xref: /linux/rust/kernel/sync/arc.rs (revision 460ea8980511c01c1551012b9a6ec6a06d02da59)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //!
16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
17 
18 use crate::{
19     bindings,
20     error::{self, Error},
21     init::{self, InPlaceInit, Init, PinInit},
22     try_init,
23     types::{ForeignOwnable, Opaque},
24 };
25 use alloc::boxed::Box;
26 use core::{
27     alloc::AllocError,
28     fmt,
29     marker::{PhantomData, Unsize},
30     mem::{ManuallyDrop, MaybeUninit},
31     ops::{Deref, DerefMut},
32     pin::Pin,
33     ptr::NonNull,
34 };
35 use macros::pin_data;
36 
37 mod std_vendor;
38 
39 /// A reference-counted pointer to an instance of `T`.
40 ///
41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43 ///
44 /// # Invariants
45 ///
46 /// The reference count on an instance of [`Arc`] is always non-zero.
47 /// The object pointed to by [`Arc`] is always pinned.
48 ///
49 /// # Examples
50 ///
51 /// ```
52 /// use kernel::sync::Arc;
53 ///
54 /// struct Example {
55 ///     a: u32,
56 ///     b: u32,
57 /// }
58 ///
59 /// // Create a ref-counted instance of `Example`.
60 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
61 ///
62 /// // Get a new pointer to `obj` and increment the refcount.
63 /// let cloned = obj.clone();
64 ///
65 /// // Assert that both `obj` and `cloned` point to the same underlying object.
66 /// assert!(core::ptr::eq(&*obj, &*cloned));
67 ///
68 /// // Destroy `obj` and decrement its refcount.
69 /// drop(obj);
70 ///
71 /// // Check that the values are still accessible through `cloned`.
72 /// assert_eq!(cloned.a, 10);
73 /// assert_eq!(cloned.b, 20);
74 ///
75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76 /// ```
77 ///
78 /// Using `Arc<T>` as the type of `self`:
79 ///
80 /// ```
81 /// use kernel::sync::Arc;
82 ///
83 /// struct Example {
84 ///     a: u32,
85 ///     b: u32,
86 /// }
87 ///
88 /// impl Example {
89 ///     fn take_over(self: Arc<Self>) {
90 ///         // ...
91 ///     }
92 ///
93 ///     fn use_reference(self: &Arc<Self>) {
94 ///         // ...
95 ///     }
96 /// }
97 ///
98 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
99 /// obj.use_reference();
100 /// obj.take_over();
101 /// ```
102 ///
103 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
104 ///
105 /// ```
106 /// use kernel::sync::{Arc, ArcBorrow};
107 ///
108 /// trait MyTrait {
109 ///     // Trait has a function whose `self` type is `Arc<Self>`.
110 ///     fn example1(self: Arc<Self>) {}
111 ///
112 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
113 ///     fn example2(self: ArcBorrow<'_, Self>) {}
114 /// }
115 ///
116 /// struct Example;
117 /// impl MyTrait for Example {}
118 ///
119 /// // `obj` has type `Arc<Example>`.
120 /// let obj: Arc<Example> = Arc::try_new(Example)?;
121 ///
122 /// // `coerced` has type `Arc<dyn MyTrait>`.
123 /// let coerced: Arc<dyn MyTrait> = obj;
124 /// ```
125 pub struct Arc<T: ?Sized> {
126     ptr: NonNull<ArcInner<T>>,
127     _p: PhantomData<ArcInner<T>>,
128 }
129 
130 #[pin_data]
131 #[repr(C)]
132 struct ArcInner<T: ?Sized> {
133     refcount: Opaque<bindings::refcount_t>,
134     data: T,
135 }
136 
137 // This is to allow [`Arc`] (and variants) to be used as the type of `self`.
138 impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
139 
140 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
141 // dynamically-sized type (DST) `U`.
142 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
143 
144 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
145 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
146 
147 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
148 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
149 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
150 // mutable reference when the reference count reaches zero and `T` is dropped.
151 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
152 
153 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
154 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
155 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
156 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
157 // the reference count reaches zero and `T` is dropped.
158 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
159 
160 impl<T> Arc<T> {
161     /// Constructs a new reference counted instance of `T`.
