xref: /linux/rust/kernel/sync/arc.rs (revision 51f6af86de35bfd12a005caf457f2ec834193de8)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //!
16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
17 
18 use crate::{
19     alloc::{box_ext::BoxExt, AllocError, Flags},
20     bindings,
21     error::{self, Error},
22     init::{self, InPlaceInit, Init, PinInit},
23     try_init,
24     types::{ForeignOwnable, Opaque},
25 };
26 use alloc::boxed::Box;
27 use core::{
28     alloc::Layout,
29     fmt,
30     marker::{PhantomData, Unsize},
31     mem::{ManuallyDrop, MaybeUninit},
32     ops::{Deref, DerefMut},
33     pin::Pin,
34     ptr::NonNull,
35 };
36 use macros::pin_data;
37 
38 mod std_vendor;
39 
40 /// A reference-counted pointer to an instance of `T`.
41 ///
42 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
43 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
44 ///
45 /// # Invariants
46 ///
47 /// The reference count on an instance of [`Arc`] is always non-zero.
48 /// The object pointed to by [`Arc`] is always pinned.
49 ///
50 /// # Examples
51 ///
52 /// ```
53 /// use kernel::sync::Arc;
54 ///
55 /// struct Example {
56 ///     a: u32,
57 ///     b: u32,
58 /// }
59 ///
60 /// // Create a refcounted instance of `Example`.
61 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
62 ///
63 /// // Get a new pointer to `obj` and increment the refcount.
64 /// let cloned = obj.clone();
65 ///
66 /// // Assert that both `obj` and `cloned` point to the same underlying object.
67 /// assert!(core::ptr::eq(&*obj, &*cloned));
68 ///
69 /// // Destroy `obj` and decrement its refcount.
70 /// drop(obj);
71 ///
72 /// // Check that the values are still accessible through `cloned`.
73 /// assert_eq!(cloned.a, 10);
74 /// assert_eq!(cloned.b, 20);
75 ///
76 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
77 /// # Ok::<(), Error>(())
78 /// ```
79 ///
80 /// Using `Arc<T>` as the type of `self`:
81 ///
82 /// ```
83 /// use kernel::sync::Arc;
84 ///
85 /// struct Example {
86 ///     a: u32,
87 ///     b: u32,
88 /// }
89 ///
90 /// impl Example {
91 ///     fn take_over(self: Arc<Self>) {
92 ///         // ...
93 ///     }
94 ///
95 ///     fn use_reference(self: &Arc<Self>) {
96 ///         // ...
97 ///     }
98 /// }
99 ///
100 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
101 /// obj.use_reference();
102 /// obj.take_over();
103 /// # Ok::<(), Error>(())
104 /// ```
105 ///
106 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
107 ///
108 /// ```
109 /// use kernel::sync::{Arc, ArcBorrow};
110 ///
111 /// trait MyTrait {
112 ///     // Trait has a function whose `self` type is `Arc<Self>`.
113 ///     fn example1(self: Arc<Self>) {}
114 ///
115 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
116 ///     fn example2(self: ArcBorrow<'_, Self>) {}
117 /// }
118 ///
119 /// struct Example;
120 /// impl MyTrait for Example {}
121 ///
122 /// // `obj` has type `Arc<Example>`.
123 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
124 ///
125 /// // `coerced` has type `Arc<dyn MyTrait>`.
126 /// let coerced: Arc<dyn MyTrait> = obj;
127 /// # Ok::<(), Error>(())
128 /// ```
129 pub struct Arc<T: ?Sized> {
130     ptr: NonNull<ArcInner<T>>,
131     _p: PhantomData<ArcInner<T>>,
132 }
133 
134 #[pin_data]
135 #[repr(C)]
136 struct ArcInner<T: ?Sized> {
137     refcount: Opaque<bindings::refcount_t>,
138     data: T,
139 }
140 
141 impl<T: ?Sized> ArcInner<T> {
142     /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
143     ///
144     /// # Safety
145     ///
146     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
147     /// not yet have been destroyed.
148     unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
149         let refcount_layout = Layout::new::<bindings::refcount_t>();
150         // SAFETY: The caller guarantees that the pointer is valid.
151         let val_layout = Layout::for_value(unsafe { &*ptr });
152         // SAFETY: We're computing the layout of a real struct that existed when compiling this
153         // binary, so its layout is not so large that it can trigger arithmetic overflow.
154         let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
155 
156         // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
157         // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
158         //
159         // This is documented at:
160         // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
161         let ptr = ptr as *const ArcInner<T>;
162 
163         // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
164         // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
165         // still valid.
166         let ptr = unsafe { ptr.byte_sub(val_offset) };
167 
168         // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
169         // address.
170         unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
171     }
172 }
173 
174 // This is to allow [`Arc`] (and variants) to be used as the type of `self`.
