1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implicitly. 16 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 19 use crate::{ 20 alloc::{AllocError, Flags, KBox}, 21 bindings, 22 init::{self, InPlaceInit, Init, PinInit}, 23 try_init, 24 types::{ForeignOwnable, Opaque}, 25 }; 26 use core::{ 27 alloc::Layout, 28 fmt, 29 marker::PhantomData, 30 mem::{ManuallyDrop, MaybeUninit}, 31 ops::{Deref, DerefMut}, 32 pin::Pin, 33 ptr::NonNull, 34 }; 35 use macros::pin_data; 36 37 mod std_vendor; 38 39 /// A reference-counted pointer to an instance of `T`. 40 /// 41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 43 /// 44 /// # Invariants 45 /// 46 /// The reference count on an instance of [`Arc`] is always non-zero. 47 /// The object pointed to by [`Arc`] is always pinned. 48 /// 49 /// # Examples 50 /// 51 /// ``` 52 /// use kernel::sync::Arc; 53 /// 54 /// struct Example { 55 /// a: u32, 56 /// b: u32, 57 /// } 58 /// 59 /// // Create a refcounted instance of `Example`. 60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 61 /// 62 /// // Get a new pointer to `obj` and increment the refcount. 63 /// let cloned = obj.clone(); 64 /// 65 /// // Assert that both `obj` and `cloned` point to the same underlying object. 66 /// assert!(core::ptr::eq(&*obj, &*cloned)); 67 /// 68 /// // Destroy `obj` and decrement its refcount. 69 /// drop(obj); 70 /// 71 /// // Check that the values are still accessible through `cloned`. 72 /// assert_eq!(cloned.a, 10); 73 /// assert_eq!(cloned.b, 20); 74 /// 75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 76 /// # Ok::<(), Error>(()) 77 /// ``` 78 /// 79 /// Using `Arc<T>` as the type of `self`: 80 /// 81 /// ``` 82 /// use kernel::sync::Arc; 83 /// 84 /// struct Example { 85 /// a: u32, 86 /// b: u32, 87 /// } 88 /// 89 /// impl Example { 90 /// fn take_over(self: Arc<Self>) { 91 /// // ... 92 /// } 93 /// 94 /// fn use_reference(self: &Arc<Self>) { 95 /// // ... 96 /// } 97 /// } 98 /// 99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 100 /// obj.use_reference(); 101 /// obj.take_over(); 102 /// # Ok::<(), Error>(()) 103 /// ``` 104 /// 105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 106 /// 107 /// ``` 108 /// use kernel::sync::{Arc, ArcBorrow}; 109 /// 110 /// trait MyTrait { 111 /// // Trait has a function whose `self` type is `Arc<Self>`. 112 /// fn example1(self: Arc<Self>) {} 113 /// 114 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 115 /// fn example2(self: ArcBorrow<'_, Self>) {} 116 /// } 117 /// 118 /// struct Example; 119 /// impl MyTrait for Example {} 120 /// 121 /// // `obj` has type `Arc<Example>`. 122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 123 /// 124 /// // `coerced` has type `Arc<dyn MyTrait>`. 125 /// let coerced: Arc<dyn MyTrait> = obj; 126 /// # Ok::<(), Error>(()) 127 /// ``` 128 #[repr(transparent)] 129 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 130 pub struct Arc<T: ?Sized> { 131 ptr: NonNull<ArcInner<T>>, 132 // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as 133 // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in 134 // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently 135 // meaningful with respect to dropck - but this may change in the future so this is left here 136 // out of an abundance of caution. 137 // 138 // See https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking 139 // for more detail on the semantics of dropck in the presence of `PhantomData`. 140 _p: PhantomData<ArcInner<T>>, 141 } 142 143 #[pin_data] 144 #[repr(C)] 145 struct ArcInner<T: ?Sized> { 146 refcount: Opaque<bindings::refcount_t>, 147 data: T, 148 } 149 150 impl<T: ?Sized> ArcInner<T> { 151 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 152 /// 153 /// # Safety 154 /// 155 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 156 /// not yet have been destroyed. 157 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 158 let refcount_layout = Layout::new::<bindings::refcount_t>(); 159 // SAFETY: The caller guarantees that the pointer is valid. 160 let val_layout = Layout::for_value(unsafe { &*ptr }); 161 // SAFETY: We're computing the layout of a real struct that existed when compiling this 162 // binary, so its layout is not so large that it can trigger arithmetic overflow. 163 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 164 165 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 166 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 167 // 168 // This is documented at: 169 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 170 let ptr = ptr as *const ArcInner<T>; 171 172 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 173 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 174 // still valid. 175 let ptr = unsafe { ptr.byte_sub(val_offset) }; 176 177 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 178 // address. 