162     pub fn try_new(contents: T) -> Result<Self, AllocError> {
163         // INVARIANT: The refcount is initialised to a non-zero value.
164         let value = ArcInner {
165             // SAFETY: There are no safety requirements for this FFI call.
166             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
167             data: contents,
168         };
169 
170         let inner = Box::try_new(value)?;
171 
172         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
173         // `Arc` object.
174         Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
175     }
176 
177     /// Use the given initializer to in-place initialize a `T`.
178     ///
179     /// If `T: !Unpin` it will not be able to move afterwards.
180     #[inline]
181     pub fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Self>
182     where
183         Error: From<E>,
184     {
185         UniqueArc::pin_init(init).map(|u| u.into())
186     }
187 
188     /// Use the given initializer to in-place initialize a `T`.
189     ///
190     /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned.
191     #[inline]
192     pub fn init<E>(init: impl Init<T, E>) -> error::Result<Self>
193     where
194         Error: From<E>,
195     {
196         UniqueArc::init(init).map(|u| u.into())
197     }
198 }
199 
200 impl<T: ?Sized> Arc<T> {
201     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
202     ///
203     /// # Safety
204     ///
205     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
206     /// count, one of which will be owned by the new [`Arc`] instance.
207     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
208         // INVARIANT: By the safety requirements, the invariants hold.
209         Arc {
210             ptr: inner,
211             _p: PhantomData,
212         }
213     }
214 
215     /// Returns an [`ArcBorrow`] from the given [`Arc`].
216     ///
217     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
218     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
219     #[inline]
220     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
221         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
222         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
223         // reference can be created.
224         unsafe { ArcBorrow::new(self.ptr) }
225     }
226 
227     /// Compare whether two [`Arc`] pointers reference the same underlying object.
228     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
229         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
230     }
231 }
232 
233 impl<T: 'static> ForeignOwnable for Arc<T> {
234     type Borrowed<'a> = ArcBorrow<'a, T>;
235 
236     fn into_foreign(self) -> *const core::ffi::c_void {
237         ManuallyDrop::new(self).ptr.as_ptr() as _
238     }
239 
240     unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
241         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
242         // a previous call to `Arc::into_foreign`.
243         let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
244 
245         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
246         // for the lifetime of the returned value. Additionally, the safety requirements of
247         // `ForeignOwnable::borrow_mut` ensure that no new mutable references are created.
248         unsafe { ArcBorrow::new(inner) }
249     }
250 
251     unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
252         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
253         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
254         // holds a reference count increment that is transferrable to us.
255         unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
256     }
257 }
258 
259 impl<T: ?Sized> Deref for Arc<T> {
260     type Target = T;
261 
262     fn deref(&self) -> &Self::Target {
263         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
264         // safe to dereference it.
265         unsafe { &self.ptr.as_ref().data }
266     }
267 }
268 
269 impl<T: ?Sized> AsRef<T> for Arc<T> {
270     fn as_ref(&self) -> &T {
271         self.deref()
272     }
273 }
274 
275 impl<T: ?Sized> Clone for Arc<T> {
276     fn clone(&self) -> Self {
277         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
278         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
279         // safe to increment the refcount.
280         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
281 
282         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
283         unsafe { Self::from_inner(self.ptr) }
284     }
285 }
286 
287 impl<T: ?Sized> Drop for Arc<T> {
288     fn drop(&mut self) {
289         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
290         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
291         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
292         // freed/invalid memory as long as it is never dereferenced.
293         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
294 
295         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
296         // this instance is being dropped, so the broken invariant is not observable.
297         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
298         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
299         if is_zero {
300             // The count reached zero, we must free the memory.
301             //
302             // SAFETY: The pointer was initialised from the result of `Box::leak`.
303             unsafe { Box::from_raw(self.ptr.as_ptr()) };
304         }
305     }
306 }
307 
308 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
309     fn from(item: UniqueArc<T>) -> Self {
310         item.inner
311     }
312 }
313 
314 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
315     fn from(item: Pin<UniqueArc<T>>) -> Self {
316         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
317         unsafe { Pin::into_inner_unchecked(item).inner }
318     }
319 }
320 
321 /// A borrowed reference to an [`Arc`] instance.