175 impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
176 
177 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
178 // dynamically-sized type (DST) `U`.
179 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
180 
181 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
182 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
183 
184 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
185 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
186 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
187 // mutable reference when the reference count reaches zero and `T` is dropped.
188 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
189 
190 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
191 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
192 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
193 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
194 // the reference count reaches zero and `T` is dropped.
195 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
196 
197 impl<T> Arc<T> {
198     /// Constructs a new reference counted instance of `T`.
199     pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
200         // INVARIANT: The refcount is initialised to a non-zero value.
201         let value = ArcInner {
202             // SAFETY: There are no safety requirements for this FFI call.
203             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
204             data: contents,
205         };
206 
207         let inner = <Box<_> as BoxExt<_>>::new(value, flags)?;
208 
209         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
210         // `Arc` object.
211         Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
212     }
213 
214     /// Use the given initializer to in-place initialize a `T`.
215     ///
216     /// If `T: !Unpin` it will not be able to move afterwards.
217     #[inline]
218     pub fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self>
219     where
220         Error: From<E>,
221     {
222         UniqueArc::pin_init(init, flags).map(|u| u.into())
223     }
224 
225     /// Use the given initializer to in-place initialize a `T`.
226     ///
227     /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned.
228     #[inline]
229     pub fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self>
230     where
231         Error: From<E>,
232     {
233         UniqueArc::init(init, flags).map(|u| u.into())
234     }
235 }
236 
237 impl<T: ?Sized> Arc<T> {
238     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
239     ///
240     /// # Safety
241     ///
242     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
243     /// count, one of which will be owned by the new [`Arc`] instance.
244     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
245         // INVARIANT: By the safety requirements, the invariants hold.
246         Arc {
247             ptr: inner,
248             _p: PhantomData,
249         }
250     }
251 
252     /// Convert the [`Arc`] into a raw pointer.
253     ///
254     /// The raw pointer has ownership of the refcount that this Arc object owned.
255     pub fn into_raw(self) -> *const T {
256         let ptr = self.ptr.as_ptr();
257         core::mem::forget(self);
258         // SAFETY: The pointer is valid.
259         unsafe { core::ptr::addr_of!((*ptr).data) }
260     }
261 
262     /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
263     ///
264     /// # Safety
265     ///
266     /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
267     /// must not be called more than once for each previous call to [`Arc::into_raw`].
268     pub unsafe fn from_raw(ptr: *const T) -> Self {
269         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
270         // `Arc` that is still valid.
271         let ptr = unsafe { ArcInner::container_of(ptr) };
272 
273         // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
274         // reference count held then will be owned by the new `Arc` object.
275         unsafe { Self::from_inner(ptr) }
276     }
277 
278     /// Returns an [`ArcBorrow`] from the given [`Arc`].
279     ///
280     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
281     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
282     #[inline]
283     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
284         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
285         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
286         // reference can be created.
287         unsafe { ArcBorrow::new(self.ptr) }
288     }
289 
290     /// Compare whether two [`Arc`] pointers reference the same underlying object.
291     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
292         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
293     }
294 }
295 
296 impl<T: 'static> ForeignOwnable for Arc<T> {
297     type Borrowed<'a> = ArcBorrow<'a, T>;
298 
299     fn into_foreign(self) -> *const core::ffi::c_void {
300         ManuallyDrop::new(self).ptr.as_ptr() as _
301     }
302 
303     unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
304         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
305         // a previous call to `Arc::into_foreign`.
306         let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
307 
308         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
309         // for the lifetime of the returned value.
310         unsafe { ArcBorrow::new(inner) }
311     }
312 
313     unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
314         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
315         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
316         // holds a reference count increment that is transferrable to us.
317         unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
318     }
319 }
320 
321 impl<T: ?Sized> Deref for Arc<T> {
322     type Target = T;
323 
324     fn deref(&self) -> &Self::Target {
325         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
326         // safe to dereference it.
327         unsafe { &self.ptr.as_ref().data }
328     }
329 }
330 
331 impl<T: ?Sized> AsRef<T> for Arc<T> {
332     fn as_ref(&self) -> &T {
333         self.deref()
334     }
335 }
336 
337 impl<T: ?Sized> Clone for Arc<T> {
338     fn clone(&self) -> Self {
339         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
340         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
341         // safe to increment the refcount.
342         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
343 
344         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
345         unsafe { Self::from_inner(self.ptr) }
346     }
347 }
348 
349 impl<T: ?Sized> Drop for Arc<T> {
350     fn drop(&mut self) {
351         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
352         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
353         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
354         // freed/invalid memory as long as it is never dereferenced.
355         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
356 
357         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
358         // this instance is being dropped, so the broken invariant is not observable.
359         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
360         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
361         if is_zero {
362             // The count reached zero, we must free the memory.