179 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 180 } 181 } 182 183 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 184 // dynamically-sized type (DST) `U`. 185 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 186 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 187 188 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 189 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 190 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 191 192 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 193 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 194 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 195 // mutable reference when the reference count reaches zero and `T` is dropped. 196 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 197 198 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 199 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 200 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 201 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 202 // the reference count reaches zero and `T` is dropped. 203 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 204 205 impl<T> Arc<T> { 206 /// Constructs a new reference counted instance of `T`. 207 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 208 // INVARIANT: The refcount is initialised to a non-zero value. 209 let value = ArcInner { 210 // SAFETY: There are no safety requirements for this FFI call. 211 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 212 data: contents, 213 }; 214 215 let inner = KBox::new(value, flags)?; 216 217 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 218 // `Arc` object. 219 Ok(unsafe { Self::from_inner(KBox::leak(inner).into()) }) 220 } 221 } 222 223 impl<T: ?Sized> Arc<T> { 224 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 225 /// 226 /// # Safety 227 /// 228 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 229 /// count, one of which will be owned by the new [`Arc`] instance. 230 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 231 // INVARIANT: By the safety requirements, the invariants hold. 232 Arc { 233 ptr: inner, 234 _p: PhantomData, 235 } 236 } 237 238 /// Convert the [`Arc`] into a raw pointer. 239 /// 240 /// The raw pointer has ownership of the refcount that this Arc object owned. 241 pub fn into_raw(self) -> *const T { 242 let ptr = self.ptr.as_ptr(); 243 core::mem::forget(self); 244 // SAFETY: The pointer is valid. 245 unsafe { core::ptr::addr_of!((*ptr).data) } 246 } 247 248 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 249 /// 250 /// # Safety 251 /// 252 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 253 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 254 pub unsafe fn from_raw(ptr: *const T) -> Self { 255 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 256 // `Arc` that is still valid. 257 let ptr = unsafe { ArcInner::container_of(ptr) }; 258 259 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 260 // reference count held then will be owned by the new `Arc` object. 261 unsafe { Self::from_inner(ptr) } 262 } 263 264 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 265 /// 266 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 267 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 268 #[inline] 269 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 270 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 271 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 272 // reference can be created. 273 unsafe { ArcBorrow::new(self.ptr) } 274 } 275 276 /// Compare whether two [`Arc`] pointers reference the same underlying object. 277 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 278 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 279 } 280 281 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 282 /// 283 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 284 /// this method will never call the destructor of the value. 285 /// 286 /// # Examples 287 /// 288 /// ``` 289 /// use kernel::sync::{Arc, UniqueArc}; 290 /// 291 /// let arc = Arc::new(42, GFP_KERNEL)?; 292 /// let unique_arc = arc.into_unique_or_drop(); 293 /// 294 /// // The above conversion should succeed since refcount of `arc` is 1. 295 /// assert!(unique_arc.is_some()); 296 /// 297 /// assert_eq!(*(unique_arc.unwrap()), 42); 298 /// 299 /// # Ok::<(), Error>(()) 300 /// ``` 301 /// 302 /// ``` 303 /// use kernel::sync::{Arc, UniqueArc}; 304 /// 305 /// let arc = Arc::new(42, GFP_KERNEL)?; 306 /// let another = arc.clone(); 307 /// 308 /// let unique_arc = arc.into_unique_or_drop(); 309 /// 310 /// // The above conversion should fail since refcount of `arc` is >1. 311 /// assert!