322 ///
323 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
324 /// to use just `&T`, which we can trivially get from an `Arc<T>` instance.
325 ///
326 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
327 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
328 /// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double
329 /// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if
330 /// needed.
331 ///
332 /// # Invariants
333 ///
334 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
335 /// lifetime of the [`ArcBorrow`] instance.
336 ///
337 /// # Example
338 ///
339 /// ```
340 /// use crate::sync::{Arc, ArcBorrow};
341 ///
342 /// struct Example;
343 ///
344 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
345 ///     e.into()
346 /// }
347 ///
348 /// let obj = Arc::try_new(Example)?;
349 /// let cloned = do_something(obj.as_arc_borrow());
350 ///
351 /// // Assert that both `obj` and `cloned` point to the same underlying object.
352 /// assert!(core::ptr::eq(&*obj, &*cloned));
353 /// ```
354 ///
355 /// Using `ArcBorrow<T>` as the type of `self`:
356 ///
357 /// ```
358 /// use crate::sync::{Arc, ArcBorrow};
359 ///
360 /// struct Example {
361 ///     a: u32,
362 ///     b: u32,
363 /// }
364 ///
365 /// impl Example {
366 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
367 ///         // ...
368 ///     }
369 /// }
370 ///
371 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
372 /// obj.as_arc_borrow().use_reference();
373 /// ```
374 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
375     inner: NonNull<ArcInner<T>>,
376     _p: PhantomData<&'a ()>,
377 }
378 
379 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`.
380 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {}
381 
382 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
383 // `ArcBorrow<U>`.
384 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
385     for ArcBorrow<'_, T>
386 {
387 }
388 
389 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
390     fn clone(&self) -> Self {
391         *self
392     }
393 }
394 
395 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
396 
397 impl<T: ?Sized> ArcBorrow<'_, T> {
398     /// Creates a new [`ArcBorrow`] instance.
399     ///
400     /// # Safety
401     ///
402     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
403     /// 1. That `inner` remains valid;
404     /// 2. That no mutable references to `inner` are created.
405     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
406         // INVARIANT: The safety requirements guarantee the invariants.
407         Self {
408             inner,
409             _p: PhantomData,
410         }
411     }
412 }
413 
414 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
415     fn from(b: ArcBorrow<'_, T>) -> Self {
416         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
417         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
418         // increment.
419         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
420             .deref()
421             .clone()
422     }
423 }
424 
425 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
426     type Target = T;
427 
428     fn deref(&self) -> &Self::Target {
429         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
430         // references to it, so it is safe to create a shared reference.
431         unsafe { &self.inner.as_ref().data }
432     }
433 }
434 
435 /// A refcounted object that is known to have a refcount of 1.
436 ///
437 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
438 ///
439 /// # Invariants
440 ///
441 /// `inner` always has a reference count of 1.
442 ///
443 /// # Examples
444 ///
445 /// In the following example, we make changes to the inner object before turning it into an
446 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
447 /// cannot fail.
448 ///
449 /// ```
450 /// use kernel::sync::{Arc, UniqueArc};
451 ///
452 /// struct Example {
453 ///     a: u32,
454 ///     b: u32,
455 /// }
456 ///
457 /// fn test() -> Result<Arc<Example>> {
458 ///     let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?;
459 ///     x.a += 1;
460 ///     x.b += 1;
461 ///     Ok(x.into())
462 /// }
463 ///
464 /// # test().unwrap();
465 /// ```
466 ///
467 /// In the following example we first allocate memory for a ref-counted `Example` but we don't
468 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
469 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
470 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
471 ///
472 /// ```
473 /// use kernel::sync::{Arc, UniqueArc};
474 ///
475 /// struct Example {
476 ///     a: u32,
477 ///     b: u32,
478 /// }
479 ///
480 /// fn test() -> Result<Arc<Example>> {
481 ///     let x = UniqueArc::try_new_uninit()?;
482 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
483 /// }
484 ///
485 /// # test().unwrap();
486 /// ```
487 ///
488 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
489 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
490 /// initialisation, for example, when initialising fields that are wrapped in locks.