363             //
364             // SAFETY: The pointer was initialised from the result of `Box::leak`.
365             unsafe { drop(Box::from_raw(self.ptr.as_ptr())) };
366         }
367     }
368 }
369 
370 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
371     fn from(item: UniqueArc<T>) -> Self {
372         item.inner
373     }
374 }
375 
376 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
377     fn from(item: Pin<UniqueArc<T>>) -> Self {
378         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
379         unsafe { Pin::into_inner_unchecked(item).inner }
380     }
381 }
382 
383 /// A borrowed reference to an [`Arc`] instance.
384 ///
385 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
386 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
387 ///
388 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
389 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
390 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
391 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
392 /// needed.
393 ///
394 /// # Invariants
395 ///
396 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
397 /// lifetime of the [`ArcBorrow`] instance.
398 ///
399 /// # Example
400 ///
401 /// ```
402 /// use kernel::sync::{Arc, ArcBorrow};
403 ///
404 /// struct Example;
405 ///
406 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
407 ///     e.into()
408 /// }
409 ///
410 /// let obj = Arc::new(Example, GFP_KERNEL)?;
411 /// let cloned = do_something(obj.as_arc_borrow());
412 ///
413 /// // Assert that both `obj` and `cloned` point to the same underlying object.
414 /// assert!(core::ptr::eq(&*obj, &*cloned));
415 /// # Ok::<(), Error>(())
416 /// ```
417 ///
418 /// Using `ArcBorrow<T>` as the type of `self`:
419 ///
420 /// ```
421 /// use kernel::sync::{Arc, ArcBorrow};
422 ///
423 /// struct Example {
424 ///     a: u32,
425 ///     b: u32,
426 /// }
427 ///
428 /// impl Example {
429 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
430 ///         // ...
431 ///     }
432 /// }
433 ///
434 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
435 /// obj.as_arc_borrow().use_reference();
436 /// # Ok::<(), Error>(())
437 /// ```
438 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
439     inner: NonNull<ArcInner<T>>,
440     _p: PhantomData<&'a ()>,
441 }
442 
443 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`.
444 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {}
445 
446 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
447 // `ArcBorrow<U>`.
448 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
449     for ArcBorrow<'_, T>
450 {
451 }
452 
453 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
454     fn clone(&self) -> Self {
455         *self
456     }
457 }
458 
459 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
460 
461 impl<T: ?Sized> ArcBorrow<'_, T> {
462     /// Creates a new [`ArcBorrow`] instance.
463     ///
464     /// # Safety
465     ///
466     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
467     /// 1. That `inner` remains valid;
468     /// 2. That no mutable references to `inner` are created.
469     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
470         // INVARIANT: The safety requirements guarantee the invariants.
471         Self {
472             inner,
473             _p: PhantomData,
474         }
475     }
476 
477     /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
478     /// [`Arc::into_raw`].
479     ///
480     /// # Safety
481     ///
482     /// * The provided pointer must originate from a call to [`Arc::into_raw`].
483     /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
484     ///   not hit zero.
485     /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
486     ///   [`UniqueArc`] reference to this value.
487     pub unsafe fn from_raw(ptr: *const T) -> Self {
488         // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
489         // `Arc` that is still valid.
490         let ptr = unsafe { ArcInner::container_of(ptr) };
491 
492         // SAFETY: The caller promises that the value remains valid since the reference count must
493         // not hit zero, and no mutable reference will be created since that would involve a
494         // `UniqueArc`.
495         unsafe { Self::new(ptr) }
496     }
497 }
498 
499 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
500     fn from(b: ArcBorrow<'_, T>) -> Self {
501         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
502         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
503         // increment.
504         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
505             .deref()
506             .clone()
507     }
508 }
509 
510 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
511     type Target = T;
512 
513     fn deref(&self) -> &Self::Target {
514         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
515         // references to it, so it is safe to create a shared reference.
516         unsafe { &self.inner.as_ref().data }
517     }
518 }
519 
520 /// A refcounted object that is known to have a refcount of 1.
521 ///
522 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
523 ///
524 /// # Invariants
525 ///
526 /// `inner` always has a reference count of 1.
527 ///
528 /// # Examples
529 ///
530 /// In the following example, we make changes to the inner object before turning it into an
531 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
532 /// cannot fail.