(unique_arc.is_none()); 312 /// 313 /// # Ok::<(), Error>(()) 314 /// ``` 315 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> { 316 // We will manually manage the refcount in this method, so we disable the destructor. 317 let me = ManuallyDrop::new(self); 318 // SAFETY: We own a refcount, so the pointer is still valid. 319 let refcount = unsafe { me.ptr.as_ref() }.refcount.get(); 320 321 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 322 // return without further touching the `Arc`. If the refcount reaches zero, then there are 323 // no other arcs, and we can create a `UniqueArc`. 324 // 325 // SAFETY: We own a refcount, so the pointer is not dangling. 326 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 327 if is_zero { 328 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized 329 // accesses to the refcount. 330 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) }; 331 332 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 333 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 334 // their values. 335 Some(Pin::from(UniqueArc { 336 inner: ManuallyDrop::into_inner(me), 337 })) 338 } else { 339 None 340 } 341 } 342 } 343 344 impl<T: 'static> ForeignOwnable for Arc<T> { 345 type Borrowed<'a> = ArcBorrow<'a, T>; 346 347 fn into_foreign(self) -> *const crate::ffi::c_void { 348 ManuallyDrop::new(self).ptr.as_ptr() as _ 349 } 350 351 unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> ArcBorrow<'a, T> { 352 // By the safety requirement of this function, we know that `ptr` came from 353 // a previous call to `Arc::into_foreign`. 354 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 355 356 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 357 // for the lifetime of the returned value. 358 unsafe { ArcBorrow::new(inner) } 359 } 360 361 unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self { 362 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 363 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 364 // holds a reference count increment that is transferrable to us. 365 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 366 } 367 } 368 369 impl<T: ?Sized> Deref for Arc<T> { 370 type Target = T; 371 372 fn deref(&self) -> &Self::Target { 373 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 374 // safe to dereference it. 375 unsafe { &self.ptr.as_ref().data } 376 } 377 } 378 379 impl<T: ?Sized> AsRef<T> for Arc<T> { 380 fn as_ref(&self) -> &T { 381 self.deref() 382 } 383 } 384 385 impl<T: ?Sized> Clone for Arc<T> { 386 fn clone(&self) -> Self { 387 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 388 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 389 // safe to increment the refcount. 390 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 391 392 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 393 unsafe { Self::from_inner(self.ptr) } 394 } 395 } 396 397 impl<T: ?Sized> Drop for Arc<T> { 398 fn drop(&mut self) { 399 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 400 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 401 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 402 // freed/invalid memory as long as it is never dereferenced. 403 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 404 405 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 406 // this instance is being dropped, so the broken invariant is not observable. 407 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 408 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 409 if is_zero { 410 // The count reached zero, we must free the memory. 411 // 412 // SAFETY: The pointer was initialised from the result of `KBox::leak`. 413 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) }; 414 } 415 } 416 } 417 418 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 419 fn from(item: UniqueArc<T>) -> Self { 420 item.inner 421 } 422 } 423 424 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 425 fn from(item: Pin<UniqueArc<T>>) -> Self { 426 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 427 unsafe { Pin::into_inner_unchecked(item).inner } 428 } 429 } 430 431 /// A borrowed reference to an [`Arc`] instance. 432 /// 433 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 434 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 435 /// 436 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 437 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 438 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 439 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 440 /// needed. 441 /// 442 /// # Invariants 443 /// 444 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 445 /// lifetime of the [`ArcBorrow`] instance. 446 /// 447 /// # Example 448 /// 449 /// ``` 450 /// use kernel::sync::{Arc, ArcBorrow}; 451 /// 452 /// struct Example; 453 /// 454 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 455 /// e.into() 456 /// } 457 /// 458 /// let obj = Arc::new(Example, GFP_KERNEL)?; 459 /// let cloned = do_something(obj.as_arc_borrow()); 460 /// 461 /// // Assert that both `obj` and `cloned` point to the same underlying object. 