// fn test() -> Result<Arc<Example>> { 458 /// let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?); 459 /// // We can modify `pinned` because it is `Unpin`. 460 /// pinned.as_mut().a += 1; 461 /// Ok(pinned.into()) 462 /// } 463 /// 464 /// # test().unwrap(); 465 /// ``` 466 pub struct UniqueArc<T: ?Sized> { 467 inner: Arc<T>, 468 } 469 470 impl<T> UniqueArc<T> { 471 /// Tries to allocate a new [`UniqueArc`] instance. 472 pub fn try_new(value: T) -> Result<Self> { 473 Ok(Self { 474 // INVARIANT: The newly-created object has a ref-count of 1. 475 inner: Arc::try_new(value)?, 476 }) 477 } 478 479 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 480 pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>> { 481 Ok(UniqueArc::<MaybeUninit<T>> { 482 // INVARIANT: The newly-created object has a ref-count of 1. 483 inner: Arc::try_new(MaybeUninit::uninit())?, 484 }) 485 } 486 } 487 488 impl<T> UniqueArc<MaybeUninit<T>> { 489 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 490 pub fn write(mut self, value: T) -> UniqueArc<T> { 491 self.deref_mut().write(value); 492 let inner = ManuallyDrop::new(self).inner.ptr; 493 UniqueArc { 494 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 495 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 496 inner: unsafe { Arc::from_inner(inner.cast()) }, 497 } 498 } 499 } 500 501 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 502 fn from(obj: UniqueArc<T>) -> Self { 503 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 504 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 505 unsafe { Pin::new_unchecked(obj) } 506 } 507 } 508 509 impl<T: ?Sized> Deref for UniqueArc<T> { 510 type Target = T; 511 512 fn deref(&self) -> &Self::Target { 513 self.inner.deref() 514 } 515 } 516 517 impl<T: ?Sized> DerefMut for UniqueArc<T> { 518 fn deref_mut(&mut self) -> &mut Self::Target { 519 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 520 // it is safe to dereference it. Additionally, we know there is only one reference when 521 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 522 unsafe { &mut self.inner.ptr.as_mut().data } 523 } 524 } 525