533 ///
534 /// ```
535 /// use kernel::sync::{Arc, UniqueArc};
536 ///
537 /// struct Example {
538 ///     a: u32,
539 ///     b: u32,
540 /// }
541 ///
542 /// fn test() -> Result<Arc<Example>> {
543 ///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
544 ///     x.a += 1;
545 ///     x.b += 1;
546 ///     Ok(x.into())
547 /// }
548 ///
549 /// # test().unwrap();
550 /// ```
551 ///
552 /// In the following example we first allocate memory for a refcounted `Example` but we don't
553 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
554 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
555 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
556 ///
557 /// ```
558 /// use kernel::sync::{Arc, UniqueArc};
559 ///
560 /// struct Example {
561 ///     a: u32,
562 ///     b: u32,
563 /// }
564 ///
565 /// fn test() -> Result<Arc<Example>> {
566 ///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
567 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
568 /// }
569 ///
570 /// # test().unwrap();
571 /// ```
572 ///
573 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
574 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
575 /// initialisation, for example, when initialising fields that are wrapped in locks.
576 ///
577 /// ```
578 /// use kernel::sync::{Arc, UniqueArc};
579 ///
580 /// struct Example {
581 ///     a: u32,
582 ///     b: u32,
583 /// }
584 ///
585 /// fn test() -> Result<Arc<Example>> {
586 ///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
587 ///     // We can modify `pinned` because it is `Unpin`.
588 ///     pinned.as_mut().a += 1;
589 ///     Ok(pinned.into())
590 /// }
591 ///
592 /// # test().unwrap();
593 /// ```
594 pub struct UniqueArc<T: ?Sized> {
595     inner: Arc<T>,
596 }
597 
598 impl<T> UniqueArc<T> {
599     /// Tries to allocate a new [`UniqueArc`] instance.
600     pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
601         Ok(Self {
602             // INVARIANT: The newly-created object has a refcount of 1.
603             inner: Arc::new(value, flags)?,
604         })
605     }
606 
607     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
608     pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
609         // INVARIANT: The refcount is initialised to a non-zero value.
610         let inner = Box::try_init::<AllocError>(
611             try_init!(ArcInner {
612                 // SAFETY: There are no safety requirements for this FFI call.
613                 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
614                 data <- init::uninit::<T, AllocError>(),
615             }? AllocError),
616             flags,
617         )?;
618         Ok(UniqueArc {
619             // INVARIANT: The newly-created object has a refcount of 1.
620             // SAFETY: The pointer from the `Box` is valid.
621             inner: unsafe { Arc::from_inner(Box::leak(inner).into()) },
622         })
623     }
624 }
625 
626 impl<T> UniqueArc<MaybeUninit<T>> {
627     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
628     pub fn write(mut self, value: T) -> UniqueArc<T> {
629         self.deref_mut().write(value);
630         // SAFETY: We just wrote the value to be initialized.
631         unsafe { self.assume_init() }
632     }
633 
634     /// Unsafely assume that `self` is initialized.
635     ///
636     /// # Safety
637     ///
638     /// The caller guarantees that the value behind this pointer has been initialized. It is
639     /// *immediate* UB to call this when the value is not initialized.
640     pub unsafe fn assume_init(self) -> UniqueArc<T> {
641         let inner = ManuallyDrop::new(self).inner.ptr;
642         UniqueArc {
643             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
644             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
645             inner: unsafe { Arc::from_inner(inner.cast()) },
646         }
647     }
648 
649     /// Initialize `self` using the given initializer.
650     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
651         // SAFETY: The supplied pointer is valid for initialization.
652         match unsafe { init.__init(self.as_mut_ptr()) } {
653             // SAFETY: Initialization completed successfully.
654             Ok(()) => Ok(unsafe { self.assume_init() }),
655             Err(err) => Err(err),
656         }
657     }
658 
659     /// Pin-initialize `self` using the given pin-initializer.
660     pub fn pin_init_with<E>(
661         mut self,
662         init: impl PinInit<T, E>,
663     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
664         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
665         // to ensure it does not move.
666         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
667             // SAFETY: Initialization completed successfully.
668             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
669             Err(err) => Err(err),
670         }
671     }
672 }
673 
674 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
675     fn from(obj: UniqueArc<T>) -> Self {
676         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
677         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
678         unsafe { Pin::new_unchecked(obj) }
679     }
680 }
681 
682 impl<T: ?Sized> Deref for UniqueArc<T> {
683     type Target = T;
684 
685     fn deref(&self) -> &Self::Target {
686         self.inner.deref()
687     }
688 }
689 
690 impl<T: ?Sized> DerefMut for UniqueArc<T> {
691     fn deref_mut(&mut self) -> &mut Self::Target {
692         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
693         // it is safe to dereference it. Additionally, we know there is only one reference when
694         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
695         unsafe { &mut self.inner.ptr.as_mut().data }
696     }
697 }
698 
699 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
700     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
701         fmt::Display::fmt(self.deref(), f)
702     }
703 }
704 
705 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
706     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
707         fmt::Display::fmt(self.deref(), f)
708     }
709 }
710 
711 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
712     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
713         fmt::Debug::fmt(self.deref(), f)
714     }
715 }
716 
717 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
718     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
719         fmt::Debug::fmt(self.deref(), f)
720     }
721 }
722