462 /// assert!(core::ptr::eq(&*obj, &*cloned)); 463 /// # Ok::<(), Error>(()) 464 /// ``` 465 /// 466 /// Using `ArcBorrow<T>` as the type of `self`: 467 /// 468 /// ``` 469 /// use kernel::sync::{Arc, ArcBorrow}; 470 /// 471 /// struct Example { 472 /// a: u32, 473 /// b: u32, 474 /// } 475 /// 476 /// impl Example { 477 /// fn use_reference(self: ArcBorrow<'_, Self>) { 478 /// // ... 479 /// } 480 /// } 481 /// 482 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 483 /// obj.as_arc_borrow().use_reference(); 484 /// # Ok::<(), Error>(()) 485 /// ``` 486 #[repr(transparent)] 487 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 488 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 489 inner: NonNull<ArcInner<T>>, 490 _p: PhantomData<&'a ()>, 491 } 492 493 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 494 // `ArcBorrow<U>`. 495 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 496 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 497 for ArcBorrow<'_, T> 498 { 499 } 500 501 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 502 fn clone(&self) -> Self { 503 *self 504 } 505 } 506 507 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 508 509 impl<T: ?Sized> ArcBorrow<'_, T> { 510 /// Creates a new [`ArcBorrow`] instance. 511 /// 512 /// # Safety 513 /// 514 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 515 /// 1. That `inner` remains valid; 516 /// 2. That no mutable references to `inner` are created. 517 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 518 // INVARIANT: The safety requirements guarantee the invariants. 519 Self { 520 inner, 521 _p: PhantomData, 522 } 523 } 524 525 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 526 /// [`Arc::into_raw`]. 527 /// 528 /// # Safety 529 /// 530 /// * The provided pointer must originate from a call to [`Arc::into_raw`]. 531 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 532 /// not hit zero. 533 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 534 /// [`UniqueArc`] reference to this value. 535 pub unsafe fn from_raw(ptr: *const T) -> Self { 536 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 537 // `Arc` that is still valid. 538 let ptr = unsafe { ArcInner::container_of(ptr) }; 539 540 // SAFETY: The caller promises that the value remains valid since the reference count must 541 // not hit zero, and no mutable reference will be created since that would involve a 542 // `UniqueArc`. 543 unsafe { Self::new(ptr) } 544 } 545 } 546 547 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 548 fn from(b: ArcBorrow<'_, T>) -> Self { 549 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 550 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 551 // increment. 552 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 553 .deref() 554 .clone() 555 } 556 } 557 558 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 559 type Target = T; 560 561 fn deref(&self) -> &Self::Target { 562 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 563 // references to it, so it is safe to create a shared reference. 564 unsafe { &self.inner.as_ref().data } 565 } 566 } 567 568 /// A refcounted object that is known to have a refcount of 1. 569 /// 570 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 571 /// 572 /// # Invariants 573 /// 574 /// `inner` always has a reference count of 1. 575 /// 576 /// # Examples 577 /// 578 /// In the following example, we make changes to the inner object before turning it into an 579 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 580 /// cannot fail. 581 /// 582 /// ``` 583 /// use kernel::sync::{Arc, UniqueArc}; 584 /// 585 /// struct Example { 586 /// a: u32, 587 /// b: u32, 588 /// } 589 /// 590 /// fn test() -> Result<Arc<Example>> { 591 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 592 /// x.a += 1; 593 /// x.b += 1; 594 /// Ok(x.into()) 595 /// } 596 /// 597 /// # test().unwrap(); 598 /// ``` 599 /// 600 /// In the following example we first allocate memory for a refcounted `Example` but we don't 601 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 602 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 603 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 604 /// 605 /// ``` 606 /// use kernel::sync::{Arc, UniqueArc}; 607 /// 608 /// struct Example { 609 /// a: u32, 610 /// b: u32, 611 /// } 612 /// 613 /// fn test() -> Result<Arc<Example>> { 614 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 615 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 616 /// } 617 /// 618 /// # test().unwrap(); 619 /// ``` 620 /// 621 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 622 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 623 /// initialisation, for example, when initialising fields that are wrapped in locks. 