491 ///
492 /// ```
493 /// use kernel::sync::{Arc, UniqueArc};
494 ///
495 /// struct Example {
496 ///     a: u32,
497 ///     b: u32,
498 /// }
499 ///
500 /// fn test() -> Result<Arc<Example>> {
501 ///     let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?);
502 ///     // We can modify `pinned` because it is `Unpin`.
503 ///     pinned.as_mut().a += 1;
504 ///     Ok(pinned.into())
505 /// }
506 ///
507 /// # test().unwrap();
508 /// ```
509 pub struct UniqueArc<T: ?Sized> {
510     inner: Arc<T>,
511 }
512 
513 impl<T> UniqueArc<T> {
514     /// Tries to allocate a new [`UniqueArc`] instance.
515     pub fn try_new(value: T) -> Result<Self, AllocError> {
516         Ok(Self {
517             // INVARIANT: The newly-created object has a ref-count of 1.
518             inner: Arc::try_new(value)?,
519         })
520     }
521 
522     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
523     pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
524         // INVARIANT: The refcount is initialised to a non-zero value.
525         let inner = Box::try_init::<AllocError>(try_init!(ArcInner {
526             // SAFETY: There are no safety requirements for this FFI call.
527             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
528             data <- init::uninit::<T, AllocError>(),
529         }? AllocError))?;
530         Ok(UniqueArc {
531             // INVARIANT: The newly-created object has a ref-count of 1.
532             // SAFETY: The pointer from the `Box` is valid.
533             inner: unsafe { Arc::from_inner(Box::leak(inner).into()) },
534         })
535     }
536 }
537 
538 impl<T> UniqueArc<MaybeUninit<T>> {
539     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
540     pub fn write(mut self, value: T) -> UniqueArc<T> {
541         self.deref_mut().write(value);
542         // SAFETY: We just wrote the value to be initialized.
543         unsafe { self.assume_init() }
544     }
545 
546     /// Unsafely assume that `self` is initialized.
547     ///
548     /// # Safety
549     ///
550     /// The caller guarantees that the value behind this pointer has been initialized. It is
551     /// *immediate* UB to call this when the value is not initialized.
552     pub unsafe fn assume_init(self) -> UniqueArc<T> {
553         let inner = ManuallyDrop::new(self).inner.ptr;
554         UniqueArc {
555             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
556             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
557             inner: unsafe { Arc::from_inner(inner.cast()) },
558         }
559     }
560 
561     /// Initialize `self` using the given initializer.
562     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
563         // SAFETY: The supplied pointer is valid for initialization.
564         match unsafe { init.__init(self.as_mut_ptr()) } {
565             // SAFETY: Initialization completed successfully.
566             Ok(()) => Ok(unsafe { self.assume_init() }),
567             Err(err) => Err(err),
568         }
569     }
570 
571     /// Pin-initialize `self` using the given pin-initializer.
572     pub fn pin_init_with<E>(
573         mut self,
574         init: impl PinInit<T, E>,
575     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
576         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
577         // to ensure it does not move.
578         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
579             // SAFETY: Initialization completed successfully.
580             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
581             Err(err) => Err(err),
582         }
583     }
584 }
585 
586 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
587     fn from(obj: UniqueArc<T>) -> Self {
588         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
589         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
590         unsafe { Pin::new_unchecked(obj) }
591     }
592 }
593 
594 impl<T: ?Sized> Deref for UniqueArc<T> {
595     type Target = T;
596 
597     fn deref(&self) -> &Self::Target {
598         self.inner.deref()
599     }
600 }
601 
602 impl<T: ?Sized> DerefMut for UniqueArc<T> {
603     fn deref_mut(&mut self) -> &mut Self::Target {
604         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
605         // it is safe to dereference it. Additionally, we know there is only one reference when
606         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
607         unsafe { &mut self.inner.ptr.as_mut().data }
608     }
609 }
610 
611 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
612     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
613         fmt::Display::fmt(self.deref(), f)
614     }
615 }
616 
617 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
618     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
619         fmt::Display::fmt(self.deref(), f)
620     }
621 }
622 
623 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
624     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
625         fmt::Debug::fmt(self.deref(), f)
626     }
627 }
628 
629 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
630     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
631         fmt::Debug::fmt(self.deref(), f)
632     }
633 }
634