624 /// 625 /// ``` 626 /// use kernel::sync::{Arc, UniqueArc}; 627 /// 628 /// struct Example { 629 /// a: u32, 630 /// b: u32, 631 /// } 632 /// 633 /// fn test() -> Result<Arc<Example>> { 634 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 635 /// // We can modify `pinned` because it is `Unpin`. 636 /// pinned.as_mut().a += 1; 637 /// Ok(pinned.into()) 638 /// } 639 /// 640 /// # test().unwrap(); 641 /// ``` 642 pub struct UniqueArc<T: ?Sized> { 643 inner: Arc<T>, 644 } 645 646 impl<T> UniqueArc<T> { 647 /// Tries to allocate a new [`UniqueArc`] instance. 648 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 649 Ok(Self { 650 // INVARIANT: The newly-created object has a refcount of 1. 651 inner: Arc::new(value, flags)?, 652 }) 653 } 654 655 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 656 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 657 // INVARIANT: The refcount is initialised to a non-zero value. 658 let inner = KBox::try_init::<AllocError>( 659 try_init!(ArcInner { 660 // SAFETY: There are no safety requirements for this FFI call. 661 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 662 data <- init::uninit::<T, AllocError>(), 663 }? AllocError), 664 flags, 665 )?; 666 Ok(UniqueArc { 667 // INVARIANT: The newly-created object has a refcount of 1. 668 // SAFETY: The pointer from the `KBox` is valid. 669 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) }, 670 }) 671 } 672 } 673 674 impl<T> UniqueArc<MaybeUninit<T>> { 675 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 676 pub fn write(mut self, value: T) -> UniqueArc<T> { 677 self.deref_mut().write(value); 678 // SAFETY: We just wrote the value to be initialized. 679 unsafe { self.assume_init() } 680 } 681 682 /// Unsafely assume that `self` is initialized. 683 /// 684 /// # Safety 685 /// 686 /// The caller guarantees that the value behind this pointer has been initialized. It is 687 /// *immediate* UB to call this when the value is not initialized. 688 pub unsafe fn assume_init(self) -> UniqueArc<T> { 689 let inner = ManuallyDrop::new(self).inner.ptr; 690 UniqueArc { 691 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 692 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 693 inner: unsafe { Arc::from_inner(inner.cast()) }, 694 } 695 } 696 697 /// Initialize `self` using the given initializer. 698 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 699 // SAFETY: The supplied pointer is valid for initialization. 700 match unsafe { init.__init(self.as_mut_ptr()) } { 701 // SAFETY: Initialization completed successfully. 702 Ok(()) => Ok(unsafe { self.assume_init() }), 703 Err(err) => Err(err), 704 } 705 } 706 707 /// Pin-initialize `self` using the given pin-initializer. 708 pub fn pin_init_with<E>( 709 mut self, 710 init: impl PinInit<T, E>, 711 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 712 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 713 // to ensure it does not move. 714 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 715 // SAFETY: Initialization completed successfully. 716 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 717 Err(err) => Err(err), 718 } 719 } 720 } 721 722 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 723 fn from(obj: UniqueArc<T>) -> Self { 724 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 725 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 726 unsafe { Pin::new_unchecked(obj) } 727 } 728 } 729 730 impl<T: ?Sized> Deref for UniqueArc<T> { 731 type Target = T; 732 733 fn deref(&self) -> &Self::Target { 734 self.inner.deref() 735 } 736 } 737 738 impl<T: ?Sized> DerefMut for UniqueArc<T> { 739 fn deref_mut(&mut self) -> &mut Self::Target { 740 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 741 // it is safe to dereference it. Additionally, we know there is only one reference when 742 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 743 unsafe { &mut self.inner.ptr.as_mut().data } 744 } 745 } 746 747 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 748 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 749 fmt::Display::fmt(self.deref(), f) 750 } 751 } 752 753 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 754 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 755 fmt::Display::fmt(self.deref(), f) 756 } 757 } 758 759 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 760 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 761 fmt::Debug::fmt(self.deref(), f) 762 } 763 } 764 765 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 766 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 767 fmt::Debug::fmt(self.deref(), f) 768 } 769 } 770